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The Aumann-Shapley (A-S) pricing rule was axiomatically characterized
for a class of cost-functions in [BH] and [{M T]. This class consists of
all continuously differentiable cost functions with zero fixed cost. How-
ever, cost functions are not necessarily continuously differentiable. It
is natural to expect the continuous differentiability of cost functions for
the case in which the configuration of the means of production changes
smoothly. But, if there are components which do not change smoothly one
can expect the cost function to have kinks at those points where these
components change. When enlarging the production along the segment [0,x],
for any given vector o of quantitites produced, it is natural to expect
that only a finite number of changes occur.

Let us consider the class G of all cost functions which have only
a finite number of kinks in [0,a] for every a in their domain. It is
worth mentioning that the equilibrium result obtained in [MT] showing
the compatibility of A-S prices with demands, is proven for cost functions
which are basically in G (in addition the cost functions are assumed to
be non-decreasing and continuous). It is easy to verify that the formuls
defining the A-S prices in the continuously differentiable case is well
defined on the class G as well, and obeys all the given axioms. However,
it is an open question whether the result of [BH] and [MT], i.e. whether
the given set of axioms uniquely determines the A-S pricing rule, can be
extended to this class, (For a class of functions, including certain piece-
wise continuously differentiable functions, the above characterization was
extended in {STZ].)

Since the axiomatic approach cannot be used to justify A-S prices

for the class G of cost functions, the approach of [BHR], which is based
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upon the theory of values of non-atomic games,will be used as a justifica-
tion for using these prices for the class G. Cost
sharing prices using the non-atomic games approach is derived as follows.
Let f: Ef-» E, be a cost function with £(0) = 0. Let o = (al,...,am)
be a given vector in the domain of f. The vector o represents the

quantities demanded by consumers. Let I be the interval {[0O,m] and

» the family of Borel subsets of I. Define the vector of m measures

a a o4
1 =(u1)---;u~m) on (I,») by

(1) i) = A @EATi-1,iD), i=1,...,m,

where A 1is the Lebesque measure on 1.

A coalition S represents a bundle consisting of fractions of the
m commodities, For each i, i =1,...,m, SN{i-1,i] 1is that part of
the iEh commodity which is contained in the bundle S, and u?(s) is
the quantity of the iEE commodity in the bundle S. For S =TI the
vector ua(S) is «.

Let us define now & nomatomic game v on (I,~) by

@) v(S) = £ (5)

o8 . ,
or, for short, v =f,p . V(S) 1is the cost of producing the vector
o
n ().
Assume now that v 1is a game in a space Q of non atomic games on

which an Aumann-Shapley value . exists. Generally, the value distributes



-3 -

the payoff of the grand coalition in such a way that each coalition
gets a "proper" share of the payoff according to the contribution it
makes. In our case for each S, (¢v)(S) is the 'proper"share of S in
the total cost v(I) = f(a) of producing a. In particular the effect
of the iEh commodity on the cost is (pv) ([i - 1,i]) and the price per

. .th ; .
unit of the i— commodity is therefore chosen to be

- o ({i-1,i])
P ai

If Q 1is the well known space of non-atomic games PNAD , then it is known
that a unique continuous value ¢ exists on Q. Hence on such spaces these
prices are well defined. This important result, due to Aumann-Shapley

and Neyman, is stated as follows.

Theorem ([A-S] and [N2]). There exists a unique continuous value

p on pNAD. Moreover, if v = fou,u = (ul,...,un) then the derivatives,

of
5;‘(ta), exist for almost every t £ [0,1] and ©v is given by

1

1

(f %ﬁ.(tu (I))dt)pi

m
(3) q)V = 2
=1 O i

i

I.e., the value is a linear combination of the measures (ui)Tzl with

1
coefficients [ %é (t(I))dt. Thus, if v = fo Ua is in pNAD it follows
0 i

that

Lo
((DV)([i - 1;i]) = Q'i r '5; (tCL)dt,
0 i

. . th
and the price per unit of the i~ commodity is chosen to be



These prices are called A-S prices.

It is our purpose to prove that if a cost function f basically
belongs to the class G, then, for each vector y of m non-atomic
probability measures, f,, 1s a game in pNAD. This fact which is an in-
teresting result in non-atomic games in its own right provides a justification
for using A-S prices for cost functions which are basically in the class
G. This is made precise in the following theorem.

m 1/

Theorem. Let f£: E?-» El, with £(0) = 0, and let o ¢ E++ .

Assume that

(1) £ is continuous 2
[0,a]

(ii) f 4is non decreasing
(iii) f 1is continuously differentiable in a neighbrohood of all but

a finite number of points of [0,al.

Then for any vector | consisting of m non-atomic probability

measures with ,(I) = a, foy 1is in pNAD.

1/ .
= E$+ = fx¢ Em! x,>0, i =1,...,m}

2/ We mean that the function g:[0,a] E1 defined for x ¢ [0,a] by

g(x) = £(x) 1is a continuous function.
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Proof of the theorem. The proof uses Neyman's ideas appearing in

[N1]. Let tal,...,taK be the kinks of f on [0,a]. We may assume
w.l.0.g. that k =1, since the arguments in the general case are
completely the same. Let y = tl- o and assume first that O < t1 < 1,
For any § > 0 and for any i, 1< i <m, choose F;: E1 + [0,1]

such that
i _
1) FS(X) =0 for |x - ty ai‘ >28 ,
i
2) FS(X) =1 for |x - ty - ai] <8,
3) F; is increasing on [tl P 28, tl Tl -§] and

decreasing on [ti Tay + 6,tl : a, + 28],

4) FZ is a continuously differentiable function, ana

5) OgFggl.

Now define the game v6 by

m .
vg(8) = 1 (Fion )(s),

j=1 % ]
. - +
where u = (ul,...,um) 1s a vector of m NA measures. Since BV is an
algebra and HfJoujH = 2 we get

A gl = 2™
Let
U6={u(S)1sgC and ‘u’j(s)-tl.aj | <285vj 1<j<my.

Note that if (S) ¢ U6 then vé(S) = 0. Define

v =f and ; = v eV |,
i 5 8



C ...CS =1 be an arbitrary chain. Let i  be

Let Q : ¢ =S CS K 0

0 1

the first index for which u(Si ) € U6 and let j0 be the last index for
0
(If there 1is no index 1 with U(Si) € U6 write

which U(Sj ) € Ud.
0 1,-1
io = 0 and take the summation b as zero.) Then,
i=0
v i i°_1|” SR g ) =Y. (5.) |
= - . + . - .
Vs I lve(85,)) v (8 = sy, mvs(sg
0 i=1 1=1i

m
+ 0z 136(8i+1) - ;(S(Si)l'

From the definitions of V. and :;6 we have

8
- Jo  ~ -
(B) ”v6 ”Q = 'E' Ivé(SiH)—vé(S )l
i=1

For every w € BV, define

il

il sup HwHA

s A
where the sup ranges over all subchains A with terms S such that

u(s) € U Thus, by (B) we get

5

1501 < vl
8 Q 8 U6

and since the last inequality holds for every () we have

~ ~

C =
(%) Hvéll n vl



~

But v, = v5 v, therefore,

||v‘S ||U \<,||V(S||U‘5 . ||v||U < “V(S“ . ||v||U

§ §

§

Together with (A) and (C) we get,

(D) Nyl <nv6n-nvnu

< ™.
s . 2 ||v||U .

§ §

Now since £ is a non decreasing function and since v = £, we

have for § small enough,

||vHU = f(y+28.a) - f(y-28.q) = f((t1 +2(S)01) —f((t]—Zé)a),

§
and from the continuity of f‘[O,o.] we get,
fvll  —> 0, as § —> 0.
U(S -
Together with (D) we then have,
”~6 I — 0, as 6§ — 0.
Define a game 8s o by
m ; _
° =fo - o . . ) = - R
(E) g °H U _ﬂ (F‘5 uJ) foy v -V

J=1
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For each t # tl’ let Dt be a neighborhood ©of ta on which

f is continuously differentiable. Let E = ”Dt Obviously, E 1is a
t#t
1

O<t<1
neighborhood of [0,a] / {tl' al .

Let D6 be the neighborhood of [0,a] defined by,

D6 = {x‘ x = p(S) and ‘u j(S) -Mi(s) ] <sg¥ l<i, j<ml.

Let x € R(,). We shall examine two cases:

I. x¢€ U6/2. In this case, by (E), we have g(x') = 0 for

each x' contained in a small neighborhood of x.
II. X € (D6 n E)\ U5/2' In this case £ 1is continuously differentiable

in a small neighborhood of x, and so is g@.

Thus for every x ¢ (D6 nEy U6/2 there is a small neighborhood
on which g is continuously differentiable. Since (D6 N E) U U6/2 is
a neighborhood of [0,a] we thus have proved that for small g, g5 is

continuously differentiable in a neighborhood of the diagonmal [0,u(I)].

Moreover by ( E) we get that g60 y € BV,

Proposition Let h:R(y) - ]Rl be a continuously differentiable

function on some convex neighborhood U of the diagonal [0,,(I)]

such that how ¢ BV, then h,y € pNAD.

Proof For each ¢ » 0, there exists a polynomial »p such that
_— €

e -hi ;  <e/m,
€ C(U)



where |} p - hi is the C1 norm of p -h on U. Thus
€ 1 e
c (U)
1) Peo;L-floullU <e .

For a proof see [AS, p. 43]. Define for each S €, with ,(S) ¢ U,
w(sS) = (Peo w)(S) - (hop)(S)

By lemma 45.4 of [A-S, p. 270] w can be extended to a game ; such

that

~

” w ” = ” w ”U< €
Now the game D which is defined by
D=w- (hOLL = peou,):

belongs to DIAG. (Notice that D(S) = 0, S e, such that p(S) € U).
Hence

heu - w ¢ pNAD

The distance between h,j, and pNAD (in the BV-norm) is thus less
than ¢. Since this is true for each ¢ > 0 and since pNAD is a closed

subspace of BV we get that h.,yp 1is in pNAD.

By the above proposition we get that

vﬁ =V - géoUu
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which together with (A) and (C) implies that | v--g60 wll - 0,
as § - 0. Since pNAD 1is a closed space and since g5° . € DPNAD
(for small §) v ¢ pNAD, and the proof is completed.

(]

For the case in which t1 = 0, the argument of the proof is the

. i .. .
same. However the functions F6 are chosen to coincide with some F

which satisfies

ota

1" Fo(s) =0 x<s,

%
4) F_ 1is monotonic increasing on [ g, 2§,

and

5) F5 is a continuously differentiable function.

One can weaken slightly the conditions of 7 eorem by allowing o

to be in the boundary of Er .

Corollary . let f: E$.+ E', with £(0) = 0. Let ¢ ET
and assume the three conditions of Theorem 11 for f] o instead of
L
+
for f. Then fop € pNAD, for every vector |, of m NA measures

with [, (I) = a.

9 . . .
Proof. Assume that M = {11,...,1k}. Let S ERRREL be the unit
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vectors of ET . Define g: E$-+ E1 by

k
gx) = f ( Zx.e.,)
=1 %

g satisfies the three conditions of the Theorem which completes the proof.

(]
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