DISCUSSION PAPER NO. 444

ESTIMATION OF MACROECONOMETRIC MODELS
UNDER RATIONAL EXPECTATIONS: A SURVEY

by
*/
FUMIO HAYASHI—

October 1980

Department of Economics
Northwestern University

*

I am grateful to Olivier-Jean Blanchard, Dale W. Jorgenson, and Kazuo

Ueda for comments and discussions.






1. Introduction

Most behavioral equations in macroeconomics depend critically on
expectations about current and future economic variables. Consumption
function and investment function are obvious examples. Since expectations
are not usually observable, econometricians who want to estimate such
behavioral equations have to specify the way expectations are formed. The
conventional practice is to assume autoregressive expectations and write
expectations as a distributed lag function of their own past values. This
ﬁractice is criticized.by Lucas (1976) who argued that expectations made by
reasonably intelligent economic agents may not be represented by distributed
lags whose coefficients are fixed. The alternative hypothesis about expecta-
tions formation, advanced by Muth (1961), is that expectations are rational,
i.e., they are the same as the predictions made by the relevant macroeconomic
model that econometricians wish to estimate.

In the past several years, various methods for estimating behavioral
equations that explicitly involve rational expectations have been proposed
in various contexts (Sargent (1973, 1976), Abel (1977), McCallum (1976 a,b),
Fair (1979), Taylor (1979), Wallis (1980), Hansen and Sargent (1980)). Some
of them require a very strong set of assumptions for the consistency of
parameter estimates. Some of them do not give appropriate measures of the
sampling error of parameter estimates. The purpose of this survey paper is
to place them in a common perspective and indicate their logical extensions.
More specifically, we consider two general classes of simultaneous equations
models that explicitly involve rational expectations and show how the avail-

able estimation methods can be applied. In so doing we can compare the
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available methods and their appropriate modifications in terms of their
general applicability, computational ease, and practical feasibility. The
paper should serve as a complement to Schiller (1978) which emphasizes the
analytical side of rational expectations models.

The organization of the paper is as follows. Section 2 formally states
a simultaneous equations model that explicitly involves expectations and
shows how it can be solved for the expectational variables under rational
expectations. The relevant information variable in the model is the expecta-
tion of current endogenous variables conditional on information available at
the end of the previous period. Section 3 discusses three methods to estimate
a single equation in the model. Two of them require that the policy rule --
a rule according to which the value of policy instruments are determined -- do
not change in the sample period. Section 4 presents three methods to estimate
the model as a whole. They can be thought of as the system estimation counter-
parts of the single-equation estimation methods in section 3. In section 5,
we Iindicate what modifications are necessary in order for the preceding estimation
methods to be applicable to a model whose expectational variables are replaced
by the expectation of future endogenous variables conditional on current
information. Section 6 examines the estimation of behavioral equations that
involve the present discounted value of future rational expectations. This
is an important topic because most behavioral equations derived from inter-
temporal optimization considerations invariably involve the present discounted

value. Until very recently it was impossible except under special circumstances
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to obtain a consistent estimate of the asymptotic variance of parameter

estimates when the disturbance term is autocorrelated. Section 7 presents

recently proposed methods for correcting autocorrelation. Section 8 contains

concluding remarks.
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2. The Model and Its Rational Expectations Solutions

The simultaneous equations model we are interested in estimating is

C(L) Yt + A t—]yt + B Xt = ut, (t=1,..., T) (2.1)
where Yt = vector of endogenous variables (size: g x 1)
t—lYt = expectation as of t-1 of Yt

Xt = vector of forcing variables (size: k x 1)

u, = behavioral error: (size g x 1)

c(L) = CO + ClL + ... + CrLr, polinomial in the lag operator L of

degree r.

The matrices A,B, C(=(CO, Cl’ e Cr)) are the parameters of the structural

equations. Exclusion restrictions are already imbedded in these matrices

so that some of their elements are a priori set equal to 0. The only dif-
ference between our model (2.1) and the conventional model of simultaneous
equations is that our model involves the expectational variables t—lYt' There-

fore the structural parameters exclusively represent the elements of economic

behavior that are unaffected by a change in expectations.? Let It be the

f 1 i isti e ey s ces).
set of information consisting of (Xt’ Xt—l’ , Yt’ Yt—l’ U U g, )
The rational expectations hypothesis states that t-lYt is the mathematical
expectation of Yt conditional on lt—l:
= 2.2
t—lYt E(Yt[It—l)‘ ( )

The form of the conditional expectation operator E(. It—l) depends on: the
true value of the structural parameters (A,B,C), the stochastic specification
of the behavioral error Ut’ and the stochastic process of the Xt process. In

the present model, economic agents do not know the realized value of current

variables (Xt’ Yt’ ut) and their behavior has to be based on their perception
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t—lYt about the current endogenous Variables.3 An example of this type of
model is Sargent's (1976) classical macroeconomic model of the U.S. which
embraces the Lucas supply function (Lucas (1973)) as the central feature.

To complete the system for (Xt’ Yt), the stochastic process for Xt has

to be coupled with (2.1). We write it as

X, = GX X ey Y

t t=1° “e=2° .3 et) + € > (2.3)

t-1° Yt—2’
where Gt is an exogenous shift variable for the function G, and €¢ is a
white noise process that is independent of the u_ process. Some of the
forcing variables may be purely exogenous, i.e., independent of the u pro-
cess. The other elements of Xt are policy instruments. The function G for
such elements in Xt are called the policy rule. A change in the shift variable
et implies a shift in the policy rule. We assume that the stochastic process
(Xt’ Yt) generated by (ut, €s Ot) through (2.1) and (2.3) is stationary.

Many of the estimation methods to be presented in this paper require

that the function G be explicitly specified. The particular stochastic pro-

cess for Xt we will consider is

X, = F(L)Xt + H(L)Yt +oe, (2.4)

where F(L) and G(L) are polinomials in the lag operator L of degreesp and q,

respectively:
F(L) = F.L + F.L> + ... + F LP
1 2 P >
H(L) = H.L + H.L® + +1 1Y
L 5 ... .

If Xit is purely exogenous, H(L) in the i-th equation is zero. For convenience

we will refer to (2.3) or (2.4) as the policy rule. (2.4) is perhaps the most
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popular policy rule in the literature.4 The assumption here is that Fi and
Hi do not change their values in the sample period. In this respect the
estimation methods based on (2.4) is not free from the Lucas (1976) critique.

Having laid out the model, we now seek to express the rational expecta-
tion t—lYt for the model consisting of (2.1) and (2.4) in terms of the past

observable variables (X X Y Y

t-1> Xpgr oo Yo 1 Yo oo .). Applying the

conditional expectation operator to (2.1) and solving for Y , we obtain

t-1t
Y = -(C. + A)—l B X - .t (C. + A)—l C. Y
t-1't 0 t~-1"t i=1*70 t-1i
+ .+ a7t (2.5)
0 t-1"t
where 1% = E(utIIt_l) and t—lXt = E(Xt]t_l) (2.5) involves unobservable
expectational variable t—lXt' Applying the conditional expectation operator
to (2.4) gives
= + . .
1%, = FLX, + HL)Y, (2.6)
Substituting (2.6) into (2.5) we obtain
eoq¥e = Mp(DX + M L)Y 4N ju, (2.7)
or
Yt = MX(L)Xt + MY(L)Yt + N t—lut + et s (2.8)
where
- p
My(L) = Myl + ...+ My L¥
s
= + ...+ = , ),
MY(L) MYiL MYSL , S max(q, r)
- -1 .o
MXi = (CO + A) BFi i=1, ..., p), (2.9)
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_l .
biﬁ-= —(C0 + A) (BHi + Ci) (i =1, ..., s) (2.10)

N = (cO + A)'l (2.11)

e the difference between the realized value and its expected value, is

called the forecast error. The hypothesis of rational expectations (2.2)

implies that e, 1is orthagonal to It—l’ i.e., E(etIIt_l) = 0, which in turn

implies that e, is not autocorrelated. We will call (2.7) or (2.8) the

forecasting equation because it does not involve unobservable expectations

about Xt or Yt on the right side. We here note that the coefficients in the
forecasting equation depend on the policy rule (2.4)? The equation will

be used to obtain a consistent estimate of the rational expectations t—lYt'
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3. Single-Equation Estimation Methods

3.1. Introduction

In this section, we discuss three methods for estimating a single

equation in the system (2.1) without specifying the rest of the system.

Suppose we are interested in estimating the first equation of (2.1):6
y. =vY, +a vl o+ gx 4+ u (3.1)
t it t-1"t 1t 1t °
where Yo T the first element of Yt s
Ylt = vector of endogenous variables that appear in the first
equation,
1 .
Yt = vector of endogenous variables whose expected values
appear in the equation,
1 1
Y = E(Y |1
t-1"¢t ( tI t~l) ’
Xlt = vector of forcing variables in the first equation,
Uge = behavioral error in the equation.
Yi and Ylt may share common elements of Yt. The estimation methods to

be presented in this section can be grouped into two classes. The first

class of estimation methods assumes that the forcing variables Xt are cenerated
by the fixed policy rule (2.4). The second class does not specify the policy
rule and leaves it as general as (2.3). The crucial step in either class of
the estimation methods is to obtain a proxy for the rational expectation

t—lYt without directly estimating the rest of the system. The first class
utilizes the forecasting equation to obtain a consistent proxy for the rational

1
expectation and the second class takes the realized value YE as the proxy.



3.2 Estimation with Fixed Policy Rule (2.4)

. . . 1
Write the forecasting equation for Yt’ a subset of Yt’ as

1 _ .1 1 1 1
Yt = MX(L)Xt + MY(L)Yt + N e-1%¢ + ers (3.2)
where el = Yl - Y 1is the forecast error and is orthogonal to I . We
t t t-1 ¢t t-1

recall that the orders of polinomials Mi and Mi are p and s, respectively,

7

where s = max(q, r) and r is the order of C(L) in (2.1).
First consider the simplest case where the vector u is not auto-

correlated. Then we have = 0, and we can obtain a consistent estimate

£-1"¢

~

Yt of the rational expectation Yl by regressing Yi on X

t-1"t e N

~1
Yt—l’ ey Yt—s and taking the fitted value. The consistency of Yt is

guaranteed by the fact that ei in (3.2) is orthogonal to all the right side
variables. This is the first step of estimation. The second step is to

1 in (3.1) by Yi and estimate (3.1) by 2LS (two-stage least

replace t—lYt

squares) or by 1V (instrumental variable estimation technique) treating Xlt

EEQ-Qi as predetermined.7 This yields a consistent estimate of the parameters
(a,B,v) since t—lYi is uncorrelated with uge and §t is a consistent proxy for
t—lYi'

This two-step estimation method was proposed by Sargent (1973, 1976) and
Wallis (1980).8 Its most impractical aspect is that the regression ir the
first step involves enormous number of the right side variables: p lagged
values of all the forcing variables and s lagged values of all the endogenous
variables must be included to ensure the consistency of the proxy §t'9 The

degree of freedom for the regression will be quickly exhausted as the size of

the model (2.1) gets large. The difficulty becomes absolutely insurmountable
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if some of the elements of the vector u, are autocorrelated. This is because
the term e-1% in (3.2) now depends on lagged values of u, which in turn

1,
depend on lagged values of (Xt,Yt,t_lYt) through (2.1). Thus t—lYt in

general depends on infinite lags of (Xt,Yt), making the consistent estimation

1. .
of t—lYt impossible.

Another problem in the two-step method is that it cannot give appropriate
3 . 10 .
standard errors for the parameter estimates in the second stage. This is
because the second stage ignores the uncertainty associated with the fact that

1 . . ;
Yt is estimated. To correctly evaluate the true sampling error, we have to

carry out the two steps simultaneously, i.e., we have to estimate the following

system jointly:

v, = ¥i, + a[bgl((L)xt + M}E(L)Yt] +BX g, (3.3)
Yi - M;(L)Xt + M_%(L)Yt + ei, (3.4)

Note that this system (3.3) and (3.4) involves a nonlinear constraint that
Mi and M% appear across equations. The appropriate estimation technique is
NL3LS (nonlinear three-stage least squares) with (Xt’ Xt—l’ ceey Xt—p’ Yt—l’

- Yt—s) as instruments.ll Of course, this joint estimation method is not
applicable when u, is autocorrelated and has the same degrees of freedom
problem. As we will see in the next section, it is in principle possible to
write down the likelihood function associated with the system consisting of
(2.1) and (2.4). It would, however, be very difficult if not impossible to
derive the concentrated likelihood function in terms of (a,8,Y, Mi, M%) and

carry out a version of the limited-information maximum likelihood estimation.

. . 1
One of the sources of the difficulty is that the forecast error e, can be
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correlated with current and future values of any variables including the

purely exogenous variables.

3.3. Estimation without Fixed Policy Rule

In the above two estimation methods, the fixed linear policy rule was
necessary only for the purpose of obtaining a consistent proxy for the rational
expectation. The third method we now present does not need the assumption of

fixed policy rule (2.4) because it does not need to have a consistent proxy.

1

. . . 1 . .
The proxy it uses is the realized value Yt of the rational expectation t—lYt'

This is the method proposed by McCallum (1976a,b). Substituting the formula

1 1 1. .
e, = Yt - t—lYt into (3.1), we obtain
=YY, 4 oYl 4 BX. 4+ (3.5)
Ye T Y t 1t T Ve e ‘
_ 1 . . .
where vlt = ult aet. The disturbance term vlt consists of the behavioral
error and the forecast error ei. (3.5) resembles a typical errors-—in-variables

4

. . 1
equation in that Yt and v are correlated because of the fact that Y: measures

1t

1 . . . .
t—lYt with some error. The feature in (3.5) that is not present in the con-

ventional errors-in-variables model is that all the right side variables --

including the ones that are uncorrelated with the behavioral error u;, ~- can be

correlated with the disturbance term. This is hecause the forecast error el
t

can be correlated with any elements in It that are not in It—l'
This last feature makes consistent estimation more difficult but

not impossible. Consistent estimation is achieved if we can find a (column)

1

vector Z in to be used as instruments for (Ylt’ Yt’ Xlt)’ that

t-1 It-l’

satisfy the following two conditions:



(1) uncorrelatedness:E(u Z ) =0,

1t t-1
(2) ergodicity: (Xt’Yt) is ergodic. (Note that Zt—l is a
subset of (Xt—l’ Xt—Z’ N Yt—l’ MPTIEE )).

The orgodicity condition amounts to the usual regularity condition for

instruments that the sample moments matrix for Zt and the right side

-1

variables to be instrumented converges in probability to a nonsingular
. . . 12 . .
matrix as the sample size increases. If the orthogonality of the behavioral

is satisfied, then the whole disturbance term u is

error u to
1t

1t Zt--l

1,
orthogonal to Zt because the forecast error e, 1is orthogonal to It

-1 -1

which includes Zt Under these conditions, an instrumental variable

-1
. . . . . 1 .
matio a
esti ion technique using Zt—l s instruments for Ylt’ Yt and Xlt yields
a consistent and asymptotically normal estimate of (a,B,y). See Hansen

(1980) for a rigorous proof of this.

If ug, is not autocorrelated, the choice of instruments is quite straight-

. Furthermore, the standard

forward: any elements of It can constitute Zt

-1 -1

errors routinely calculated by a standard program package are appropriate ones

because none of the right side variables are estimated proxies and because

. . 13
the disturbance term v is not autocorrelated. If

u is autocorrelated
1t 1t ’

the estimation becomes less straightforward in two respects. First, the
choice of instruments is now a subtle one. Lagged values of the endogenous

variables and policy instruments may not be orthogonal to Uy because of

their dependence on u The set of instrumentsmust be composed of lagged

t-1"

values of purely exogenous variables. Second, the disturbance term is now

autocorrelated and hence the standard errors routinely calculated are biased.
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As Flood and Garber (1980) have shown, the conventional way of correcting
autocorrelation (like the generalized least squares) introduces biases into
the parameter estimates. We will discuss in section 7 how to correct auto-
correlation without destroying the consistency.

There is one problem in the present estimation method. That is that,
if Ylit and Y?t refer to the same variable, only Y + aj is identifiable
and \f and aj cannot be identified separately.14 This implies, in particular,

that we cannot estimate the Lucas (1973) supply function:

GNPt = a_ + al(pt - t-lpt) + u (3.6)

0 1t

If McCallum's idea of using p_as a proxy for is used, the last two

t-1P¢

terms on the right side of (3.6) is treated as the disturbance term.

3.4. Comparing the Three Methods

We have discussed three estimation methods -- the two-step method, the
joint estimation method, and McCallum's instrumental variable method. The
third method has three advantages over the first two. (1) It does not require
the listing of all the endogenous and forcing variables. This is quite a
desirable feature when we are interested in only one or a subset of the
equations in the model. (2) It gives consistent estimates even if the
behavioral error is autocorrelated. (3) It is applicable to not only the
case where the policy rule is linear and fixed but also the case where the
(linear or nonlinear) policy rule shifts in the sample period. It thus seems

1
that the case for the third method is very strong, as long as Y and Yt share

1t

no common elements and hence both y and o are identifiable. The only remaining
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issue here is how much more efficient the second method is relative to
the third method when the assumption of nonautocorrelated u, and fixed

. . . e 15 . . .
policy rule is satisfied. It might seem that the extra variance introduced

1 | . .

by the forecast error e, into the disturbance Vi makes the third method
inefficient, but that extra variance represents the uncertainty associated
with the fact that the second method has to estimate the parameters of the
forecasting equations (3.4). The real source of inefficiency of the third
method is that it cannot exploit the orthogonality of Ul to current exogenous

variables Xt. The following simple example highlights the point.

Suppose (2.1) is written as

= + R
Y16 T %e=172e T Y1 0 (3.7

th + u (3.8)

ot 2t

and suppose X, is generated by a first-order autoregressive process:
X = pX + & (3.9)

The forecasting equation for Yor is

= vX +e |, (3.10)

Yot t-1 t

r = and = + . We assum r
where vy Bp e, Uy, Bet e ume that Upps Uoes and e, are
nonautocorrelated and stationary, and that (ult’ u2t) is uncorrelated with

€ . Let ¥ be the OLS estimate of y obtained from (3.10) and write

yz =9 X _q - The estimate & of a given by the two-step method is
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Ly, 9
4 = 1t ;t ) (3.11)
LYo

It is easy to see that & is consistent and its asymptotic variance is

012 - 2&012 + a2 oe2
5 ; 5 . (3.12)
i X
where g = Cov(u ) 02 = Var(e ) o 2 = Var( ) and o 2 = Var(x_ )
12 12 %7 e t’’ 1 Y1t X £’

However, the standard error of a routinely calculated by any OLS package is

-1 N 2
O
> 5 (3.13)
Y I Xt—]
T times (3.13) converges in probability to
. 2
1
5 5 (3.14)
Y OX
which is smaller than (3.12). The joint estimation method estimates
= + .15
Yie T e T Y (3.15)

and (3.10) jointly. It can be shown that the asymptotic variance of the
estimate of a given by this method is equal to (3.12). The third method
estimates

+ (u,. - aet). (3.16)

ylt - ay?.t 1t

If is used as the instrument for Yo then the asymptotic variance

Te-1
of the resulting estimate of a is again equal to (3.12). The third method

is asymptotically equivalent to the second method in this example because

the exogenous variable X, does not appear in (3.7).
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4. System Estimation Methods

4.1. Introduction

This section presents three estimation methods to estimate the system
(2.1) as a whole. Apart from a priori constraints on the structural para-
meters (A,B,C), there are two sources of efficiency gain of the system
estimation methods over the single-equation methods. The first is, of
course, the contemporaneous covariance among the behavioral errors. The

second is the rational expectations constraint that is the predictions

t—lYt
made on the basis of the whole system. If (2.4) is the policy rule, then
the rational expectations constraint is that MX and MY in the forecasting

equation are written as (2.9) and (2.10). All the system estimation methods

presented in this section exploit the first source of efficiency gain.

4.2, Estimation with Fixed Policy Rule (2.4)

The simplest estimation method under the assumption that (2.4) is the
policy rule is the three-stage least squares (3LS) analogue of the two-step

method presented in 3.2. It therefore estimates

C(L)Yt + AYt + th = u, (4.1)

~

by 3LS treating Yt and Xt as predetermined, where Yt is the consistent

proxy of t—lYt given by the forecasting equation (2.8). The assumption

that u is not autocorrelated is necessary for the consistency of the

resulting parameter estimates, because otherwise Yt is not a consistent
proxy, as we have seen in 3.2. Note that the rational expectations con-
straint (2.9) and (2.10) is not imposed. This method does not give appropriate

~

standard errors because the estimated value Yt is used in the 3LS estimation.
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The most efficient estimation method that assumes the fixed policy
rule (2.4) is the maximum likelihood method proposed by Wallis (1980).
Substituting the forecasting equation (2.7) into (2.1), we obtain

Y, + AM WX + M @Y + N _ul+BX =u . (4.2)

The system consisting of (4.2) and (2.4) can be estimated by the maximum
likelihood method assuming (ut, Et) is jointly normal, with the rational
expectations constraint (2.9) - (2.11) and the constraint that u, is
independent of Ep- This can handle the case u, is autocorrelated.

This method requires enormous amount of computation because of the
highly nonlinear nature of the rational expectations constraint. Some
iterative procedure that is asymptotically equivalent to the maximum likeli-
hood method is necessary for practical applications. The procedure proposed

by Fair (1979) iterates on the series for the rational expectation t—lYt'

For a given series for t—lYt (¢.=1,2, ..., T), we can estimate (A,B,C,F,H)
using 3LS on (2.1) and the multivariate regression on (2.4).lo We then
compute Y from (2.7), (2.9)-(2.11) using the estimated parameter value.

t-1t

This new series for is then used to obtain a new set of parameter

-1t
values, and so on. Obviously, this idea of iterating on expectations becomes
infeasible as the sample size increases. An alternative iteration procedure
is to iterate on parameters (A,B,C,F,H). If it converges, this iteration
procedure will yield parameter estimates asymptotically equivalent to the
maximum likelihood estimates.

We have described two system estimation methods, the simplest one and

the most efficient one. We can easily think of several methods that lie in
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between the two polar cases. We do not discuss them here because they

should be pretty obvious by now.

4.3. System Estimation without Fixed Policy Rule

McCallum's idea of using the realized value as a proxy for the rational
expectations can be easily extended to system estimation. The following
estimation method is based on the idea suggested by Wickens (1977). We
assume u, is not autocorrelated. Substituting Yt = t-lYt + et into (2.1)

we obtain

(c@y + 4) Y, +BX =V (4.3)

t,
where ve S u - Aet. As we noted in 3.3, CO and A cannot be identified

separately. Since e, is not autocorrelated, the disturbance term vt is not

autocorrelated. The variance-covariance matrix of vt is

= A4 LA
Var(vt) Var(ut) + A ‘ar(et)A 2A Cov(et, ut). (4.4)

The stationarity of (Xt’ Yt) implies that e is stationary. So Var (et)

is constant over time. The first step in the estimation is to apply the

single-equation method in 3.3 to each of the equations in (4.3) and obtain

a consistent estimate of vt(t =1,2, ..., T). This gives a consistent

estimate S of Var(vt). The second step is to apply FIVE (full-information
8

. . . 1 . . e .
instrumental variable technique) to (4.3). That is, we minimize the

quadratic form V'(S_l@Z(Z'Z)—lZ')V with respect to (A,B,C), where

v = (vll’ cevs Vi Voo ©s Vops e vgl’ ceey ng) is the estimated
vector of the disturbance and Z' = (ZO, ceey ZT—l) is the matrix of
instruments, Zt—l should not include Xt because Xt can be correlated with et

19
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Efficiency gain of this method over the single equation method in 3.3 could
be substantial because of the extra variance term in (4.4). The maximum
likelihood estimation cannot be used on (4.3) because, as we have seen in
3.2, the forecast error et can be correlated with Xt+j (j > 0) and its
covariance depends not only on the structural parameters (A,B,C) but also
on the policy rule which is left unspecified here.

If u, is autocorrelated, this method still yields a consistentestimate
of (A,B,C) with appropriately chosen instruments, but does not give appropriate
standard errors. A correct treatment of autocorrelation for this situation

will be given at the end of section 7.
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5. The Perfect Information Model

In the model we dealt with in the previous sections, the relevant
expectational variable is the expectation of current endogenous variables
conditional on information available in the preceding period. For ease of

reference, we will henceforth call this model the imperfect information model.

The alternative model, equally popular in the literature, posits that the
relevant expectational variable is the expectation of future endogenous
variables conditional on information available in the current period. We

will call it the perfect information model. It is written formally as

+ + = -

CIY, + A Y g +BX =y (5.1)

with Fop = E(Yt+l|Yt) , (5.2)
where It = {Xt’ Xt—l’ .y Yt, Yt—l’ “e ey Ut, Ut_l, .y Et, Et_l, -}

The only difference between (2.1) and (5.1) is that t—lYt is now replaced by

th+l here. The Xt process is still written as (2.4), but it may be natural

to allow policy instruments to respond to current endogenous and exogenous

variables. Thus F_, in F(L) and H, in H(L) may not be zero.

0

It is harder in the perfect information model than in the imperfect

0

information model to derive a forecasting equation in a form suitable for

the consistent estimation of the rational expectation. Under the assumption

of stationality, it is possible to express the rational expectation th+l as:
Y =M (L)Y, 4 M (X, 4N I PN (5.3)
el T My e T M t t t+k+1’ .

k=0
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where MY(L) and MX(L) are polinomials in the lag operator L. The first two
terms in the right side of (5.3) are distributed lags of Yt and Xt that
includes current values of (Xt’ Yt)' The degree of MY(L) is the maximum
of the degrees of C(L) and H(L) minus one, and the degree of MX(L) is
equal to that of F(L) minus one. It should be noted that (5.3) does not
involve the current value of u, which is included in the information set.
The rational expectations hypothesis implies that (MY(L), MX(L), N, P) are
expressed in terms of (A,B,C,F,H). The expression can be obtained as follows:
substitute (5.3) into (5.1), lead the resulting equations and (2.4) one period,
take the expectations conditional on It, compare the resulting equation for
th+l with (5.3). We do not write the expression for @%(L), MX(L)’ N,P)
because it is extremely complicated.

The estimation method analogous to the maximum likelihood method in 4.2
would be to substitute (5.3) into (5.1) and maximize the likelihood function
for (5.1) and (2.4) subject to the rational expectations constraint that (MY(L),
MX(L), N,P) are functions of (A,B,C,F,H). This method is likely to be infeasible
in practical applications because of the complexity of the constraint. If the

behavioral error u is not autocorrelated, a method analogous to the first

method in 4.2 is available. A consistent proxy §t+l for th+l can be

obtained from the regression of Yt on current and lagged values of all the

+1

endogenous and exogenous variables (Xt, Yt)’ since the last term in the fore-
casting equation (5.3) is zero and since the forecast error €t1 Yt+l - th+l
is orthogonal to It. The lag length in the regression should be long enough

to cover the degrees of the polinomials in (5.3). (5.1) can be estimated
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~

as a proxy for Y Y must be treated

consistently by 3LS using Yt+ eYerr e+l

1
as endogenous because it can be correlated with u, . Since the estimated

value ?t+ is used in the 3LS estimation, the standard errors routinely

1
computed are not consistent estimates of the asymptotic variance of parameter
estimates. Likewise, application of the two single-equation methods in 3.2
to the perfect information model should be straightforward. So much for the
estimation methods with fixed policy rule.

McCallums' idea of using the realized value as a proxy for rational expecta-

tions can easily be applied to the perfect information model. Suppose we want

to estimate the first euqation of (S.l):20
= yY. oYl o+ BX. + u (5.4)
Ye T Y t e+l 1t 1t’ :
1 _ 1 . 1 - 1 .
where Yt+l = E(Yt+l]It). Using el = Yt+l Yt+l we can rewrite (5.4) as
1 (5.5)
= +
Ve = Vgt o¥ g T8 v,
_ 1 . . .
where vlt = uit - aet+l is the disturbance term. Let Zt be a set of variables
in It that are uncorrelated with the behavioral error ult' Zt serves a valid

set of instruments since Zt’ being in It’ is uncorrelated with the forecast

1 21 . . -
errore .. Current value of purely exogenous variables are obvious candidates

for Z . This errors—in-variables method has two features that were not present
t N
when it was applied to the imperfect information model. First both y and & can

be identified even if Ylt and Yi share common elements. Second, the uncorrelated-

ness of purely exogenous variables with u, . can now be exploited. The dis-
advantage of the method is that the disturbance term is autocorrelated even

if the behavioral error Uy is not. This is due to a possible correlation

1 . . . . .
between e and u . We will discuss the correction of autocorrelation in
t+1 1t+1

section 7.
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6. The Present Discounted Value of Rational Expectations

So far, we have assumed that the expectation horizon - the number of periods
extending from the current period over which expectations are defined - is one.
The estimation methods with fixed policy rule can be extended to the case in
which the expectation horizon is finite. The key step in the estimation is to

),

obtain the forecasting equation for future rational expectations (th+j Ort—lYt+j
which can be done by solving a difference equation whose order is equal to the
expectations horizon. The rational expectations constraint which relates the
structural parameters to the forecasting equation will be quite complicated. We
can also extend McCallum's errors-in-variables method (which does not assume fixed
policy rule) to the finite horizon case by simply replacing future rational expec-
tations by their realized values.

However, neither of the two methods does not have a straightforward exten-
sion to the infinite horizon case in which the relevent expectational variable
is the present discounted value of rational expectations extending to the infin-
ite future. The infinite horizon case undoubtedly deserves a separate discussion
because most behavioral equations that are derived from intertemporal optimization
involve the present discounted value of future rational expectations. Prime
examples of such behavioral equations are: Friedman's (1957) permanent income
hypothesis, Lucas and Rapping's (1969) labor supply equation, Tobin's g-type
investment function (Lucas and Prescott (1971), Abel (1977)), and Hansen and
Sargent's (1980) labor demand equation. This section discusses the estimation
methods for the infinite horizon case. The entire discussion will be carried
out in terms of the simple example considered by Lucas and Prescott (1971) and
further elaborated by Sargent (1979). This makes the discussion simple and con-

crete, while bringing up the essential issues that will always show up in more
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complicated models.

Consider a representable firm seeking to maximize

3 8
A - - - = -
[pt+j(a kt+j) bt+j(kt+j kt+j~l) 2 (kt+j kt+j—l

Weg

E

t —ut)]’

o

where Etx = E(xllt), P, = price of the firm's output, bt = price of investment

goods, and kt = capital stock. The information set It includes

e
B

sU_ sU

ke, k e e

t—l’...’pt’pt—l’...’ btab

The discount factor A obeys 0 < A < 1. The firm is competitive in the sense
that the stochastic process for (pt’bt) is independent of the firm's action.
The quadratic term in (6.1) represents the costs of adjustment associated with

investment (kt+j_kt+j—l)' The term ut+j is a random shock to the adjustment

cost. ut+j is seen by the firm in period t + j but unobserved by the econome-

trician. The first order condition for optimality (i.e., the Euler equation)

is
- - + A + = - . (6.2
Pty T Py T By P AR OB ) TR Sy T By (642
where t+jut+j+l = E(ut+j+l‘1t+j) and yt+j = kt+j - kt+j—l' The solution to
2
(6.2) is2 1 o
=- = + = + .
Te B bt g ¢ T Y (6.3)
where
- §F Mk I 6.4
9, = £ M EG 1) (6.4)
is the present discounted value of rational expectations. The question is: how

to deal with qt?
The solution offered by Hansen and Sargent (1980) is the following. Assume

(pt’bt) are the first two elements of an n-dimensional vector autoregressive



L

process X, that satisfies
B(L)xt =0, (6.5)

where B(L) = I - B.L - ... - B LY. The information set I includes {x ,X sl
1 r t t’ -1
and any variable that Granger cause (pt,bt) must be included in X, - Under (6.5),

q, can be written as

r e .
(Lo A7 B, (6.6)

where U is the n-dimensional vector with 1 in the first place (which corresponds
to pt) and zeroes elsewhere. Equation (6.6) corresponds to the forecasting
equation (3.2). The parameters (a, B, A, Bl""’Br) can be estimated by the
method of maximum likelihood for (yt, xt) with 9, written as (6.6).23

This Hansen-Sargent method shares the same difficulties that the joint
estimation method in 3.2 has. First, the stochastic process (6.5) may change
if the policy rule changes.24 Second, the list of variables in X, that Granger
cause (pt,bt) may be a large one. This will be a serious problem if bt is act-
ually a vector of many variables.25 Third, the rational expectations constraint
-- the constraint that Bi's appear both in (6.3) through (6.6) and in (6.5) —--
implies a lot of computation in the maximization of the likelihood function.

An alternative estimation method, which does not assume a fixed stochastic
process like (6.5), is available. The method is based on the works by Abel
(1877), Kennan(1979), and Hayashi (1979). The central idea is to use the Euler
equation (6.2) instead of the behavioral equation (6.3) to estimate a,B and
A. Given the behavioral equation (6.3), we can recover the Euler equation by

noting that q, defined by (6.4) follows the following stochastic difference
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equation:
— = — 6.7

9t th+1 Py Ce+1 ( )

where
$ J
= L. A - ). (6.8)

e+ 321 N G P e Pty

€1 represents the revision of expectations about pt+j that will be made on

the arrival of new information as period t + 1 rolls around. The rational

expectations hypothesis implies that e is orthogonal to It’ i.e.,

t+1

E(et+l]It) = 0. From (6.3) and (6.7) we can derive the following equation:
1 1 1 a
Y+l Vet e T B TR P T Ve (6-9)
where
1 o
= - = + =
Ve T %1 T X Ye T OXB G+l (6.10)

Equation (6.9) is equivalent with the Euler equation with

)y + 87 (b

e =

41 - Ve T Yen ) - (v

- u . We can estimate
t+1 t t+1)

417 e e+l
(¢,B,1) consistently by the instrumental variable technique. Any variable

Zt in It that are uncorrelated with ut and ut+l are valid instruments because

Ct+1 is orthogonal to Zt. However, a simple application of this instrumental
variable method to (6.9) does not yield a consistent estimate of the asympto-
tic variance of parameter estimates. This is because the disturbance term
vt is autocorrelated even if u, is not. We will discuss the correction of

autocorrelation in the next section.
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. . 26
7. Correcting Autocorrelation

7.1 Introduction

In the previous sections, we have seen that the errors-in-variables
method can yield consistent parameter estimates in a variety of situations.
The task we have not done is to indicate how to obtain a consistent estimate
of the (asymptotic) variance of such estimates or how to incorporate auto-
correlation of the disturbance term in the errors-in-variables estimation
method. This section takes up that remaining task. The errors-in-variables
models we considered in the previous sections have the following common
representation:27

y =xp+tv ] (7'1)

where X, is a row vector, B is the column vector of parameters, and v, is the
disturbance term which is the sum of the behavioral error u, and the expecta-
tion error e.:

v, =u_+e,_ . (7.2)
We require that (i) there exists a (row) vector of instruments z, that

satisfies

E(Vtzt) =0, (¢=1,2..., T) (7.3)

and (ii) {yt, X zt} are jointly stationary and ergodic, and (iii) E(zt' X,)

t’ t

and E(z.' z,) are matrices of full rank. For example, the errors-in-variables
t Tt p

1

model (3.5) is a special case of this model when X, is replaced by (Ylt’ Yt,

1
B by (v, a, B), z, by Zt—l’ U, by uy, and e by —ce .

The same model emerges from a different context. For example, consider

a simple model relating the k - period forward rate as of t, X to the spot

X

1t

)
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rate at time t + k, ?t + K by

E(yt+k|It) = ag oo, . (7.4)
If x, 1is the unbiased forecast of Yep Ye expect (GO’(ﬁ) to be (0, 1. As
Hansen and Hodrick (1980) and Hakkio (1980) have shown, (7.4) can be written

as

Veak = aO + a X, + v, (7.5)

where A is represented by a moving average process of order k-1:

el T By VIR E(e [T = 0.

This is a special case of our model (7.1) - (7.3) with y = ¥ , 2z = (1, x.)

t t+k t t
and u, = 0.

If we examine the errors-in-variables models in the previous sections

and the k-period-ahead forecast model just described more carefully, we
notice that we can impose more restrictions on the disturbance term v, than
is embodied in (7.3). 1In the k-period-ahead forecast mcdel, v, is uncorrelated
not only with current z, but also with past values of z, . In the errors-in-
variables model, it is reasonable to expect that the behavioral error u, is
uncorrelated with both current and past values of z . Furthermore, the

rational expectations hypothesis implies that the expectation error e, is

orthogonal to z_,

er Zpop ., i.e., E(et|zt, z._1> ...) = 0. Thus, at least

in the models we considered so far, we can assume

= - '
E(viz, ) =0, =0,1, 2, ... (7.3%)

The methods we present in the next subsection exploit (7.3) and do not

exploit (7.3"') for j > 1. We will then present a method that exploits
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(7.3").

7,2. Estimation under (7.3)

We noted in the previous sections that application of the instrumental

variable technique to (7.1) with z, as instruments yields a consistent

estimate B:

. -1

g = (x'z(z'z)"l Z'X) X'Z(Z'Z)_l z2'y, (7.6)

where X' = (xl, cees x%), Z' = (Zi, cees z%), y' = (yl, e yT). We also

noted that the formula routinely calculated by an instrumental variables package

~ - -1
Tc\ZI &'z@z'zn) 2o (7.7)

~2 . . . . .
where OV is the sample variance of the estimated residuals, is not a consistent

estimate of the asymptotic variance matrix of é if 4 is autocorrelated.

Hansen (1980) has shown that the asymptotic variance matrix of (7.6) 1528

-1 -1 ., -1
H o I, T, ML 5t H O,

-1
=7 1 — 1
where H Xz ZZZ ZXZ’ ZXZ E(xt X

(7.8)

)y By, = E@lz),

t 22z

i T B(20 vt 2) - o _
M (2%« jvand v (vl, , VT) If we have E(Vtvt—j 25 2 1>

.), i.e., if the conditional covariance is equal to the unconditional

E(Vtvt—J

covariance, then M = plim T_lZfVZ, where V = Var(v). If v, is a stochastic

~

process with finite number of parameters, then a consistent estimate vV of V
can be obtained from the estimated residuals. Thus, a consistent estimate of
the asymptotic variance of (7.6) is obtained by replacing M in (7.8) by

-1 = -1 _, -1,
b4 27,
T Z2'VZ, ZXZ by T X'Z and ZZZ by T
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However, (7.6) is not most efficient in the class of estimators of B

that exploits (7.3). Hansen (1980) has shown that the best estimator in
that class is

-1 A1

1 X'zt y (7.9)

B = X'z ¥ T 2'x)

where M is a consistent estimate of M. The asymptotic variance matrix of

(7.9) is
-1 _, -1
(ZXZ M~z z) (7.10)
. . . . e S R
whose consistent estimate is given by (X'Z M Z'X) T .

7.3. Estimation under (7.3")

The reader may by now wonder why the GLS (Generalized least squares)

version of (7.6)

N

~SPNITCE IS IS EPRS R |
Borg = XV 2@V )T 2V T x)
xv Lt oz@v i vy (7.11)

is not viable. As Flood and Barber (1980) have shown, this estimator is not

. : . . , -1
consistent. To see this, we first note that consistency requires T z''v

. s -1 e . .
converges to zero in probability. But T ANRY lv involves terms like

A zt+j (j > 1) whose expectation is not necessarily zero under (7.3) or
(7.3'"). To make (7.11) consistent, we would have to assume that Zt is
exogenous to Vs i.e., E(thS) = (0 for all t and s. We now present the
estimation method proposed by Hayashi and Sims (1980) which exploits (7.3'").

In order to ensure consistency, we must construct an estimator that does not

involve terms like Ve Zt+j (j > 1). This is accomplished by filtering

Yer X v forward before applying instruments z .

t’
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To make the exposition simple, we assume that the behavioral error
u, in (7.2) is ARMA (p,q) and the expectation error e, is MA (r). This

includes the errors-in-variables models we considered and the k-period-

ahead forecast model as special cases. Thus u, and e, are written as

+ + ... + =n + + ... + , .
u, aju g aput—p n. blnt—l bqnt—q (7.12)
= + ... + .
et €t + Cl€t+l Cr€t+r (7.13)
Since e, represents the expectation error, €t+j (7 > 0) is orthogonal to

n

nt—l’ 2 and possibly to - From this and (7.2), (7.12), (7.13),

it is easy to see that v, can be represented as

av +a v + ... +v =w + d,w (7.14)

e.. t
pt p-l1't t+p t 17t+1 M dr+qwr+q+t

for some nonautocorrelated, constant-variance series {wt} that satisfies
E(w z =0 . 7.15
(w.2,) (7.15)

Without loss of generality, we normalize the moving average part by requiring

that d(L'l) 1 +dr e va 1T 4 invertible, i.e.,
1 r+q

aaH o+ et e (7.16)

with

™8
T
N
8

and a (T -p) x (T - p) matrix D by
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- 1 d
D - dl r+q
dr+q
7
dl
L 29
i i ces R h
Assuming the terminal values wT—p+l’ . wT—p+q+r are all zero we have
D "Av = w, where w' = (wl, ey wT—p)' Also note that the (i,j) element
of D_l is fj—i if j > i and zero if j < i. Thus, by applying the forward

filter D 1A on (7.1), we obtain

-1

D Ay= pt

AXB+w. (7.17)

If we know the true value of D and A, then we can simply apply the

instrumental variable technique on the forward-filtered equation (7.17)

with unfiltered z, as instruments. This yields

A 1Y - - — -—l __l ‘l"" R __l_ _l
B(A,D) = (X'A'D 1 2(2'2) 12w "ax) "x'a'n T Z(z'z) "Z'D Ay (7.18)

where Z' = (zi, ). Since W, and z  are uncorrelated, (7.18) is

. z%_p
consistent. Furthermore, since {wt} is nonautocorrelated with a constant
variance, the formula for the asymptotic variance of (7.18) routinely
computed by an instrumental variable package when applied to the filtered
equation is consistent. If we don't know the true value of A and D, then
we can proceed as follows: The first step is to apply the instrumental
variable technique on the unfiltered equation (7.1) with z, as instruments.

1/2

We can obtain a T - consistent estimate30 (A, D) of (A, D) by fitting

ARMA(p, q) on the estimated residuals.31 Second, use (A, D) to obtain
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the forward-filtered equation corresponding (7.17). The third step is to
apply the instrumental variable technique on the filtered equation with
z  as instruments. Hayashi and Sims (1980) have shown that the resulting

estimator é(g, ﬁ) is consistent and has the same asymptotic distribution as

é(A, D) does. Therefore, we can just take the matrix given by an instrumental
variable package in the third step as a consistent estimate of the asymptotic
variance of B(&, D).

Since this estimator does not belong to the class of estimators in
which (7.9) is most efficient, (7.18) may or may not be more efficient than
(7.9). However, it has been shown in Hayashi and Sims (1980) that (7.18)
is always more efficient than (7.9) if v, is MA(1) and X, is a scaler first-

order autoregressive process.
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8. Conclusion

In this paper we have considered three kinds of models -- the imperfect
information model, the perfect information model, and the model that involves
the present discounted value. It seems that virtually all the macroeconomic
models in the literature fall into either one of the three categories. For
each of the three models, we examined two classes of estimation methods --
the methods that require that the policy rule (or more precisely, the Xt
process) is linear and fixed, and the errors-in-variables methods that do not
require such an assumption.

If one wishes to estimate the imperfect information model which involves
the Lucas supply function, the estimation methods with fixed policy rule pre-
sented in 3.2 and 4.2 must be used, since the errors-in-variables methods in
3.3 and 4.3 cannot estimate both A and C0 in (2.1). However, the methods
in 3.2 and 4.2 are likely to be infeasible in practice, partly because the
rational expectations constraint is highly nonlinear and partly because the
forecasting equation invclves a number of variables on the right hand side. If
one wishes to estimate the perfect information model or the model with the pre-
sent discounted value, the errors-in-variables method in sections 5 and 6 must
be preferred. In such models the errors-in-variables model can exploit the
fact that the behavioral error is uncorrelated with purely exogenous variables,
and can identify both A and CO in (5.1). Furthermore, we can always obtain
a consistent estimate of the asymptotic variance of parameter estimates given
by the errors-in-variables methods, by using either of the two methods presented

in section 7.
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FOOTNOTES

The term "'disturbance'" is reserved for later use.

However, policy instruments that alter the incentive structure (e.g.
tax rates) can affect the structural parameters.

The estimation methods to be presented in this paper can also handle
the rational expectation of exogenous variables.

Another popular assumption is that X_ is ARMA. Estimation of the
structural parameters will in fact bé easier under the ARMA assumption.

The information structure considered by Taylor (1979) implies that the
information set I 1 includes current value of forcing variables X .
Under this assumpEion, (2.5) can serve as the forecasting equation because

t—lXt is now equal to Xt The estimation methods to be presented in sections
3 and 4 under the assumption of fixed policy rule can be straightforwardly
applied to Taylor's information structure with (2.5) as the forecasting
equation. Since the new forecasting equation (2.5) with t—lXt replaced by

X, 1s independent of the policy rule, the assumption (2.4) of

fixed policy rule becomes unnecessary. However, it is easy to show that,
if X 1is included in It—l’ there is no way to identify both CO and A in

(2.1).

Solely to make the notation simple, we do not include lagged endogenous

variables in the equation. If they are present in the equation and if

Ui, is autocorrelated, then we have to worry about the correlation between

u
1t
to the rational expectation models.

and lagged endogenous variables. But this is not the feature unique

If lagged endogenous variables are present in (3.1), they should be treated

as predetermined since Uiy is not autocorrelated.

The original assumption made by Sargent (1973, 76) is that X; is generated

by a vector autoregressive process. Wallis' original assumption is that
X 1is ARMA. In either case, all the forcing variables are purely exogenous

in the sense E(Xtu ) = 0 for all t and s.
s

Sargent's (1976) estimates are inconsistent, because he did not include
enough number of lagged variables in his first stage regression.

This was pointed out by Durbin (1970), Sims (1977) and Mishkin (1980) in
slightly different contexts. This problem has been ignored or unnoticed
by many authors. Standard errors reported by Sargent (1973,76), Barro
(1977), and Fair (1979) are inappropriate in the sense they are not
consistent estimates of the relevant asymptotic variances.



Footnotes, page two
11. See Jorgenson and Laffont (1974) and Amemiya (1977) for NL3LS.

12. A sufficient condition for ergodieity would be that (u _,e ,8 ) are
ergodic. In particular, the fixed policy rule assumption (2.4)
with ARMA behavioral error u is sufficient for ergodicity.

13. Recall {ei} is autocorrelated because of its orthogonality property.

1l4. As noted in footnote 5, the same situation arises if It— includes
Xt. The identification of Yi and aj by the methods in 3.2 (and in

4.2) depends entirely on their ability to distinguish Xt from t—lXt'

15. It is unfairto comparethestandard errors of parameter estimates by the
first method that are routinely computed by a standard computer package with
the standard error of parameter estimates by the third method, because the
former are downward-biased estimates of the true sampling error.

16. Fair's original model assumes that Xt is ARMA. He used 2LS (two-stage
least squares) in his own iteration.

17. See Hausman (1975) for a proof of the equivalence of 3LS and FIML (full
information maximum likelihood) in the simultaneous equations model that
is linear in variables but nonlinear in parameters.

18. See Brundy and Jorgenson (1971) for FIVE.

19. As Brundy and Jorgenson (1971) have shown, the size of the matrix Z can
be reduced without affecting the efficiency of parameter estimates.

20. Lagged endogenous variables can be introduced into (5.4) without alter-
ing the estimation methods tc be presented in the text. See footnote 6.

21. Of course, the regularity condition (the ergodicity property) must be
satisfied. See footnote 12 for a sufficient condition for ergodicity.

22. The transversality condition
2im ATE (ap.-b_—By.) =0
N £ PP RY
T-rc0
is assumed to obtain the "forward-looking" solution (6.3). See Sargent

(1979, chapters XI and XIV) for more details.

23. The reason the maximum likelihood method is applicable here is not appli-
cable in the joint estimation of (3.3) and (3.4) in that the covariance
between (ut,n ) and b o is specified here. If b, is not included in
X s NL3LS susE be used fo estimate (6.3) and (6.5) jointly.

24. This is noted by Sargent himself (see Sargent (1979, chapter XII,4.c)).



Footnotes, page three

25.

26.

27.

28.

29.

30.

31.

The model considered by Hansen and Sargent (1980) does not involve a
variable like b that appears on the right hand side of the behavioral
equation (6.3) fn addition to the present discounted value q,-

The section draws heavily on Hansen (1980) and Hayashi and Sims (1980).
This is the linear case of the model considered by Hansen (1980).

Two additional technical assumptions are necessary for the estimator
to be asymptotically normal. They are assumptions (iv) and (iii) in

! =
Hansen's (1980) Theorem 4.1. If E(vtvt—jlzt’ Z o _1o ) E(Vtvt—j)

and if v is ARMA, then the two assumptions are satisfied.

This assumption does not affect the asymptotic properties of the
resulting estimator.

- 1/2 ) . 1
An estimate B of B is said to be T / —-consistent if T /
in probability.

2(é—B) is bounded

The representation that a standard ARMA package estimates is

+ + ...+ = oL+
Ve 1Ve-1 apvt—p Ve * 61 Vel 6r+q wt—r—q

+
with the normalizing restriction that §(L) = 1 + 6lL + ... + 6r rrq

+q
is invertible. To recover {di} from {Gi}, we first factorize

§(L) = (l—le) e (l—Ar+qL).

{di} is obtained from

+ d S S TS T Ut S NG PN

dr+q r+q—lL 1 L) 3

r+q r+q’

Then {di} satisfies the invertibility condition (7.16).
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