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Abstract

The attainable set of a wmarket is the set of all utility outcomes which
can be achieved by the traders through a redistribution of goods. Attainable
sets fall into two broad classes, according to whether the traders' utility
functions are concave or are merely quasiconcave. Questions of major interest
concerit the characterization of these two classes, and the further
classification of attainable sets according to their “complexity”. The study
of games which arise from markets is based on the analysis of attainable sets.

This paper surveys the current state of knowledge concerning these and

related issues, and presents a set of open research problems.






1. Definitions and Basic Results

Consider a market consisting of a set N = {1,2,...,n} of traders, and
an m-dimensional commodity space I = {(yl,...,ym): 0 < yj <1 for all j} .
For any collection {ui}2=l of utility functions (real-valued functioms

on I™) of the traders, the attainable set of the market is

A(ul""’un) = {x ¢ R®: x < (ul(yl),...,un(yn)) , where

each yl e I" and Zyl = (l,eee,1)} &

We envision the traders arriving at a marketplace with initial commodity
holdings which, when pooled, yield the commodity bundle e” = (1,000,1).
Trader i has a preference relation over bundles in RT , wWhich is
represented by the utility function u; « The attainable set of the market is
the set of all utility outcomes which can be achieved through some
distribution of the available commodities among the traders.

Common assumptions in the study of markets are that the traders'
preferences are complete, and that for every y 1in ™ , the "preference
sets"” {z: z Zi y} are closed and convex. A consequence of these assumptions
is that the traders' utility functious are upper—semicontinuous and
quasiconcave (see, for example, [16]). A stronger assumption is that the
traders' preferences are concavifiable; that is, that they can be represented
by concave utility functions [17].

Let U be the collection of all upper—semicontinuous, quasiconcave
utility functiomns, and let U2 be the subcollection of continuous, concave
utility functions. For k = 1,2 , let Ak(n) pbe the collection of zll

n-dimensional attainable sets arising from markets in which the traders'

utility functiouns are in Up -



Let V be an attainable set in Ak(n) . If uj,ees,u  are fuactions

in Up defined on I™ (for some fixed m ) such that V = A(ul,---,un) s

. n m
then {ui}: I

i=1 is a k-representation for V over

+ The k-complexity of

V is the least m > 0 such that there exists a k-representation for V

over I™

A set X in RM™ 1is the comprehensive hull of another set Y if

n . <. .
X = {x e R': x <y for some vy e& Y} 3 in this case, we say that X 1is

generated by Y . Comprehensiveness is implicit in the definition of an

attainable set. This embodies the assumption that any trader can unilaterally
decrease nis own utility. For later reference, we define a corner to be the
comprehensive hull of a single pointe.

The following results are not difficult to prove:

Theorem Al. Every set in Al(n) is generated by a cowmpact set.

Theorem A2. Every set in Az(n) is generated by a compact,

convex sete.

Theorem Al can actually be extended slightly: 1if the functions Upsees, U,

are upper-semicontinuous and bounded from below, then A(ul,...,un) is
compactly generated. The assumption of lower-boundedness cannot be eliminated
(see [14]).

There are several useful operations which can be performed on attainable

setss If f and g are real-valued functions on I™ and Iz respectively,

define the functions f A g and f P g from Im+2 to R as follows:
L4

if (x,y) € ™ x 12 = Im+2 , then (f A g)(x,y) = min (£(x),g(y)) and

(f » g)(x,y) = £(x) + g(y) . Both U1 and U2 are closed with respect to

the operations A and P .



Proposition l. Suppose V; and V, are in A (n) , with

Vl = A(ul""’un) over IM and v, = A(wl""’wn) over Iz . Take a > 0O

and b ¢ Rn . Then

(1) av, + b = A(aul + by,esesau + b ) over .,
(2) vy N v, = A(ul A Wisees,U A wn) over Im+2 .
(3) V1 + v, = {x1 + xz: Xl € V1 and x2 € VZ}

= A(ul D WiseeesUn h wn) over 1T,

Furtheruore, these three derived sets are all in Ak(n) .

Part (1) of the proposition, in combination with Theorems Al and A2,
enables us, without loss of generality, to occasionally restrict our

discussions to attainable sets generated by sets lying in the interior of the

unit wn—cube.



2. Characterization Theorems

Billera and Bixby [2] developed a full converse to Theorem A2.
Theorem B2. Every convex, compactly—generated set in R? is

in Az(n) .

To see the basic idea of their proof, fix a set V which is generated by
a convex, compact subset of the unit n-cube. Let Di(h) be the corner in
R™ generated by the point (l,<ee,~h,...,1) , and consider the set Vi(h) ,
defined as the convex hull of V U Di(h) « This set is represented over

i by the utility functions uj(y) =y, for j# i, and ui(y) =

J

sup {xi: (en—l_ y;xi) € Vi(h)} , where ™l = (1,e0e,1) € Rl g
h > n-1 , then every boundary point of V 1is a boundary point of Vi(h) for
at least one value of i . Therefore N vi(n) =V , and by part (2) of
Proposition 1, it follows that V € AQ(n) . Incidentally, this construction
demonstrates that every set in Az(n) has complexity no greater than
n(n-1) .

A precise characterization of Al(n) is not known. However, two large

subsets of A;(n) have been determined. A compactly-generated set V in

n . P . ' . . . .
R™ is convexifiable if there are continuous, strictly increasing, real-valued

funCtiOﬂS gl geee ,gﬂ on R Y such that

o

n
V(ul,...,gn) = {x € R: x ¢ (gl(zl)""’gn(zn)) for some 2z ¢ V}

is convex. For an attainable set to be convexifiable, there wmust be some
utility representation of the traders' prefereuces which yields a convex

attainable set.



Theorem Bla. Every convexifiable set in R" is in Al(n) .

The proof of this result is straightforward, and appears in [15]. 1In
essence, one convexifies V , adjoins the corner Di(O) , obtains a Billera-
Bixby representation of the new set, and then applies the ianverses of the
convexifying functions to the constructed utility functions. This procedure
is carried out n times, with each trader i distinguished in turn; the
resulting warkets are then "intersected”. 1In this wanner, one obtains a
representation of V involving at most n(n-1) comnodities.

The following proposition, due to Mantel [ll] and Weber [15], provides
an inductive description of a family of convexifiable sets. A consequence of
the proposition is that the convexifiable sets are dense (in the topology
induced by the Hausdorff metric) in the collection of all compactly—generated

sets. A set is exponentially convexifiable if for sufficiently large k the

functions g;,+..,g, defined by gi(xi) =1 - exp(—kxi) serve to convexify

the set. WNote that the only compactly-generated sets in Rl are corners, and
are exponentially convexifiable.

Proposition 2. Let C be a compact set in R" , such that the

~

n
comprehensive hull of € 1is exponentially coanvexifiable. Let f:R > R be
twice continuously differentiable, and assume that the first—order partial

derivatives of f are negative throughout C . Then the comprehensive hull

+
of the compact set {(z,f(z)) e R l: zZ € C} is exponentially convexifiable.

If the conditions of the proposition are not satisfied, then the set may
in fact fail to be convexifiable. Two examples are illustrated on the

following pages.



The set in Figure 1 (which is shown to be non-couvexifiable in {10/
and [15]) is a member of A1(3) . This can be seen through the following
construction, which is based upon a construction given in [10]. Consider the
comprehensive hull of the union of the three sets
{x ¢ Ri: 2xi + ij +x < 1} defined by permuting the indices
{i,j,k} = {1,2,3} . This set has a representation over 12 , wherein all
three traders' utility functions are defined by u(xy,x,) = x;/(2-%,) .
Furthermore, the three sets generated by the cornmer on (1,1,1/5) , by
{x € Ri: X + ®y < 2/5, X, < 1} , and by {x £ Ri: X, + Xq < 2/5, ) < 1} ,
are in A;(3) by virtue of their couvexity. The iatersection of these four

attainable sets can be mapped into the set in Figure 1 through a positive

affine transformation.

(0,3,0}

FIGURE |. A nonconvexifiable set.



It is not known whether the set in Figure 2 is in Al(3) .

FIGURE 2. —g—‘ =0 for all points (¢. | — ¢, 0).

A set in R" is finitely generated if it is the union of finitely-many

corners. Although such sets contrast sharply with the convexifiable sets of
Theoren Bla, we have the following result.

Theorem Blb. Every finitely generated set in R®

is in Al(n) .
This theorem is proved by Weber in [14] via a rather delicate
construction which, in analogy with the construction for convexifiable sets,
rescales the coordinate axes so as to bring the generating points to the
boundary of a convex surface. A result necessary to this coastruction, which

is of some interest in its own right, is the following.



Proposition 3. Take 0 < b < 1/n , and let pO,...,pn be points in

L L
L (b k’l,...,b k,n) , Where all lk j are non-negative
b

integers. Assume that for some (tl,...,tn) > 0 with Ztk =1, it is the

R" of the form p

case that pO > Ztkpk ; that is, DO lies on or above the convex hull of

1 K
{D ,...,pn} . Then for some k' , p0 >0p .

The construction used in the proof of Theorem Blb actually yields a
representation in utility functions which are not only quasiconcave, but also
monotone increasing and continuous. At one stage of the construction, a
continuous fuunction is quasiconcavified (that is, a new function is defined as
the infimum of all quasiconcave functions greater than or equal to the
original function). Because the domain of the function under consideration is
polyhedral, this operation yields another continuous function. Interestingly,

this operation of quasiconcavification does not necessarily preserve

continuity when applied to a function on an arbitrary compact, convex

3

domain. For example, consider the convex hull in R of the circle

2

2
{(XI’XZ’O): (xl—l)“ + (xz—l) = 2} , and the points (0,0,1) and

(0,0,-1) » The function f(xl,xz,x3) = |x3| is continuous on this set, but

its quasiconcavification takes the value 1 at the origin, and is 0 at all

other points on the circle. The facial dimension of a point x in a set K

is the maximal dimension of any convex subset of K of which x 1is a
relative interior point. The k—skeleton of K 1is the set of all points of
K with facial dimension no greater than k ; thus, for example, the
O-skeleton of a convex set is its set of extreme points. The crucial
implication in the next proposition — that (a) implies (b) = is proved

in [138].



Proposition 4. Let K be a compact, convex set in R™. The

following three assertions are equivalent:

(a) All k-skeletons of K are closed (for all 0 < k € n ).

(b) The convex hull of any relatively open subset of K is
relatively open.

(¢) The quasiconcavification of any continuous function on K 1is

continuous.



_10_
3. Complexity

The constructions used to prove Theorewms Bla and Blb treat the
n  traders symmetrically (and in a sense, simultaneously), and require the use
of n(n-1) coumodities. With only slight modification, both constructions
can be carried out inductively, by treating the traders in sequence and
progressively using one commodity, then two more,..., then (n-1) more. This
approach, which is detailed by Billera and Weber in [6], yields the following

theorem.

Theorena Cl. If V in Al(n) is convexifiable, or is
finitely generated, then the l-complexity

of V is at most n(n-1)/2 .

A similar approach to the problem of 2-complexity is often, but not
always, successful. Consider a set V 1in Az(n) « Assume there is a set
C contained in the boundary of V , which generates V and satisfies the
following condition: there exists a closed set Q C {q e R": Zqi =1, q > 0}
such that for each x € C , there is a q &€ Q for which Zqixi > Zqiyi for
all y € V. 1In this case, we say that V 1is (uniformly) positively

supported. The collection of positively supported sets in A2(n) is dense in

Az(n) R

Theoren C2a. If V in Az(n) is positively supported, then the

2-complexity of V 1is at most n(n-1)/2 .
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The best currently—kuown universal upper bound on 2-complexity is due to
Kalai [8]. Using a construction essentially different from those previously

mentioned in this paper, he establishes the following result.

Theorem C2b. The 2-complexity of any set in Az(n) is at most

(0-1)%2 - (n=2) = 0% - 3n + 3 .

In view of Theorem C2a, it seems reasonable to conjecture that no set in
Ay(n) has 2-complexity greater than n(n-1)/2 . Although supporting evidence
is much weaker conceraniang lower bounds, it is commonly believed that there are
sets in Az(n) requiring at least n(n-1)/2 commodities in their
representations. The argument is that in complicated settings, it may be
necessary to have a commodity "linking"” each pair of traders. The
construction used to prove Theorem C2b is of precisely this nature when
specialized to the case n=3 (see [9]).

The problem of establishing a lower bound for the complexity of an
attainable set seems quite diffevent from the upper—-bounding problem. The

only general rvresult is due to Kalai and Smorodinsky [9].

Theorem C2c. For every n > 3 , there is a set in Az(n) of

complexity n .

The set referred to in Theorem C2c 1is generated by the convex hull of the
(n+1) points (1,0,e04,0),000,(0,04.,0,1),(1/2,+4.,1/2) in R™ . It can be
shown that for any given trader, when the utility outcome is (1/2,...,1/2)

there nust be a commodity veceived only by him, as well as commodities shared

exclusively by him with each of the other traders. Since each trader nmust



receive a positive amount of some commodity at this utility outcome, there
must be at least n commodities present in any representation of the set. A
specific n—-commodity representation is given by the utility functions
U, (X, yeee,X ) = Ué[x_+ min x_.] .
il n i i
A more detailed look at one aspect of the complexity issue is provided by
Billera and Bixby [5] in a characterization of sets in Az(n) which can be

represented usiag a single commodity.

Theorem C2d. Let V € A2(n) be generated by a set in the unit
n-cube I" , and assume that sup {xi:x € V} =1 for
each i e N . (Every set in Az(n) can be affinely
mapped into a set satisfying these coanditions.) Then
the complexity of V 1is at most 1 if and only if
there are continuous, convex, nondecreasing functions

hi:[O,l] > [0,1] , with h;(0) = 0, such that

A geometric statement which follows from this result is that there is a
convex rescaling of the coordinate axes which maps V into a set generated by

a compact, convex subset of the unit simplex.



4. Market Ganmes

Much of the work on attainable sets is an outgrowth of efforts to
characterize those n-person games which can arise from warkets. The first
such effort was that of Shapley and Shubik [13]. They sought to show that
certain games which are pathological with regard to the von Neumann-—
Yorgenstern solution theory can occur in non-pathological economic settings.

A_gggg.(with transferable utility) is a real-valued function v on the
subsets (coalitions) of a set N of players. Consider a market with trader
set N , and assume that each trader 1 has a continuous, concave utility
1

function wu; on R

i 4 and an initial endowment ' ¢ Ri of goods. The

associated (transferable utility) market game is defined for each coalition

S in N by

v(S) = max {Zui(yl): all yl >0, and z yl = z wl} .
ieS ie$§

For any coalition T in N , a T-balanced collection is a set

Welse T

of non-negative numbers for which z Yg = 1 for every i€ T . A game is
ie$
totally balanced if for all T , and all T-balanced collections {YS} ,

y Ygv(58) < v(T) .

Theoren D3, A game is a (transferable utility) market game if and

only if it is totally balanced.

If utility is freely transferable among the traders, the attainable set

of utility outcomes for any coalition is generated by a simplex. Such
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attainable sets are quite simple (cf. Theorem C2d). Indeed, Shapley and
Shubik showed that every market game arises frouw a market involving at most
n commodities. Hart [7] has recently refined this result by presenting a
coustruction which employs only (n~1) commodities, and by showing that no
lesser number will suffice for the "unanimity” game (defined by wv(N) =1 ,
and v(S) = 0 for all 8§ ; N ).

In many (perhaps in most) markets, utility is not freely transferable.
The concepts we have just defined can be extended to cover this wmore general
case.

A game (without transferable utility) with player set N is a
correspondence V which assigns to each coalition S a set

v(s) = C_ - RS

S
g L where R = {x € Rn: X = 0O for 1i¢ S} and CS c RS is

nonenpty, compact, and convex. Corresponding to any market with trader set
N there is a market game, defined for all S CN by

S i .

v(s) = {x € R : X, < ui(y ) for all i e S , where
each y1 >0 and ) yl = wl} .
ie$5 ieS

(After normalization of the commodity space, V(S) 1is the attainable set of a
market with trader set S .)

A game is totally balanced if for all coalitions T in N , and all T-

balanced collections {YS} s

Zysv(s) cv(T) .

Billera and Bixby [3] were able to prove the following partial analogue

of Theorem D3.



Theorem D2a. Every market game is totally balanced. Let V be
totally balanced, and assume that each V(S) is a

polyhedron. Then V 1is a uarket game.

Subsequently, Mas—Colell [12] provided another characterization result.

A pame V 1is totally balanced with slack if for every coalition T , and

every T-balanced collection {YS} in which Yp = 0,

I Ygu(s) < Int V(T) ,

where Int V(T) denotes the relative ianterior of V(T) . The set of games
which are totally balanced with slack is open and dense in the set of all

totally balanced games.

Theorem D2b. Every game which is totally balanced with slack is a

market game.

The Mas-Colell construction is distinctive, in that it uses the operation
of market addition presented in part (3) of Proposition l. Neither the
Billera and Bixby nor the Mas-Colell construction bounds the number of
commodities needed to represent a market game.

The definition of a game can be weakened further, by requiriung ounly that
each V(S) 1is compactly generated. One can then ask what games arise from
markets in which the traders' utility functions are quasiconcave and upper-

semicountinuous. Thetve are no known results in this area.



5.

Research Problems

Are all n-dimensional compactly-generated sets members of A;(n) ?

(For example, is the set of Figure 2 attainable?)

What is the maximun complexity of sets in Al(n) ? in Az(n) ?
(Although it is tempting to conjecture that both answers are
n{n-1)/2 , no n~dimensional attainable sets of complexity greater

than n are currently known.)

Are all totally-balanced games market games? What types of games
arise from quasiconcave wmarkets? Is the number of commodities needed

to represent any n-person market game bounded?
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