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I. Introduction

Economists have long been aware of and frequently conjectured about
the importance of uncertainty, information, learning, attitudes, and
rivalry on the rate of adoption and diffusion of an innovation.] However,
since most of the work on diffusion has been empirical in nature, rather
difficult measurement problems have nearly precluded examination of the
effects of these factors.2 Moreover, none of the theoretical work on
diffusion has incorporated all of these factors into the analysis. The
earliest work in this area by Fellner [4], Salter [19], Smith [22], and
Hinomoto [8], among others looked at capital-embodied innovations whose
adoption could be delayed due to the necessity of building a new plant
in order to adopt the innovation. Both of these efforts, however, avoided
the issues of uncertainty and rivalry. More recently, work by Flaherty [5]
and Reinganum [17] has confronted the rivalry question by examining optimal
adoption behavior in duopolistic industries. Both of these approaches,
however, suffer from two major flaws: first, they avoid the issue of un-
certainty; and second, they generate delays in adoption by essentiaily
assuming that adoption will not increase the firm's present discounted
value for some time after the new technology is first introduced, which
raises a serious question as to whether or not the new technology really
is an innovation when first introduced.

Recent work by this author [9] shows that it may be optimal for a firm to
delay its adoption of an innovation which would increase the firm's present
discounted value if adopted immediately when the firm is simply uncertain about
whether or not the innovation will be profitable and this uncertainty can be
reduced by waiting to gather information about the innovation. This analysis

is also general enough to include both new process and new product innovations,



but is lacking since it avoids the issue of rivalry. The
purpose of this paper is to extend the analysis in [ 9] by examining the
effects of rivalry, as well as uncertainty, information, learning, and
attitudes, on the adoption and diffusion of an innovation. In particular,
a simple duopoly model is developed in which each firm faces a sequence of
decision dates at which it has the option of either adopting an innovation
of uncertain profitability or waiting to obtain some information about the
innovation. Rivalry enters because each firm knows that 1?5 rival's decision to
adopt or wait will have an effect on the expected values of its two possible
decisions.
The remainder of this paper is organized in the following fashion.
Section II presents the basic model describing each firm's decision problem
and some preliminary technical results. In Section III the existence of
unique optimal adoption rules is demonstrated for both the case where the
rival firm has not yet adopted and that where it has already adopted. This
rule is used to obtain optimal adoption probabilities for the firm from
which several interesting results can be derived:
(1) It may be optimal to delay the adoption of an innovation which
would be profitable (increase the firm's present discounted value) if
it were adopted‘immediate]y;
(2) The length of such a delay will be shorter the more optimistic the firm
is that the innovation will be profitable when it first appears or the more
favorable is the information received about it; and
(3) Adoption by the rival firm need not increase, and may possibly
decrease, the probability of adoption by the firm still waitingat the
last decision date.
In Section IV the existence of an equilibrium for each decision date at which

neither firm has yet adopted is demonstrated. This equilibrium occurs when



each firm's endogenous estimate of the probability the rival will adopt
then (which is required to solve the firm's decision problem) is equal to
the rival's optimal adoption probability. These equilibrium estimates are
endogenous in that they are revised at each decision date td incorporate
both new information about the innovation and the information provided by
the fact that the rival firm has not yet adopted. Section V then concludes
the paper. | . :

I1I1. The Model

Consider an industry composed of two firms which are initially
operating in a certain environment earning a period profit of ri > 0
(i=1,2) and then are confronted with an exogenously developed innovation.
Information about the innovation's existence comes from a source external
to the firms which will continue to provide information about the innovation
at discrete intervals thereafter. Each piece of information is an observation
which can be classified as being either favorable or unfavorable to the
innovation and therefore can be represented by a Bernoulli random variable
Z which takes on the value 1 if the observation is considered favorable
and 0 if not. At each stage of the decision process each firm has the
option of either adopting (if it has not already done so) or waiting to
learn more about the innovation (i.e., take an observation). _A firm which
has not adopted will then observe a sequence of Bernoulli random variables
which are assumed to be independent and identically distributed with
unknown parameter 8 = Pr{Z=1}. It is also assumed that each duopolist
believes that & must be one of two values, 8 and 655 where 0<62<6]<1.
Additionally, it is assumed that after one of the firms has adopted the

waiting firm will ignore any external informaticn and observe only the



experience of its rival with the innovation.3 Finally, no explicit cost of

taking an observation will be assumed, although it is evident that waiting to

take an observation may have an opportunity cost if the innovation is a

good one (i.e., will increase the firm's expected discounted present value).
After the innovation appears, the revenue earned by each firm in a

given period will be uncertain, depending upon its action, its rival's

action, and the true state of nature, 6. In particular, letting a

and a, be the actions of firms 1 and 2, respectively, the beriod

certain returns to firm i will be represented by r;(ai,aj), where

i,j=1,2(i#j) and z=0,1. Let a1=1 designate adoption and a1=0 designate

waiting by firm i. Then, for instance, r{(],]) is the period return to

firm i when both firms have adopted and their experience is favorable.

The expected period returns to firm i will then be one of the following:

or] (1,1) + (1-6)r (1,1) (Ta)
or) (1,0) + (1-8)r ) (1,0) (1b)
ory (0,1) + (1-6)rp(0,1) (1c)
Pl (1d)

Equation (1a) is the period return expected when both firms have adopted;
(1b) is that when firm i has adopted but its rival is waiting; (1c) is
that when firm i is waiting but its rival has adopted; and (1d) is,

of course, that when both wait.

The impact of rivalry on the returns earned by each firm will be

characterized by the following assumptions:

r01,0) > r(1,1) > k1 ri(1,1) 5 rh(1,0) (2a)

i

r5<o,1) >r o> r;(O,]) (2b)



Inequalities (2a) show that, no matter what the rival firm does, if
firm i adopts it will earn a return above the pre-innovation level in
any period in which its experience is favorable and a return below the
pre-innovation level in any period in which its experience is unfavorable.
However, the gain when its experience is favorable will be larger if
its rival has not adopted and the loss when its experience is unfavorable
will be smaller if its rival also has adopted. Inequalities {(2b)
show that if firm i waits when its rival has adopted, then it will earn
more than the pre-innovation return in any period when its rival's
experience is unfavorable and less when its rival's experience is
favorable. Thus, in a given period there are potential gains to be
obtained from having made the right decision for that period when the
rival has made the wrong decision and potential losses to be incurred
from having made the wrong decision for that period when the rival has
made the right decision. It is worthwhile to note that the inequalities
in (2) can be derived from a simple Cournot duopoly model where demand is
Tinear and marginal cost is constant for both the case of a process inno-
vation (shifting the marginal cost curve either up or down and the case of
a product innovation (shifting the demand curve to the left or right).
Finally, the adoption decision is assumed to be irreversible and
require a fixed outlay ci> 0. Let 85(031) be the discount factor and
define R;(ai,aj) =lr;(a1,aj) and Ri= ?;E' Then the expected discounted
T-8
return to firm i from adoption will be
oR1(1,1) + (1-6)R1(1,1)c] (3a)
if its rival has adopted and

6R1(1,0) + (1-6)R8(1,0)-ci (3b)



if its rival never adopts. Similarly, if firm i does not adopt its
expected discounted return will be

oR1(0,1) + (1-e)Rg(o,1) (3¢)

if its rival adopts and R' if it also does not adopt. The following

relationshipos amona these expected discounted returns are assumed:

1. . L . o
e]R](1,0)+(1-e])R5(1,o)-c>e]R]‘(1,1)+(1-e])R8(1,1)-c‘>R‘ (4a)

eZR{(1,0)+(1-e2)Rg(1,o>-cLeZRj(1,1>+(1-92)R5(1,1>-ctaf (4b)
i i i, gl i
eZR](0,1)+(1-62)R0(0,1)>R >e]R](O,1)+(1-e])RO(O,l). (4c)

These assumptions allow the event {e=e]} to be interpreted as the
innovation being good and {e=92} as the innovation being bad since firm
i, regardless of its rival's actions, would prefer to adopt if it

knew e:a] and not adopt if it knew 6=82.4 They also extend the effects
of rivalry on period returns assumed in (2) to the firm's expected
discounted returns since, as in (2), whether firm i decides to adopt

or not, its expected discounted return will always be higher if jts
rival makes the wrong decision (i.e., adopts when 6=6, or does not
adopt when e=e]) and lower if its rival makes the correct decision.

The complexity of the firm's decision problem can now be seen.
There is uncertainty about whether or not the innovation will be profitable
and when, if ever, the rival will adopt. It is therefore necessary for
the firm to estimate both 6 and the probability that the rival will
adopt (if ithasnot already) in order to obtain estimates of the values
of adopting and waiting at each stage of the process.

The estimate of 8 is derived in standard Bayesian fashion. If pi
is firm i's subjective probability assessment that e=e], then the

estimate of £ 1is given by



ap’) = pi% + (1-pi)92. (5)

It is assumed that when the innovation first appears each firm assigns
a subjective probability g1s[0;1] to the event {e=e]}. This initial
belief the innovation is good is then revised as observations are seen
by the application of Bayes theorem. In particular, if p1 is the firm's
current belief the innovation is good, then after a favorable observation
. . pie
i . iy, _ 1 _
p will be adjusted upward to h](p ) = — (6a)
q(p’)
and after an unfavorable observation p1 will be adjusted downward to
i
i - p (]-6])
1-g(p")

Hence, after n observations have been seen, k of which were favorable

hq(

olP (6b)

(k<n), the firm's updated belief the innovation is good will be given by

. 6, k 1-6, n-k i -1
p(n.k.g') = [“%72) (1) GRS (7)
g

Because gie[0,1], it is clear that the firm's current belief at any
stage, pi=p(n,k,gi), may attain any value in [0,1]. The assignment of gi,
which will depend upon such things as the past experience of firm i with
similar innovations and the expertise and attitudes of its decision-makers,
will not be dealt with explicitly in this paper, but instead will be taken
as given. '

The estimate of the probability that the rival firm j will adopt at
a given decision date, if it has not done so already, is less straight-
forward. For now it will simply be assumed that this probability does not
depend upon the firm's belief the innovation is good, pi, but is updated

at each stage in the decision process so that it may be written as



1‘
- - = n 8
Pria,, 1|ajT 0 for all x>t} = =, (8)

where nle[O,]] for each i and t. The presentation and discussion of the
method used by each firm to estimate n; will be deferred until Section 1V,
where it will serve as the basis for demonstrating the existence of an

equilibrium for this duopoly. A1l that is required for the analysis in

this section is that this probabilistic belief the rival firm will adopt

i 5
does not depend upon p1'

The stochastic process underlying the firm's decision problem can
now be completely specified. The state variable for firm i can be taken
to be (pi,aj)e[0,1]x{0,1}, an ordered pair describing the firm's current
belief the innovation is good and whether or not the rival firm has
adopted. There are four states to which (pi,aj) can move after an

),0).

The transition probabilities are then determined from equations (6), (7),

observation is seen: (h](pi),l), (ho(pi),l), (h](pi),O), and (hO(pi

and (8) as follows:

Prithy (p1),1)1(p7,0)3=a(p" )] (92)
pri(hy(p'),1)1(p1,003=(1-a(p")) 7] (95)
Pri(hy (p'),0)] (p",0)3=a(p") (1-]) (3¢)
Pri(hy(p'),0)](p',0))=(1-q(p")) (1-]) (94)
Pre(hy (p). 1) (0", 1)1=a(p’) (9e)
Pr{(ho(pi),1)l(pi,1)}=1-q(pi) | (9f)
Pri(h, (p1),0) | (p",1)3=Pr((ny(p"),0) | (p",1)3=0. (39)

Since these probabilities do not depend on the stage of the process, this
stochastic process is Markovian with stationary transition probabilities

and so the firm faces a Markovian decision process.



The firm's decision problem can now be formally stated as an
optimal stopping problem where the stopping value is the expected return
from adoption and the optimal continuation (or waiting) value is the
expected value of the next observation. Following standard. procedure,

let the value function V;(p1,aj) be the maximum expected return to firm

i when the state is (p]

L yand there are t=0,1,...M cecision dates
remaining in the problem. When t=0, the firm has lost the opportunity

to adopt and so the value function there will be, for all p1e[0,]],

Volp's1)=a(p )R (0,1)+(1-q(p"))R4(0,1) (10a)

Volp',0)=R". (100)
The V;(p],aj) for t > 1 are then defined recursively by the functional
equation

i, i _ i i i i

Vi(p ,aj)—max{vt(],p ,aj), Vt(O,p ,aj)} (11)
where the expected adoption returns are

Ve(1,p'1)=a(p" )Ry (1,1)+(1-q(p") )Ry (1,1) ¢ (12a)

.i

Vi(1,p",0)=r{ [a(p )R] (1,1)+(1-q(p ) IRI(1,1) "]

+#(1-n))La(p! )R] (1,0)+(1-q(p"))RY(1,0)c"] (120)

and the expected waiting returns are

vi(.p",1)=a(p ) (0.1)+(1-q(p Iri (0,1)
+8la(p V1 4 (hy (p1),1)+(1=a(p V] (ho(p7),1)3 (132)
vi0.T 0= Lalp Ir (0,14 (1=a(p )} (0, 1) T+ (1)

+sn2[q(pi )Vl_] (h (pi),1 )+(1 -q('pi))vi_] (ho(pi) )]

+s(1-n))Lalp V] 4 (b (p1),0)+(1-a(p V] (g (p1), 007 12
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for all pje[0,1]. It is significant to observe that this model of the
decision problem of a firm which is confronted with an innovation of
uncertain profitability and is aware of the impact of its rival's
actions on its expected returns can easily lend itself to a rather

broad interpretation of innovation. In particular, since each firm's
expected present value will in general be different after the innovation
is introduced, this approach adopts the Schumpeterian view of innovation
as a change in the status quo. Moreover, the model is general enough to
encompass both new process and new product innovations.

Before examining optinal benavior and its implications under this
model, it will be necessary tc derive some of the properties of the value
function defined by (10)-(13) in order to demonstrate the existence of
optimal decision rules for this problem. These properties are summarized
in the following lemmas. Since the decision problem is the same for
both firms, the superscript i, denoting firm i, will hereafter be

deleted whenever it can be without causing any notational confusion.

Lemma 1: For all t=1,2,... N, Vt(p,l) and Vt(p,O) are continuous and convex

in p for all pe[0,1].
Proof: First, since q(p) is continuous, it follows from (1Qa) that
Vi(1,p,1) is continuous in p for all t. And since q(p)a(h;(p))+(1-q(p))q(hy(p))=q(p)
under Bayesian learning,
V1(0,p,1)=a(p)ry (0,1)+(1-q(p) )ry(0,1)+8a(p)Vy(hy (p),1)
+8(1-q(p))Vy(hy(p),1)
=q(p)ry(0,1)+(1-q(p) )r(0,1)+sa(p)[alh, (p))R,(0,1)+(1-q(h, (p)))R4(0,1)]
+8(1-a(p))lalhy(p) )Ry (0,1)+(1-a(hy(p)))R(0,1)]
=q(p)r;(0,1)+(1-q(p))ry(0,1)+8[a(p)Ry (0,1)+(1-q(p))R4(0,1)]
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=q(p)R,(0,1)+(1-q(p))Ry(0,1), (14)

which also is continuous in p. Hence, V](p,l) is continuous in p.
Since h](p) and hO(p) are continuous, a simple induction on t will then
give Vt(p,l) continuous in p for all t.

Next, from (12b) it is obvious that Vt(i,p,O) is continuous in p for
all t. It can readily be verified (as with (14) above) that

V1 (0,p,0%m [(P)R, (0,1)+(1-a(p))Rg(0,1)J+(1 -7, R, (15)
which also is continuous, so V](p,O) is continuous. Becaﬁse h](p)
and hO(p) are continuous and because Vt(p,l) was shown above to be
continuous, a simple induction on t will then give Vt(p,O) continuous
in p for all t.

Third, since q{p) is Tinear in p, both V](l,p,1) and V](O,p,l) are
linear, and so convex, in p. Therefore, as the maximum of convex functions
V](p,1) is convex in p on [0,1]. Assume that VT(p,1) is convex in p
on [0,1]; that is, for all Ae[O,]],VT(A,l) < (1-A)VT(O,1)+AVT(1,1).

Since VT+](1,p,1), given by (12a), is linear in p, VT+](p,1) will be convex
for pe[0,1] if it can be shown that VT+](O,p,1) is convex. And since
q(p)r](O,l)+(1-q(p))r0(0,1) is linear, it can be seen from (13a), with
t=T+1, that showing q(p)VT(h](p),1) and (1-q(p))VT(hO(p),1) are convex

for pe[0,1] will suffice to show that VT+](p,1) is convex. Now, by the
jnduction hypothesis and the definition of h](p) in (6a), for all ae[0,1]
Q0 Wyl (3),7) < @0L(=hy ()IV(0,1) + by (1V4(1,1)]

(1-A)82VT(0,]) + AG]VT(],1)

(1-2)a(0)V(hy(0),1) + ra(1)V,(h (1),1),

which shows that q(p)VT(h](p),l) is convex for pef0,1]. Similarly, the

n A



induction hypothesis and (6b) imply that
(1-(1) W (hg (10,13 (1-q(a)) L (1-hg (1) IV (0,1)%hg (3 )V (0,1)]
=(]-A)(1—82)VT(0,])+A(]-8])VT(],])
=(1-1)(1-9(0) )7 (hy(0),1)+x (1-g(1))V4(hy(1),1)
for all xe[0,1], which shows (]-q(p))VT(hO(p),1) is convex for pe[0,1].
Therefore, Vt(p,l) is convex for all pe[0,1].
Finally, V](p,O) is convex for pe[0,1] since it is thg maximum of

V](],p,O) and V](O,p,O), which can be seen to be linear, and therefore

convex, in p from (12b) and (15). Vt(p,O) can then be shown to be

convex for pe[0,1] if VT+1(p’O) is convex when VT(p,O) is convex. Since
VT+](],p,O)=V](1,p,O) and q(p)r](0,1)+(]-q(p))r0(0,1) are linear, it can
be seen from (13b), with t=T+1, and the preceding proof that showing
q(p)VT(h](p),O) and (1-q(p))VT(h0(p),O) are convex for pe[0,1] will
suffice to show that VT+](O,p,O), and thus VT+](p,O), are convex. But

this can be done in the same way that q(p)VT(h](p),l) and (1—q(p))VT(h0(p),1)

were shown to be convex above. Q.E.D.

Lemma 2: For all t=1,2,...,N:

(1) Vt(0,1)=82R](0,])+(1—82)R0(0,])
(ii) Vt(],])=8]R](],])+(1—8])R0(],])—c
(i1i1) Vt(0,0) = R
(V) Vy(1,0kn L8Ry (1,1)+(1-01 Ry (1,1) =c]

+(]—1Tt)[e]R] (] ,0)4'(]—8] )Ro(] 90)"C]
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Proof: From the inequalities in (4b) and (4c) and equations (10a),
(11), (12a), and (13a), it can be seen that showing
Vt(0,0,1)=62R](0,])+(]-62)R0(0,]) for all t is sufficient to prove (i).
It follows from (14) and (4b,c) that V](O,O,l)=62R](0,])+(]-62)R0(0,1).

Assume that V7(0,0,1)=¢,R;(0,1)+(1-8,)R;(0,1). Then from (13a),

Vg (0,0,1)=8,r1 (0,1)+(1-8,)ro(0,1)+8[ 8,V (hy (0),1)+(1 -8,V (h(0),1)]

=0,r1(0,1)+(1-8,)rg(0,1)+8[6,V1(0,1)+(1-8,)V1(0,1)]

=62r](0,1)+(]-82)r0(0,1)+8[92R](0,1)+(]—92)R0(0,])]

R](O,])+(]—62)RO(O,]). Q.E.D.

:ez
The proofs of (ii)-(iv) can be done in similar fashion and will therefore

be omitted.

Lemma 2 simply shows that in this model it is optimal for the firm
to adopt if it knows the innovation is good (p=1) and to wait if it
knows the innovation is bad (p=0), regardless of its rival's actions. Of
course, this behavior is precisely what one wouid expect a reasonabie modei
to predict. Lemmas 1 and 2 together are enough to show that the firm’s
optimal adoption rule in this model can be expressed in the form of
a reservation probability pule. These results, and some of their
implications for optimal firm behavior, will be presented and discussed

in the next section.
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III. Optimal Adoption Rules and
the Probability of Adoption

Consider the decision problem of either firm when both have not yet
adopted, but instead are waiting to learn more about the innovation; this
problem is described by equations (10b), (11), (12b), and (13b) given (2)
and (5)-(7). Because each firm is uncertain about both the profitability of
the innovation and whether or not the rival will adopt, the expected
adoption return is a weighted average of the expected adoption returns if the
rival decides to adopt and if it does not, where the weights are the probabilities
the rival will or will not adopt. The expected waiting return is similarly
calculated. As indicated in the previous section, it can be shown that the
solution to this problem takes the form

V. (1,p,0) if p > py,

v.(p.0) =
1 *
V. (0,p,0) if p < p},

for t=1,2,...,N where pgo is the reservation orobability when there are t decision
dates remaining at which the firm can adopt and when the rival firm has not

yet adopted (aj=0). This result is proved in the following theorem.

Theorem 1: For each t=1,2,... N there exists a unique P¥ne(0,1) such that
V,(1,p350)=V,(0,p%,,0) and:

(1) v, (1,p,0) >V, (0,p,0) for all pe(pyy,1]

(ii) v

(1,p,0) < Vv, (0,p,0) for all pe[0,p}y).

t t(
Proof: It follows from Lemma 2 and equation (2) that Vt(1,0,0) < Vt(0,0,0)
and Vt(1,1,0) > Vt(0,1,0) for all t>1. Because Vt(1,p,0) is linear in p,

it follows from Lemma 1 that the function Vt(O,p,O)-Vt(1,p,0) is continuous

and convex in p on [0,1]. Hence, Vt(O,p,O)-Vt(l,p,O) is a continuous,
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convex function of p on [0,1] which is positive at p = 0 and negative at
p=1. Q.E.D.

An immediate consequence of this theorem is that both the firm's
optimal adoption rule and the probability the firm will adopt at any
stage of the process (when its rival is also waiting) can be completely
specified by p;O for t=1,2,...,N. In particular, Theorem 1 proves the
existence of an optimal decision rule for each firm, when neither have

adopted, of the form
1 if p > p;o

5,(ps0) = : (16)
0 if p«< p;O
That is, the firm's optimal adopticn rule is a reservation probability
rule: at any stage of the decision process when there are t decision
dates remaining, the firm's current belief the innovation is good is p, and
the rival has not yet adopted, the firm should adopt if p > p{o and otherwise

wait. Moreover, the probability the firm will adopt under these circum-

stances can be expressed as

m.(p,0) = Prip>p},}. (17)

Before discussing the implications of these results for optimal firm behavior,
it will be worthwhile to derive similar ones for the case where the rival
firm has adopted so that optimal behavior in both cases can be compared and
contrasted.

The firm's decision problem when its rival has already adopted is of
interest for several reasons. First, industry equilibrium, however defined,
need not require that both firms adopt at the same date since the duopolists

may have different initial beliefs, receive different external information,
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or evaluate the information in a different manner. If adoption dates
differ, one of the firms must face tnis problem after its rival has
adopted. Moreover, it is conceivable that only one of the firms will have
access to the external source of information, as could happen if the
supplier and one of the duopolists had a special arrangement; in this event
the other firm would not even learn of the innovation's existence until its
rival adopted. Finally, although it was assumed that the innovation was
developed externally to the industry, this decision problem could also be
used to analyze the behavior of a firm whose rival deve]oped a non-patentable
innovation. Under any of these circumstances the waiting firm will face the
decision problem described by equations (10a), (11), (12a), and (13a)
given (2) and (5)-(7), which is somewhat simpler than the other since the
rival's action is known and the only uncertainty is whether the innovation
will be profitable or not. Again it can be shown that the solution to
this problem takes the form

Vi(1,p,1) if p >

Vilp,1) =

Theorem 2: For each t=1,2,...,M,there exists a unique p;]e(o,l) such that
Vt(1,p¥],1) = Vt(O,pE],l) and:

(i) Vt(l,p,1) > Vt(O,p,l) for all pg(pzl,lj

(i1) Vt(],p,]) < Vt(O,p,l) for all pE[O’pE])'

Proof: This proof is identical to that of Theorem 1 with Vt(-,-, 1)
replacing Vt(-,-,O) and therefore is omitted.
As with Theorem 1, this theorem proves the existence of an optimal

decision rule for the firm whose rival has already adopted of the form
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7 *
1 if p > P
6,(p.1) = (18)
3 *
0 if p < pt]
and, therefore, shows that the probability this firm will adopt at any

date can be expressed as

= *
n (p,1) = Prip>pyy}. (19)
Again the firm's optimal adoption rule is a reservation probability
rule: at any stage when there are t decision dates remaining, the

firm's current belief the innovation is good is p, and the rival has
already adopted, the firm should adopt if pipzl, which occurs with
probability nt(p,l), and otherwise wait.

It is now possible to examine the implications of this model of firm
behavior in terms of the probability a waiting firm will adopt at any stage
of the decision process. Since pza'e(o,l) for all t and aj=0,1, it is
evident that both firms may have initial beliefs gi which are either high
enough to imply both will adopt immediately or low enough to imply neither

will adopt when the innovation is introduced. If either waits to learn

about the innovation, the length of the delay until adoption occurs (if it
ever does) then depends upon the nature of the information received and the
reservation probabilities in addition to the firm's original belief the
innovation is good. The following result shows that a firm is more 1likely
to adopt the innovation at any stage in the decision process when its
original belief is higher or the information received is more favorable to

the innovation.
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Proposition 1: Whether the rival firm has adopted or not, the probability
of adoption by the waiting firm will be higher (lower) when the firm's
original belief the innovation is good or the proportion of observations

which are favorable are higher (lower).

Proof: Recalling that p = p(n,k,g) as defined in equation (7), this result

follows immediately from (17) and (19) since p(n,k+1,g) > p(n,k,g) and

ag(nég,g) . 0.

This behavior is, of course, precisely what one would expect any
reasonable model to predict. The following group of results, however, are
surprising when viewed in the context of the existing literature concerning
the diffusion of innovations. In nearly every study of diffusion published
it has been assumed, at least implicitly, that the probability a waiting
firm will adopt at any time will be higher the greater the proportion of all
potential users of the innovations who have already adopted. In what
follows it will be shown that optimal behavior for the firm will not be
consistent with this assumption under certain circumstances. In particular,
it will be shown that, under certain conditions on the returns Rz(ai,aj)
and R, the probability a firm will adopt at the last decision date (t=1)

when its rival has already adopted may be the same as, greater, or less than

the probability it will adopt when its rival has not yet adopted. This

will be done after the following preliminary result is derived.

ANV

Theorem 3: pTO pT] if and only if

RO(O,’I)-RO
R](1,])-R](O,1)+R610,1)—R0(1,1)

(1,1) +¢ R-RO(1,0) +C
R{ITQO)-R+R-RO(1,OT

ANV
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Aty

Proof: It follows from Theorem 1 that pfo pf] if and only if
V,(1,p%,,0) £ V,(0,p%,,0). And since

q(pyp IRy (1, 1)+(1-a(p3 )IRG(1,1)-c = q(p3; )Ry (0,1)+(1-q(p3y))R4(0,1)
by Theorem 2 and (14), it follows that

Vy (1,0%,,0) -V (0,p%,,0) = (1-7))[alpt, )R (1,0)+(1-q(pt, ) Ry (1,0) - R].

Therefore,

Allv

Pfo  Pyy if and only if q(pfy)Ry(1,0)+(1-q(p%,))Ry(1,0)-c £ R. (20)
The theorem's statement can now be derived from (21) by solving the equation
V](],pf],l) = V](O,pf],l) for q(pf]), substituting this into the last
condition, and rearranging terms.

“The result of interest here can now be obtained from Theorem 3 and

equations (17) and (19); it is stated in the following corollary.

Aldly

Corollary 1: H1(p,0) H](p,]) if and only if

RO(O,l)-RO(1,1)+c N R-R0(1,0)+c (21)
R](1,17-R{(O,T)+RO(O,1)-RO(1,17’ < R](I,O)-R+R-RO(1,07 .

Furthermore:

(i) H](p,0)=n](p,1) if RZ(],O)—RZ(1,])=R-RZ(O,]), 2=0,1.
(ii) H](p,0)<n](p,1) if RZ(],O)—RZ(1,])fR—RZ(O,1), 2=0,1,

where the inequality is strict for one z.

(351) 7,(p,0)>1,(p,1) f R(1,0)-R,(1,1):R-R,(0,1), 20,1,

where the inequality is strict for one z.

Proof: The first statement (21), follows immediately from Theorem 3 and
equations (17) and (19). Simple algebraic manipulations of this expression

then give (i)-(iii).
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The relationship defined by (21) provides conditions both necessary
and sufficient for the probability of adoption by the waiting firm at its
Jast chance to be higher, the same, or lower when the rival firm has
adopted than when it has not. The sufficient conditions given by (1)-(iii),
however, provide the best basis for interpretation. By the definitions of
R.(a.,a.) and R, it is evident that the conditions in (i)-(iii) can be

z2'\5i%]
replaced with equivalent ones in terms of r (ai,a.) and r. Hence, the

z J
interpretation of (i)-(iii) can be made in terms of these period returns.
Now, if the firm adopts but its rival doesn't, then the firm will gain from
its rival's error if its experience is favorable and lose from its own
error if its experience is unfavorable. The gain is rl(],O)—r](1,1) and
the loss is r0(1,0)-r0(1,1). And if the firm does not adopt but its rival
does, then the firm will suffer a loss if its rival's experience is favorable
and a gain if it is unfavorable. This loss is r](0,1)-r and this gain is

rO(O,l)—r. Hence, the probability a waiting firm will adopt at its last

chance will be the same whether the rival firm has adopted or not if: (1) when

the experience is favorable, the aain the firm would realize if it adopts and
its rival does not equals the loss it would incur ifit did not adopt and its

rival did; and (2) when the experience is unfavorable. the loss the firm would incur

if it adopts and its rival does not equals the gain ‘it would realize if

it did not adopt and its rival did. This is a situation in which there is
no bias toward adopting or waiting in the returns. That is, the gain the
firm realizes by making the correct decision when its rival errs is the
same for both the decision to adopt and the decision to wait; and the loss

the firm incurs by making the wrong decision when its rival makes the
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correct one is also the same for both the adoption and waiting decisions.
Similar interpretations can be applied to (ii) and (iii) of Corollary

1. The probability a waiting firm will adopt at its last chance will be

greater (smaller) when the rival firm has (has not) already adopted if:

(1) when the experience is favorable, the gain the firm would realize by adopting

when its rival waits is less than the loss it would incur by waiting when

jts rival adopts; and (2) when the experience is unfavorable, the loss it would

incur by adopting when its rival waits is greater than the gain it would

realize by waiting when the rival adopts. In this case there is a clear bijas

against adoption and in favor of waiting when the rival firm has not yet

adopted, which results in the firm being less likely to adopt if the rival

has not adopted than if it has. Finally, the probability a waiting firm will

adopt at jts last chance will be smaller (greater) when the rival firm has

(has not) adopted if: (1) when the experience is favorable, the gain the firm

would realize by adopting when its rival does not is greater than the loss

it would incur by waiting when its rival adopts: and {2) when the experience is

unfavorable, the loss it would incur by adopting when its rival does not

is less than the gain it would realize by waiting when its rival adopts. In

this case there is a clear bias in favor of adoption and against waiting when

the rival has not yet adopted, which results in the firm being more 1ikely to

adopt if the rival has not adopted than if it has. Stated somewhat more
loosely, if there is an advantage to being the first to adopt, then a firm
will be less likely to adopt after its rival has preempted that advantage
by adopting.

It is significant to observe that the inequality conditions (i)-(ii1)

of Corollary 1 may obtain under very general circumstances. In particular,
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all of these inequalities can be derived from a simple Cournot duopoly

model where demand is linear and marginal cost is constant for both new
product innovations (which shift the demand curve either to the right or
left) and new process innovations (which shift the marginal cost curve either
downward or upward). Hence, even though the model used here is rather
specific in several ways, it is reasonable to state the following proposition

based on Theorem 3 and Corollary 1.
Proposition 2: Adoption by a rival firm need not increase. and may nossibly
decrease, the probability that a firm waitina will adopt the innovation at

the last decision date.7

In concluding this section it will be worthwhile to indicate that the
claim of Proposition 2 holds under conditions more broadly applicable than
those embodied in this model. In particular, this result does not depend

critically on the assumption that a waiting firm ignores the external source

of information once its rival has adopted.

If a waiting firm sees an observation from both its rival and
the external source after the rival has adopted, then it can again be shown
that a reservation probability strategy is optimal (if the firm estimates q(p)
and learns in Bayesian fashion). Denote these reservation probabilities by
pyq and Py for t=1,2,...,n. Then it can, in fact, be shown that ;;”=pﬁ and

pw=p*{O and that Theorem 3 and Corollary 1 obtain in this case also. The

relevant comparison for probabilities of adoption at t=1, if the
rival adopts at t=2 for instance, will be n](hi(p),]) and

n](p,O). Since h](p)>p>h0(p) and pT]=pTO is still possible, the claim of

Proposition 2 will also hold when a waiting firm observes both the external

source and its rival's experience.
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However, it is also possible that the probability a waiting firm will
adopt will be higher after rival adoption. Assuming pf1=pfo for convenience. then
n](h](p),1)>n](p,0) and n](ho(p),1)<n](p,0). That is, rival adoption will
increase the probability the waiting firm will adopt if and only if its
experience is favorable. Although this conclusion is not surprising, it
does help to clarify the apparent contradiction between the result of
Proposition 2 and the often reported empirical result that the probability
a waiting firm will adopt increases as the proportion of users who have
already adopted increases. As the discussion of Corollary 1 indicated,
rival adoption per se will have a different impact on the 1ikelihood a
waiting firm will adopt when there are differences in the advantages and
disadvantages of adopting before the rival or having the rival adopt first.
These differences depend on such things as the nature of the innovation and
the market power of each firm. If these are neutralized, by setting
pf]=pfo, then the waiting firm will be more {less) likely to adopt after its
rival has if and only if the rival adoption was successful (unsuccessful).

In other words, it is not the simple information-that a rival has adopted

which increases the likelihood of adoption by a firm waiting, but instead

the additional information favorable to the innovation which will be generated

by rival adoption when the innovation is a good one. Hence, thg proportion

of an industry which has adopted may be significant in explaining the rate of
adoption only because it is serving as a proxy for favorable information received by

waiting firms about the innovation.
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However, it is also possible that the probabi]ity‘of adoption by a
waiting firm will be higher after rival adoption. Assume for expositional
convenience that pf] = pfo. Then it follows that n](h](p)]1) > n](p,O)
and n](ho(p),1 < n](p,O). That is, rival adoption will increase (decrease)
the probability of adoption by the waiting firm if and only if the rival's
experience is favorable (unfavorable). Although this result does not seem
surprising, it is especially significant in the light of the assumption,
commonly made in empirical studies of diffusion, that the probability of
adoption by a waiting firm will be higher the larger the proportion of firms
in the industry who have adopted. It is normally argued (see, for instance,
Mansfield [14,16]) that this shouid be the case because as the proprotion
of adopters increases: (1) 1information and experience related to the in-
novation accumulate, (2) it becomes less risky to adopt, and (3) competitive
pressures to adopt build up. This assumption also conveniently implies a
diffusion curve for the innovation which is logistic (S-shaped, as are most
of the ones empirically observed). Although these reasons certainly seem
plausible, they are basically ad hoc justifications for testing an empirical
relationship, rather than implications of optimal firm behavior toward adoption.
The approach used here clearly shows that, under uncertainty,optimal behavior
may imply a lower adoption probability for a waiting firm after the rival
has adopted. For instance, the nature of the innovation and market structure
may be such that rival adoption will reduce the adoption probability of a
waiting firm (as in (iii) of Corollary 1, where Py > pfo). Furthermore,
in the case where there is no bias for or against adoption (as in (i) of

Corollory 1, where pf] = pTO), rival adoption will increase the waiting



25

firm's adoption probability if and only if the rival's experience is favor-
able. Certainly if a firm adopted and suffered an unfavorable experience,
then no one would predict that this information would increase the adoption
probability of a waiting fimm.

Therefore, the analysis of optimal firm behavior under this model
shows that there is no a priori reason to expect rival adoption per se
to increase the probability of a waiting firm will adopt. It also shows
that the reason empirical studies find a significantly positive relationship
between the probability of adoption and the proportion of firms that have
already adopted is that the latter variable is serving as a proxy for infor-_
mation favorable to the innovation. This is probably not a bad proxy since
one would expect information generated by the experience of adopters with
an innovation which eventually diffuses throughout the industry to be favor-
able, at least on average. Nevertheless, there may be other variables which
are better measures of favorable information and whose use would not only
provide greater explanatory power, but aiso avoid the fallacious assumption
that a higher proportion of firms using an innovation necessarily implies

a higher adoption probability for waiting firms.
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IV. Industry Equilibrium

Consider the situation when neither firm has adopted at a given decision

date. As a consequence of Theorem 1, once firm i has assigneq a probability

1‘

t . -

can be completely specified by solving the equation Vl(],p,0)=vz(0,p,0) for
. i*, i, 8

p to obtain pto(nt).

to the event that its rival will adopt at t (=,), its optimal decision rule
Moreover, given the firm's current belief the innovation
is good, pi, the probability of adoption by firm i at t implied by its

optimal decision rule can also be determined. Thus,'an appropriate equilibrium
concept for the situation in which neither firm has yet adopted is one which
requires that each firm's probabilistic belief that its rival wili adopt then be
equal to the probability of adoption implied by the rival firm's optimal
decision rule. That is, at each decision date t when neither firm has

2 1

adopted, the industry is in equilibrium if w] = nt(p,O) and ni = nt(p,O).

t
This is a type of fully rational, or self-fulfilling, expectations equilibrium
since it requires that each firm's belief its rival will adopt be the same
as that which obtains when each firm follows its optimal decision rule. The
purpose of this section is to develop a method which each firm can use to
form estimates of the ni which are endogenous to the model and admit the
existence of such an equilibrium at each decision date when neither firm has
yet adopted?

It will be assumed that each firm has complete but imperfeét information
abouts its rival. In particular, each firm is assumed to know all relevant
information about its rival except for the rival's initial prior, which it
knows only in distribution. It is also assumed that each firm believes its

rival's prior to be distributed over the unit interval according to the

continuous cumulative distribution function F. Finally, assume that each firm
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sees the same sequence of observations, uses the same updating rule, (7), and

faces the same finite number of decision periods, given by the positive

integer N. Under these assumptions, each firm i can, for given n%, determine

the reservation probability of its rival j at any decision daté, pig(ni),
by solving a decision problem similar to its own. It can then form an
estimate of the probability of rival adoption at that date by using the
distribution F. To see how this is done, consider the situation when the
innovation first appears, at which time neither firm has adoﬁted, no
observations have been seen, and there are t=N decision dates remaining for
both firms. Given any value of nﬁ, firm 1 can determine pﬁg(nﬁ) by solving

the decision problem of firm 2 (which it is assumed to know). The probability

that firm 2 will adopt at t=N implied by its optimal decision rule for that
2
N
probability will be 7\ (v4)=1-F(p

*
is then Pr{gzzpﬁo(nS)}. The best estimate that firm 1 can make of this

2* ( 2)) Similar] i 1 f !
nolmN)) j Y, given any value of =y,

the best estimate firm 2 can make of the optimal probability that firm 1 will

~ 3 *
adopt at t=N will be ﬂﬁ(n&)=]-F(p;0(nL)). The industry will then be in

equilibrium at t=N if there exists a (w;fnﬁ*)e[o,l]x[o,lj such that
;;(nﬁ*)=nh* and ;ﬁ(n;*)=n§*.

Now suppose that neither firm adopts at t=N. Then both will receive
two pieces of information. The first is the information about the innovation
provided by the external source, and the second is that the rival's initial
prior gj must be less than pﬂg(nﬂ*

firm's estimate of rival adoption at t=N-1 should be revised in accordance

) since it did not adopt. Naturally, each

with this new information. Again, given any nﬁ_], firm 1 can determine the

*
reservation probability of firm 2 at t=N-1, pﬁ_] O("ﬁ-])' The probability

that firm 2, using its optimal decision rule, will adopt at t=N-1 will then be
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2

2)3p§t] O(”N-l)} where z, is either 0 or 1. It follows from the

Pr{p(l,z],g

definition of p(n, k,g) given by (7) that. for each i and z-l =0,1,

7

p(1, 1299 )>pN . O( N- ]) if and only if g >g *(7, z],pN 1, O( N- ])), so that

this optimal adoption probability can alsoc be written as
Pr{g1zg*(1,z],p&f] O(n&_]))}. However, since neither firm adopted at t=N,
it is more accurate to write this probability as
i i* i i % i* , i* 1
Pr{g 2g*(l,z],pN_]’O(nN_]))]g <pNo(nN )}. Now, since pN-],O("N-]) may be
1 % ] %
greater than, equa] to, or less than p&o(n] ) (depending upon the relation-

1 %k
ships between r (1 ,0)-r (1,1) and r'-r (O 1) and the values of n; and

& ]) g (]’21’pN—1,O(”N—1)) may be greater than, equal to, or less than
p&o( ) whether z]=0 or z]=1. The optimal adoption probability will thus
be zero if g*(],z],p;f],o(n;_]))gpag and positive otherwise. Hence, given
any nﬁ_], the best estimate firm 1 can make of the probability that firm 2
will adopt at t=N-1, given that it did not adopt at t=N and that the first

observation was Zy is

2%, 2% 2% 2
F(pNO(ﬂN ))—F(g*(l,z],pN_-l ,O(HN-])))
~1 2 _ Lo 2%, 2% 2% 2
"n-1(mN-1) i pyolny )>9%(15295p_q olmy )
0 otherwise

The best estimate that firm 2 can make of the probability that firm 1 will
adopt at t=N-1 is defined in a similar fashion. As before, the industry will

be in equilibrium at this date if there exists a ( ; ],nﬁ ] Yel0,13x[0,1]

N ok 1 o 1% o
-1 (ot )=y and my g (my )=my g

In order to generalize this estimation procedure for any decision date

such that =

at which neither firm has yet adopted it will now be helpful to present another

technical result and introduce some new notation.
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*
Lemma 3: For any triple (n,k,pto), where t=N-n and k<n, there exists a

* * *
unique g*(n,k,pto)g(O,l) such that p(n,k,g)zptO if and only if gzg*(n,k,pto);

. 1-pyo 6y k 1-6; n-k_-1 |
moreaver, 6+(nk,p}) 01— (5D () 1 (22)
p
t0

Proof: The definition of p(n,k,g) given by (7) can be used to solve
p(n,k,g)=p:0 explicitly for g and thereby obtain (22). That_p(n,k,g)zpzo if
and only if 929*(”’k’p:0) follows from the fact that éﬂiﬂgglgl-> 0. That
g*(n,k,pzo) is unique and an element of (0,1) follows from Theorem 1,
where p:0 was shown to be unique and belong to (0,1).

This lemma allows each firm's ortimal decision rule to be restated in
terms of a reservation initial prior g*(n,k,ng) for each t=N-n=1,...,N
and k<n. That is, at any decision date t when the reservation probability
is pig and n=N-t observations have been seen, k of which were favorable,

. .
firm i will adopt if and only if g'>g*(n,k,py;),i=1,2. Now let s =(n, 2z

i 2

it =13

’
',
K

N *

for n=1,...,N-1 and so=(0,0), so that g*(n,k,plo) can be written

j* o .
g*(SN—t,ptO) for t=N-n=1,...,N. Finally, let
—d(s ) = min{g*(s pi*) g*(s pi* ) g*(s pi*)} for n=N-t-1 N-1
g n ) 0’ NO b} ]’ N_],O b R ] n’ to 9oy .
That is, §q(sn) is the minimum reservation prior realized by firm i throughout
the first n+] decision dates (and first n observations) while both firms
are waiting. Hence, at any stage of the process when there are t decision
dates remaining and neither firm has yet adopted, it must be the case that
g1<§q(sN_t_]) for i=1,2. The probability that either firm will adopt at t,
calculated from the optimal decision rule, is thus

- -* - -. -
Pr{g]gg*(SN_t,Plo)|9]<g1(sN_t_])} for t=1,...,N-1. Hence, given any n%, the
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best estimate that firm i can make of the probability firm j will adopt at t,

. P e s .
for t=1,...,N-1, will be “;(“%)=F(g1(SN-t-1))'F(g*(SN-t’p%D(“%))) if
=i

J* J “1e Jdyy- . :
g (sN_t_])>g*(sN_t,pt0(nt)) and nt(ﬂt))—o otherwise. The best estimates of

the probability of rival adoption at decision date t for all t=1,...,N can

now be summarized as follows: for any given n%, the best estimate that firm

i can make of the probability of adoption by its rival, firm j, at t is:

e .

() = 1-Flpyo(nd)) (23)
F(G (51 ) -F(a*(5y_y Pl (7300

S P (sy_p_q)70%(sy oPip(n)))  (28)

0 otherwise
for t=1,..., N-1
and for 1,j=1,2 where i#j.

The existence of a self-fulfilling (rational) expectations equilibrium
for every decision date t at which neither firm has yet adopted can now be
demonstrated.

~1

Theorem 4: Let nt(ﬂ

any decision date t when neither firm has yet adopted and each has seen the

i) and %i(ﬂt) be defined as in (23) and (24). Then at

sequence of observations summarized by S there exists a

N-t°
- - *
(nl*,ni*)e[OJ]x[O,]] such that ﬂt(TTTZL*) = 'nl* and ﬂi(ﬂ]t*) = n% .

*
Proof: It will suffice to show that there exists a ﬁl e[0,1] such that

;](;2(“]*)) = 21" for any t. The proof for the case where %1(n2)=§2(r1
tet Tt t . P gln)=ng (g

is trivial. For the remaining cases Schauder's fixed point theorem will give

)=0
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the result if the composite function ;1

can be shown to be continuous on [0,1]. Since F was assumed to be continuous

o;i, which maps [0,1] into itself,

on [0,1], it therefore will suffice to show that the reservation probability
mapping pi;(n;) is continuous on [0,1]. Equations (12b) and (13b) can be

.. i . i* . . . _

used to solve explicitly for M, as a function of Pto- This mapping 1S con
. . . S R PR | .

tinuous and one-to-one. Therefore its inverse, which is piq (nt), js also

continuous. Q.E.D.

There are three features of the equilibrium guaranteed by this existence
theorem which are worth noting. First, it shows that at every stage of the
decision process, until either one of the firms adopts or both lose the
opportunity to adopt (at t=0), each firm accurately predicts the optimal
probability of adoption by its rival and uses this probability to solve
its own decision problem. Second, these equilibrium probabilities are
endogenously determined, being revised at each decision date to take into
account both the new information about the innovation from the external source
and the information about the rival's initial prior gleaned from observing that
the rival has not yet adopted. That is, while both firms are waiting they
learn about both the innovation and their rival's prior, and adjust their
expectations about the probability of rival adoption accordingly. And third,
the results of the previous section are consistent with this equilibrium. For
instance, Proposition 1 shows that a diffusion with adoption delayed by both
firms is a possible equilibrium outcome. That is, since the firms' initial
priors were not assumed to be the same, one possibility is that both firms
delay their adoption of the innovation, where the length of the delay is longer

for the less optimistic firm (the one with the lower prior). Moreover,
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Proposition 2 shows that if there is an advantage in being the first to
adopt, then in the aforementioned case of a delayed-adoption diffusion the
adoption by the first firm will actually reduce the probability of adoption
by the other firm.

Finally, this equilibrium also has a game theoretic interpretation.
The situation at a decision date when neither firm has yet adopted can be
viewed as a game in which the strategies are to adopt or wait and the value
of the game to each firm is given by the value function in (10b), (11),
(12b), and (13b). Since each firm is assumed to know all relevant information
except for the rival's prior belief, which it knows only in distribution,
this is a game of complete but imperfect information played by Bayesian
p]eayers.]] The Bayes equilibrium strategies for this game are then the

optimal decision rules of equation (16) evaluated at the equilibrium optimal
'I* 2*
t "t
of these games is played until either one firm adopts or t=0, this result

adoption probabilities (= ) given by Theorem 4. And since a sequence
also shows the existence of equilibrium pure strategies for the stochastic
game which is comprised of Bayesian games of the type described above.

This is an uncommon result for a stochastic game.]2
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V. Concluding Remarks

There are three major results of this paper. First, optimal adoption
rules characterized by unique reservation probabilities (representing the
minimum level of confidence in the innovation's profitabi]itvahich the firm
must attain to induce adoption) exist for each firm in both the case where
the rival has not yet adopted and that where it has. Second, optimal
adoption probabilities derived from these decision rules show that it may be
optimal to delay the adoption of a good innovation and that adoption by one
firm may actually decrease the probability of adoption by the firm waiting.

And third, there exists an equilibrium for the game played at each decision date
at which neither firm has yet adopted (so that each is uncertain about both the
profitability of the innovation and its rival's action) which is characterized
by both firms accurately and endogenously estimating the optimal adoption
probability of its rival.

These results further strengthen the argument put forth by this author in
[9] that uncertainty, information, learning, and attitudes of decision-makers
are factors critical to the adoption and diffusion of an innovation. In
particular, it has been shown that an equilibrium outcome in a duopoly could
involve both delayed adoption and different adoption dates (i.e., a diffusian)
and could be entirely explained by differences in the firm's initial beliefs
that the innovation will be good. In addition, Proposition 2 and the subsequent
discussion clearly show that it is not rival adoption per se, but rather
additional favorable information generated by the rival's experience, which
will increase the probability of adoption by a waiting firm. Admittedly,
some of the assumptions made are rather restrictive in nature and, therefore,

the results of this paper are not perfectly general. Nevertheless, they are
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sufficiently significant and interesting to conclude that further analysis
of adoption and diffusion should take into account the factors emphasized
both here and in [9].

Finally, one important issue which has not been considered here should
be mentioned. This is the question of how market structure affects the rate
of adoption of an 1'nn0vat1'on.]3 The natural approach would be to extend this
model to an arbitrary number of firms and examine the relationship between
the number of firms and the probability of adoption by a particu]ar firm.

This should be the focus of future research in this area.
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FOOTNOTES
See Mansfield[14,16]for the most comprehensive discussion of these issues.

See Herregat [7] and Mansfield [14] for two examples of attempts to examine
these factors.

These last two assumptions are not critical to any of the major results
that follow and are made strictly for convenience. See [9] for a more
thorough discussion of the implications of relaxing these assumptions.

Here and throughout the remainder of this paper an innovation which would
increase the firm's present discounted value if adopted immediately will
be referred to as '"good" and one which would not will be called "bad".

As long as g] and 92 are independent, as will be assumed here, p(n,k,g])
and p(n,k,gz) will be independent. (See, e.g., DeGroot [3]).

It will be assumed throughout that there are a finite number of decision
dates, N. In the context of this model this assumption merely implies
that there are a finite number of observations available to the firm,

so that its ability to learn about *he innovation by wa1t1ng is 11m1ted

J) 11m V (p’ ,aj) for a; = 0,1

can be shown when additional assumptions are made on the period returns

Existence of the value functions V' (p

r; (ai,aj) and r. However, analysis of this case (when the number of

decision dates is infinite) yields no additional insights.

It is tempting to conjecture that this result will hold for any t.

However, this cannot be demonstrated because the relative magnitudes
1 % ] *

of plo and pl] cannot be determined except at t=1. This issue seem

important enough to merit further investigation

It follows from Theorem 1 that the equation V (1 P, 0) = V (0 p,0) im-
plicitly defines a mapp1ng which assigns to each m e[O 1] a unique

i
reservation probability ptO( t)
Since the adoption decision is irreversible, once either firm has adopted
the element of rivalry is gone from the remaining firm's decision problem
and there is no need for an equilibrium concept.

Y %
See equation (22) in Lemma 3 for the precise definition of g*(1,z

As Harsanyi [6] has shown, an equilibrium for such a Bayesian game will
also be an equilibrium for the equivalent game of incomplete information
which would arise if each firm had no information about its rival's prior.

See Sobel [23,24] for a discussion of this.

;
1°PN-1 0™

i
N-1

)).
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For studies of the related issue of how market structure affects the
timing of the development of innovations see Scherer [20], Kamien and
Schwartz [10, 11, 12], Loury [13], Reinganum [18] and Dasgupta and
Stiglitz [2].
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