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A GENERAL THEORY OF COOPERATIVE SOLUTIONS

FOR GAMES WITH INCOMPLETE INFORMATION

1. Introduction

The basic goal of a cooperative solution concept rust be to
systematically determine Pareto—efficient outcomes for games in such a way
that, the more power a player has, the more his payoff should be. Here power
is taken to mean the ability to alternatively help or hurt other players at
will, and to defend oneself against the attacks of others.

The A-transfer value was proposed by Harsanyi [1963] and Shapley [1969] as

a cooperative solution concept, to extend the Shapley {1953] value to n—person
ganes without sidepayments. The A-transfer concept has not been formally
derived from any basic axioms or assumptions; its justification has come from
the fact that it generalizes the Shapley value (for n-person gaumes with
sidepayments) and the Nash [1950,1953] bargaining solution (for two—person
games without sidepayments), both of which have been axiomatically derived.
Although recent examples (see Roth [1Y80] and Shafer [1Y80]) have suggested
difficulties with the A-transfer value, it remains an important solution
concept, if only because of the lack of alternative solution concepts with
comparable generality and precision.

A game with incomplete information is a game in which, at the time of

play, each player may have information which the other players do not know.
Harsanyi [1967-8] has developed the basic structures for modelling such games,
which we shall use in this paper. In HMyerson [1980], a new generalization of

the Wash bargaining solution was axiomatically derived for two—-person games

with iancomplete information. In tiis paper, we will define a solution concept



for general n-person cooperative games with incomplete information. Our
solution concept will generalize both the
A-transfer value and the bargaining solution of Myerson [1980].

A cooperative solution in our terms will specify a system of threats, one
threat for every possible coalition, to represent to represent what it would
do if it were to form. We anticipate that only the "threat” of the grand
coalition will actually be carried out (it is in fact the cooperative
agreement), but the other threats are important as an expression of the power
as an expression of the power structure of the game. This idea of measuring
power in strategic form games through a collection of endogenous optimal
threats for all coalitions, was suggested by Harsanyi [1963]|; £for more on this
idea, see Myerson [1978). By having every set of players generate a
threat, our wodel can be sensitive to the abilities of players to threaten or
assist each other in all possible combinations.

However, before we can compute the optimal threats for the various
coalitions, we need to establish the criteria which each coalition should use
to assess trade-offs between the payotffs for the various players in the
coalition, in all of their possible types. To do this we tollow the
A-transfer idea of Shapley [1969], and we admit into out model a system of
endogenous weighting factors for the players’utility scales. These weighting
factors can be thought of as determining a new set of weighted—utility scales
in which interpersonal couparisons may be appropriate. Given these weights,
the coalitions can determine their optimal threats, and then the Shapley value
can be used to derive each player's justifiable demands, in the context of the
power structure expressed by these threats. In equilibrium, the weighting
factors are determined by the condition that the players' demands must

coincide with what the grand coalition can give themn.



With incouplete information, players who cooperate must be concerned with

the issue of incentive—compatibility; that is, the cooperative agreement must

not create incentives for any player to lie about nis information. Thus,
coalitions nust take into account the impact which their threats wmight have on
the incentive-compatibiltiy of the cooperative agreement. To account for
these incentive-compatibility constraints in each coalition's decision
problem, we shall use the shadow prices for the incentive-compatibility
constraints. These shadow prices will be derived from a linear prograuming
approach in Section 3, after we formulate the basic model in Section 2.

Our solution concept will be developed first for a simplerspecial case in
Section 4. Then, after reviewing some basic facts about partition function
games in Section 5, we shall define solutions for the general case in Section
6 and 7. The proof of our basic existence theorem is in Section 8.

We do not derive our solution concept from any formal axioms or
assunptions about what a cooperative solution concept should be like.

Instead, each definition in the model is only motivated by a discussion of why
it 1s reasonable to measure power in this way. However, our solution concept
can also be justified by the fact that, as a generalized A-transfer theory, it
does include many axiomatically derived solution concepts as special cases,
such as  the solution concepts of Nash [1950], Shapley [1953], Myerson [1973]
and HMyerson [1980]. However, the ultimate test of our solution theory umust be
whether it succeeds in generating useful insights into the power structure and
the fair demands of players in a wide variety of examples with applied

interest.



2. Basic definitions

We let N = {l,2,...,n} denote the set of players, and we let
CL = {SIST N and S # #}
denote the set of coalitions or nonempty subsets of N. For any coalition S,
we let DS denote the set of collective actions or decisions feasible for the
members of § if they work together. (E.g., in a market game, Dg might be the
set of trades among tne members of S.) For any two disjoint coalitions S and
R we assume that
DS X DR_C_DSUR.
That 1is, SUR can implement any decisions feasible for S and R separately,
if AR = 0.
¥or any player i in H, we let T. denote the set of possible types for

1

player i, where each type t; in T; is a complete description of i's beliefs,

i
preferences, endownents, and other private information. For any coalition S,

we let

w

sO any tg in TS denotes a possible combination of types for the members of

5. We let
= U 1.
ieN
We assune that the players' types—sets are disjoint, so |T | = T [T |[.

* ieN i

Throughout this paper, we assume that all Ti and DS are finite sets.

For any dN in by and ty in Ty, we let Ui(dN,tN) denote the payoff to
player i, measured in some vonNeumann—-Morgenstern utility scale, if dN
represents the decisions made and ty represents the types of all players.

Throughout this paper, whenever a type—vector tN in Ty has been



specified, then ty (for any player i) must denote the it0 component of ty» and

(for any SCN) tg = (tj)jes' Conversely, whenever some type-vectors tg in Tg

and t\s in TN\S (or some ty and tN-i) have been specified, then ty must

denote the type-vector which combines these two lists of the players' types.
For any tN in TN, we let Pi(tN_i]ti) the conditional probability that

t is the combination of types for all players other than i, as would be

N-1i

assessed by player i if t; were his type. (We use the notation
N-i = N\{i}.)
Thus, a cooperative game with incomplete information is defined by these

structures:

(T,) (U.)

SeCL? "1i7dieN?" 74 ieN’(P )

(2.1) ((DS) i ieN).

We let BS denote the set of all probability distributions over D3

that is,
D, = {y:D. » R_| I y(d

S S + 4o ) =1,
sYs

S

where :R+ denotes the nonnegative real numbers. A randomized strategy for

coalition S is any mapping from TS to L. We let A_ denote the set of mixed
O

S

strategies for S. Thus, for any GS in A, we have

S
8.(ty) € Do Vt:eTﬂ,
ot ~ ) - S
or, equivalently,
. = ! > ! .
(2.2) g 6S(dslts) 1 and ss(dslts) 20, ¥reeT,, ¥diebg
d_.eb
5 5
In the strategy 65, Gs(ds|ts) represents the probability of coalition S

choosing the action dS when its members' types are ts.

In our notation, SS(tS) is equivalent to SS(.ItS), for any SS in Ag.

We let A = SECL Ag. A typical point § = ((SS)SeCL in A is to be

interpeted as a vector of threats, describing what each coalition would do if

it were to form. In this context, we do not need to assume any special

relationship between the threats of two nondisjoint coalitions S and R, since



GS describes what the members of S would do if coalition S were to form, and
GR describes what the members of R would do if R were to form. If SR # 9,
then $ and R could not both "form" as effective coalitions. In fact, we
anticipate that only the grand coalition N will actually form, so that only
GN in the vector of threats § will be actually carried out. The other
components of § are relevant, however, because these threats determine the
justifiable demands of each player in a fair bargaining process.

For any player i, we define the evaluation function Yi: DN x T, > R by

N

(2.3) Yi(dN’tN) = Pi(tN—ilti) U; (dN,tN).

That is, Yi(dN’tN) measures how umuch the prospect of decision dy being made in
the case of T, being the types would contribute to player i's expected
utility, when he koows that t; is his type. It has been argued elsewhere (see
Myerson [198U]) that probabilities and utilities should be significant only
through the evaluation function. To shorten and simplify our forumulas, we
will henceforth work wmainly with the Y functions, instead of Pi and Ui'

We let §i: B X T[ + R be the extension of Yi to randomized decisions.

N N

~

and for any type-vectors t; and t_ in T

lhus, for any 6N in A N X

N:
(2.4) Yi(GN(tN), tN) = 7z GN(dNItN) Yi(dN’tN)'
d €D
NN
We let ﬁt.(aN) denote the conditionally expected utility for player i from the
i
collective strategy GN, given that i's type is e Thus,
(2.5) U (8 = i ¥ Slegdsty).

i T .
tN—l lN—1

(Recall ty = (tN_i,ti).)



3., The Primal and Dual Problenms

In this paper, we assume that players' types are not observable to other
players, and hence are unverifiable. Thus, if a player had some incentive to
lie about his type when the grand coalition N implements its strategy GN’ then
he would do so. To be feasible, therefore, a strategy GN in GN nust also

satisfy the following incentive-compatibility constraint:

(3.1) Ut.(GN) z z Yi(GN(tN_i,ti),tN), Fiel, VtieTi, VtieTi

* Ey-i®T-1

The right-hand side of (3.1) is player i's conditionally expected utility from
the collective strategy GN, if i's true type is t; but he is planning to
report Ei to the coalition, and all other player are expected to report their
types honestly to the coalition in implementing GN. Thus, (3.1) asserts that
it must be an equilibrium for all players to report their types honestly to
the coalition N.

An incentive-compatible strategy GN in AN is efficient iff there does not
exist any other incentive-compatible strategy gN in AN such that

Eti(SN) > Uti(aN), VieN, ¥t eT;.

That is, GN is efficient iff it is not possible to find any other incentive-
compatible strategy which is sure to increase the expected utility of every

player, no matter what his type is. It is a minimal requirement that our

solution theory must select efficient an strategy for the grand coalition N.

%
We let A denote the unit simplex in RT
T
A= R ) =1 >0 ¥t eT,}.
{Ae l Ao s AL 2 ;614!
t.eT, i i
io
(Recall T, = LJ ‘Ii). By the Separating Hyperplane Theorem, an incentive-

ieN
compatible strategy GN in Aq is efficient iff there exists some nonnegative
A

vector A = (A_ ) - in A such that §_ is an optimal solution to the
ti tiCT* N



problem

(3.2) maxinize I I At Ut (GV)
ieN teT, i 1 !

subject to (2.2) and (3.1).

Since ﬁt (6
i
our search for a fair cooperative solution among all efficient strategies may

N) is linear in GN, (3.2) is a linear programming problem. Thus,
be rephrased as a search among all solutions to (3.2) as A varies over A.

The dual to (3.2) will be very important in our analysis. We let a(tN)
denote the shadow price of the constraint g GN(dNItN) = 1, For any player i,
and for any two types t. and Ei in Ti’ we lgt B(ti,Ei) denote the shadow price
of the incentive-compatibility constraint (3.l), asserting that i should not

prefer to report ti when tj is the true type. Then it is straightforward to

show that the dual may be written as follows:

(3.3) minimize I a(tN) subject to:
BTy

(3.4) a(tN) = maximum [‘Z_ At. Yi(dN’tN)
dNeDN ieN i

+3r¥ . Bg(t.,t.) Y.(d, ,t. )
ieN tieTi i’71i i*"N’"N

- L AL t.,t.) Y.({d t. .,t. ¥t eT..
. B( i? 1) 1( N’( N-i? 1))]’ NN
ieN t.eT.

i i
and

(3.5) B(t.,t.) > 0, ¥ieN, Vt_eT,, ¥t _eT..
1 1 1 1 1 1

To interpret (3.4), notice that the first term in the maximand measures how

wmuch the prospect of using dyg in state t; would contribute directly to the



primal objective function (3.2). The second term measures the value of dy in
state ty for increasing incentive—compatibility, by rewarding each player i
with Yi(dN,tN) if his type is £y and he is honest. The third term measures
the cost of dN in state ty for reducing incentive—compatibility, by rewarding
each piayer i with Yi(dN,(tN_i,gi)) if he reports ty when ;i is really his
type (and all others report tj honestly). Then u(tN) equals the total
contribution of the best decision in state Cye

In some examples, it may be possible for some types to costlessly prove
that other types are false. For example, if a person can play the piano, then
he can prove that he is not a non-pianist simply by playing a few bars. On
the other hand, the non-pianist cannot prove that he is not really a pianist,
unless he is given the proper incentives.l In general, if player i could
costlessly verify that ti was false if Ei were true, then we must
drop from the primal problem the constraint which says that i should
not be tempted to report Ei if ti were true, and we must set the dual
variable B(ti’gi) equal to éero. With these revisions, éur model can easily
accomodate the case of veriﬁiable types. Nevertheless, throughout the rest of
this paper, we shall consider only the case of unverifiable types.

If there were no incentive-compatibility constraints, then the solution

to the primal problem would pe simple: for every t GN(.ItN) would put all

N’

probability weight on the decisions which maximize I Xt Yi(dN,tN). The
i i
incentive-compatibility constraints complicate matters by interconnecting the

decisions in different states ty. However, we can decompose the primal
problem by using the dual variables to remove the incentive-compatibility
constraints. That is, by the duality theorem of linear programming, if §, is

N

optimal for the primal then, for every t_ in T

N N’ GN(.ItN) must put all

probability weight on the decisions which achieve the maximum in (3.4).

1. I am indebted to Paul Milgrom for pointing out this issue.



4. Solutions in the special case.

In this section we restrict our attention to games satisfying two special
assumptions.

Assumption A For any coalition S and any player i in §,

Ui (ldgady )ty = U3 (ldgydg s,
¥dg € Dy, ¥di €D\ gr Yy oFD . oo ¥ €Ty

Assumption B. For any play i,

), t) =0

Ui((di’ dy-1

N

¥d. e D. ., ¥t eT. .

¥d e D
i€ iy -i® Un-i

Assumption A asserts that, when coalition S chooses an action which is
teasible for it, then the payoff to the members of S does not depend on the
actions of the complementary coalition N\S. Shapley and Shubik [1973] have

called this the assumption of orthogonal coalitions. Assumption B asserts

that, without any other player's help, each player i can only get zero utility
by choosing an action in D{i}'
- 5
With Assumption A, we can define functions Yi: DS X TN + R, for any

coalition S5 and any player i in S, so that

S _ ; .
¥i(dg,t) = ¥, ((dg,dp o)y typ)s ¥d g € Dy g

A general cooperative solution concept must take into account the
strategic possibilities of each coalition, so we need to determine an optimal
bargaining threat for each coalition. That is, for each coalition S, we must
find some strategy SS in AS’ which represents what the members of S threaten
to do if the members of N\S were to refuse to cooperate with then.

We anticipate that the grand coalition W will actually form, so that

there is only an infinitesimal probability that any smaller coalition S will



haQe to carry out its threat. We want to know, how much would the coalition S
have to lose if there were some small positive probability that S might have
to carry out its threat. The more that S would lose, the less power S has to
demand high payoffs for its members.

Suppose that the grand coalition N were acting so as to solve the primal
problem (3.2), for some A. In this context, suppose that we imposed some
small positive probability that, in state tyo all players j not in S might act
alone, getting zero utility (by Assumption B), and leaving coalition S to
carry out its threat in Dg. We may ask, how much would be lost, in terms of
the objective function in (3.2), if such an event were given postive

probability? This question may be formalized as follows. Suppose that 8

threatened to use action dS when ty are its neapbers' types. Choose

d0 . in X D, .+ (All such dp . are equivalent, by AssumptionsA and B.)
N\S _ {i} N\ S
JENNS
Consider the constraint in the primal problem
0
* > *
(4.1) GN((dS’dN\S) I tN) =0

Coupelling the members of 5 to carry out the threat dg with positive
probability is equivalent to increasing the right—hand side of (4.1) above
zero. So we want to know, what is the shadow cost for the right—hand side of
constraint (4.1) in the linear program (3.2)? The higher this shadow cost is,
the less power we should attribute to S.

To compute shadow prices, we must look at the dual. Given 8 which solves
the dual (3.3) - (3.5), let
(4.2) vgldgstyssB) = L X At.Yi(dS’tN)

1€5 1

" 5
+ .Z. AL B(ti,ti) Yi(ds, t,.)

t.eT, W
i~ i

~ S ~
~ I Bl Yo(dg, (r o,t.0) ).

t.eT,
i 7i



o

The shadow cost of the nonnegativity constraint for SN((dS’dN\S

),tN) in the

primal is just the slack in the dual constraint

0

a(tN) > VN((dS’dN\S

),tN,A,B) = vS(dS,tN,A,B).

So the shadow cost of carrying out the S—threat dS in state ty is

a(tN) - vs(ds,tN,A,B). Coalition S should choose its threat so as to minimize
this shadow cost, or to maximize vs(ds,tN,A,B).

The threat for coalition S can only depend on the information (tg)
available to the members of S. Thus, the optimal threat 65 for coalition S
should be chosed so as to maxinmize
A,8)

T T ss(dslts) vs(ds,tN,

Equivalently, we say that 63 is an optimal threat for S iff,

for every tg in TS’
(4.3) ) ED §,(dgltg) (t I vgldg,tishsB))
57S NAS T NAS

= mix;gum [t ET vs(ds,tN,X,B)]
S5 NANSTTHNS
For the case of 5 = N, when 6N solves the primal and B solves the dual, then
(4.3) must hold, as we remarked at the end of Section 3.

Given any vector of coalitions' threats § = (§_.) in A, we let

5" SeCL
(4.4) VS(S’tN’A’B) = ; ED 5S(dslts) VS(dS’tN’A’B).
sl
Then V(S,tN,X,B) = (VS(S,tN,X,B))SecL is a characteristic function game,

attributing to each coalition S the worth of its threat in state tys as

measured by the utility weights A and the dual variables B. We let ¢(.)



denote the Shapley [1953] value. The Shapley value ¢i(V(6,tN,A,B)) provides
a natural measure of player i's cooperative contribution in state tye With
this measure, the total expected contribution of player i if he is of type t;
is z ¢.(V(6,tw,k,8)). Thus, a natural fairness condition is that each
ty_:€Ty_s T .
N=i®"N-1i
player's expected utility for each of his types, when weighted by the
appropriate Kt factor, should equal his expected cooperative contribution in
i
this type, measured with respect to A and B. That is, we say that GN is fair
for type t; of player i (with respect to A and B and the other threats in §)
iff
(4-5) )\t Ut.(sN) = Z ¢i(V(5,tN’A’B))'

ol -1 TN-1

We say tnat (6,A,B) is a cooperative solution for the game (Z.1)

satisfying Assumption A and B iff XeAl, SN solves the primal problem (3.2)
for A, B solves the dual problem (3.3.)-(3.3) for A, each 55 for STCN
satisfies the optiwal-threat condition (4.3), and the fairness condition (4.5)

is satisfied for every type ty of every player i.

Proposition. Solutions as defined above exist, for any game (2.1)

satisfying Assuumptions A and B.

We onit the proof of the proposition, since the theorem in Section 7 will
be strictly more general. However, a number of other facts about the
solutions do merit discussion now, before we go to the general case.

In the case of n = 2, the fairness condition (4.5) for our solutions

reduces to

>
[
~
O
~
il

t

T VN(G,tN,A,B)/z = a(tN)/z,
t . .
N-i N—1i



which is the same as the fairness condition used in the two—-person bargaining
solution derived axiomatically in Myerson [1980].

Given any threats-vector § in A, we let (§_ ’dS) denote the threats-

t
S
vector in which differs from § only in that coalition S changes its threat to

dg when its members' types are tge That is, § = (G_t ,dS) iff
S

(4.6) GR(dRItR) = GR(dRItR), if R # S or if tr # tys
=1, if R = § and tR = tS and dR = dS’
=, if R = § and tey = tg and dR # ds.

Notice that the criterion for optimal threats (4.3) implies that, for any
player i in S, tg in Tg, and dg in Dg,

(4.7) L 9V(8,t,1,8))
t, €T . 1
NNSTTNNS

v
™M

8 (V((S_, ,dg),Euh,B))
ty sTans 5

This is true because changing Gs(ts) from the optimal threat can only reduce

and
tZ VS(G,t A,B),Athe Shapley value for player i is an increasing linear
N\S

function of the worth of coalition S. Thus, the fairness condition justifies

N’

our definition of optimal threats because, for any player i in coalition S,
the optimal threat for S maximizes player i's fair payoff demand, as measured

by the right-hand side of (4.%).



5. Partition function games.

Before considering the general case, without Assumptions A and B, we mnust
review some basic ideas about partition function games.

An embedded coalition is any pair (S,Q) such that @ is a partition of N

and S is one of the coalitions in Q. We let ECL denote the set of embedded
coalitions.

EC \
A partition function game is any vector w in R L, where the (S,Q)-

component ¥s.Q is interpreted as the worth of coalition S if it forms and the
other players align themselves into coalition as described by the

partition Q. We shall need to consider partition function games (rather than
characteristic function games) because, when we drop Assumption A, the payoffs
to nembers of coalition S may depend on which coalitions among the other

players are carrying out their threats.

RECL N RrY

We let ¢: denote the value for partition function, derived in

Myerson [1977] as the natural extension of the Shapley value to JRECL. In

HMyerson [19Y78] this partition function value was also derived as a fair
settlement function for cooperative strategic-form games with endogenous
threats.
For any two partitions Q and &, let Q A & = (s gls € Q, S € &, and SN S # ¢},

For any (S,Q) in ECL, let wS’Q be the partition function game such that

(wé"Q)g(ﬁ2 = 1, if S2Sand QA Q= Q,

= 0, otherwise.

CL

#(.)is the linear mapping from rE to ZRN such that, for any wil as above,

5,4,
w

) 1/1sl, if i € s,

0, if i ¢ S.

¢.(

L

Since these ws"‘2 ganes form a basis for ZRhC , this result completely

characterizes &.



For any partition Q, we say that a partition function game w is Q-

decomposable iff, for any (g,ﬁ) in ECL,

= I
SeqQ

wh

5,0 *Sns,q A Q

(We use the convention vy q = 0 here.) For any player i, we say that w is i-
b

decomposable iff w is {N-i,{i}}-decomposable. If w is an i-decomposable

partition function game, then the value & gives player i what he can get by

himself against the coalition N-i, that is,

R O RO E RS

For any partition function game w, ¢ divides all the worth of N among the
players; that is,
5.2 % = v .
(5.2) Iy %9 = Yy g

The partition function value can be rewritten in the form

. L
(5.3) @i(w) = I fs(w), ¥ieN, Vwe]REC s
s> {i}
ECL

where each fs: R + R is a linear function which depends only on the
components wg Q sucih that S e Q .
3
These are the basic properties of ¢ which we shall need in this paper.

For more detailed discussion and proofs, see Myerson [1Y77} and Myerson

[1978].



6. The general case.

We now return to the general cooperative game with incomplete information
(2.1), dropping the special Assumptions A and B used in Section 4.
For any partition Q of the set of players, we let

= fans .
D, = X Dy & Dy

That is DQ is the set of all actions which would be feasible if the coalitions

in Q acted separately. We may use dQ = (dS)Se to denote a typical action

Q
in DQ'

Given any vector of threats § = (§) in A, and given any partition Q,

S” SeCL

we let 6. be the randomized strategy in AN such that

Q

(6.1) S (dqltN) = I GS(dSItS) if d = (dS)S€

e D,
Q Seq Q Q

Q

and Gq(letN) =0 if d € D,

That 1s, § 1is the strategy (for N) in which the players bpreak up into the

Q

coalitions of Q and carry out their GS threats separately.
We let Xi(G,ti,tN) denote player i's evaluation of the prospect of using

strategy G{i}("ti) against the coalition N-i when ty are the players'

types. That is, for any i in N, § in A, tN in TN’

)

and t, in T,,
i i

(6.2) Xi(é,ti,tN) = Yi(G{N—i,{i}}(tN—i’tN

=TI S (g sty ) Sy (dle) Y 5,d )t
w-1 94

where d. . ranges over D
N—-1 N

+_. and d. ranges over D
N-1i i

{i}’

The characteristic function game V(S,tN,A,B) was the central feature of

the model in Section 4, and finding the correct way to generalize this



structure is a subtle problem. Without Assumption A, the payoffs to members
of a coalition way depend on which other coalitions form, so it is natural to
look for a partition function structure to generalize V(G,tN,A,B). In order to
prove existence and individual rationality of our cooperative solutions we

shall need to use the following definition:

(6'3) WS,Q(G’tN’A’B) =
= I r 8.(d.lt,.) [(» Y. ,t.)

ieS deD, Q@ Ny 1R N

+ ~ Z B(ti)ti) (Yi(dQ)tN) - Xi(s’ti’tN))
t.eT,
1 1

- - ET B(t;,t) kYi(dQ,(tN_i,ti)) - Xi(d,ti,(tw_i,ti))l
i~ Ti

for any (5,Q) in ECL, any § in A, any any ty in Tge It is straightforward to

check that this definition generalizes the construction of VS(G,tV,A,B) in
I\

(4.2) and (4.4). (Notice that the Xi terms are zero when Assumption B holds.)

~

The term Yi(d ) - Xi(G,ti,tN) neasures how much i would gain from dQ over

t
QN
the alternative of claiming to be type ts and acting alone against N-i when ty
is the true vector of types; and this gain is weighted by B(ti,ti), the shadow

price for keeping ti from claiming to be ti. The term

-

-,ti)) - Xi(s)ti’(t\

~
. measures how mauch i would gain from d
N-1i N-1i’ 1)) ' e .

Y.(d ,(t
; (4
over the alternative of claiming to be type ty and acting alone against N-i

and this term is

when i is really type ti and the others' types are ty—is

weighted by B(ti,ti), the shadow price of keeping ti from claiming to be tge
Thus, the bracketed expression in (6.3) way be interpreted as the net worth to

player i of dQ in state ty, when we take into account both the Jirect payotf

contribution to i (At Yi(dQ’tV)) and the iundirect countribution to helping
i I\



player i to satisfy his incentive-compatibility constraints.
We can now generalize our fairness condition (4.5). We say that GN is
fair for type t; of player i (with respect to A and Band the other threats in §)
iff
(6.4) At' Ut,(GN) = I @i(w(d,tN,A,B))

ot -1 -1

The left-hand side of (6.4) is the weighted utility payoff to player i if ty
is his type; and the right—hand side (6.4) is a measure of the expected
cooperative contribution of player i if t; is his type, using the value of the
partition function games W(G,tN,A,B). We may refer to the right-hand side of
(6.4) as the fair demand for type tie

We say that a threats-vector § is i—decomposable in state ty iff, for any

coalition S such that ieS:
8 = i <
S(dslts) 0 if dS¢DS—i} D{i}’ and

D Vd_.eD

8s((dg_;5d;dleg) =8, (d ) 8,y 0dple ), W s-1 9i&Prgye

g-iltgog 5-if

That is, 1if § is i-decomposable then there is no coalition which would change
its threat if i were to leave the coalition, so i is not effectively
cooperating with any other players.

The following lemma summarizes three desirable properties of
Q(W(G,tN,A,B)), which make it useful to us as measure of players'

contributions.



Lemaa l. For any two players i and j who are both in coalition S, the

difference @i(W(G,tN,A,B)) - ¢J(W(6,t A,8)) does not depend on the threat

N?

68 of coalition S. 1If GN solves the primal and B solves the dual for A, then

(6.5) £ £ 0. (W(S,t,0,8)) = £ A U (8,
ieN t_eT t.eT i i
NN it%

If § is i-decomposable in state t, then
= [At.xi(a’ti’tN) + . B(ti’ti) (Xi(s’ti’tN) = Xi(d’ti’tN))]

i t.eT,
i i

(All proofs are in Section 8.)

Equation (6.5) guarantees that the sum of the fair demands of all types
of all players is always equal to the total weighted-utility actually expected
by all types of all players. (So (6.5) is a sort of "Walras' Law" for our
bargaining model.) Equation (6.6) asserts that, if a player is not
effectively cooperating with any other players in state Lo then his
cooperative contribution in that state is just the weignhted—utility payoff he
gets alone plus the value (for incentive compafibility) of his not being

tempted to pretend that some other type ti is true when he acts alone.

A
_ . el o . A
(lXi(G,ti,tN) Xi(G,ti,tN)J is player i's gain in state ty from honestly
implementing his threat G{i}('lti) alone against N-i, rather than dishonestly
using his threat S{i}(.lti), intended for a different state.)
The first sentence of Lemma 1 assures us that all members of coalition S

can agree about which threat SS is best, because maximizing

@i(W(G,tN,A,B)) with respect to GS (keeping all other GK fixed, for R # S) is

equivalent to uwaximizing @i(W(G,tN,A,B)) with respect to GS. Equivalently, all
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players in S would agree that GS(.ltS) should be chosen so as to maximize
z z Qi(W(G,tN,A,B)),
Enstins  1E8
if each player wants to maximize his fair demand.

We can now generalize the concept of optimal threats from Section 4,

except that now it is better to speak of a threat-equilibrium, since the
optimality criterion of one coalition may depend on what the others plan to

do. Given A and B, we say that 8§ in A is a threat—equilibrium iff, for any

coalition S and any tg in TS’

(6.7) z I o (W(S,t ,x,B))
t ies N
NA\S
= dm:; ) I iZS @i(w((ﬁ_ts,ds), tNaA:B))'
s*s taus '
where ty\g ranges over TN\S' (Recall (4.6).) This optimality criterion (6.7)

is equivalent to (4.7) in the special case of Section 4. It can be shown
that, if GN solves the primal and 8 solves the dual for A, then (6.7) must
hold when S=N, for any tye (We oumit the summation over tN\S when S=N).

We say that (8§,A,B8) is a cooperative solution for the game (2.1) iff

Aeld, B solves the dual problem (3.3)-(3.5) for A, GN solves the primal
problem (3.2) for A, each GS for 8 & N satisfies the threat-equilibriunm
condition (b6.7) for all tg in TS, and the fairness condition (6.4) is
satisfied for every type ty of every player i. Notice that there are as many
fairness equations in (6.4) as there are components of the A vector. Of
course (6.5) guarantees that onme fairness equation is redundant, but we have
also removed one degree of freedom by assuming that A is in the simplex A.

One may think of the fairness equations as determining the A weights.



Thus, our cooperative solution concept is well-determined, in the sense of
having as many independent equations as variables.

When Assumptions A and B hold, the definitions of cooperative solutions
given in this section and in Section 4 are equivalent. However, before we
state and prove the existence theorem, we must define a further refinement of

this solution concept in Section 7.



7. Proper solutions and individual rationality.

In order to guarantee existence of cooperative solutions we must allow
for the possibility that some of the Ati factors way equal zero.
(Recall that A is the entire closed unit simplex in RT*.) However,
it Ati = 0 then the fairness equation (6.4) imposes no restriction
on Gt.(SN)' In fact, if we added a duwamy player to any game, and gave
A-weights equal to zero to every player except the dummy, then any feasible
outcone could be a solution. This problem is not special to the incomplete
information case; it arises in the A-transfer values of games with complete

information just as easily.

We say that (8,A,B8) is a semi-solution for the game (2.1) iff

Ael,B solves the dual problem, 6N solves the primal problem for A, and § is a
threat—-equilibrium for A and B. (That is, a semi-solution lacks only the
fairness condition to be a solution.) We say that a cooperative solution
(6,1,B) is proper iff there exists some Sequence of semi-solutions

108 ,05,89)7_ ) sucn that

k

(7.1) AS >0 W e Ty, ¥k,
i
A . k .k k
(7'2} ll[n (6 ,A ’B ) = (6,X,B);
koo
and
- — k Y
(7.3) U_(8,) = 1lim U_ (8)). > 1lim ( b ® K k k k
ti N K30 ti N K <o i(W(G ,tN’A B ))/)\t),

Cn-15TN-1 i

VieN, Vt.eT..
i 71

That is, each types's actual expected utility must be at least the limit of
its fair demands, when measured in unweighted utility units.
In the special case of two-person bargaining problems, the bargaining

solutions derived in Myerson [1980] are precisely these proper



cooperative solutions.

We say that a cooperative solution (§,\,8) is individually rational iff,

for every i in N, every t; in T;, and every d; in D{i}’

(7.4) U () 2 2 z GN_i(dN_iItN_i) v (g 54,058

t fy-1 YN-1

The right-hand side of (7.4) is the expected utility for player i if his type

is t, and he uses the action di against the threat GN—i of coalition N-i. So

the solution is individually rational iff no player, in any type, could expect
to do better alone than he can do by participating in the grand coalition N.

We can now state the main result of this paper.

Theorem There exists a proper cooperative solution for any game of the
form (2.1). Furthermore, any proper cooperative solution is individually

rational.



8. Proofs

Proof of Lemma l. To prove (6.5), we first use (5.2) to get

z ‘Z ) ¢i(w(6’tN’>\’B)) =z wN,{N}(G’tN’A’B).
tN ieN tN

We can expand W using the definition (6.3) and rearrange the sums to get

N, {N}
EoWy p(Oatere) = ng B D Y6 (e,
N N i
+ tiETi B(e;,t;) (L8 (e ),t) = X, (6,t,,100)
- tiETi Bty ) (V8 (ty st )st) - X (&t ,000)].

(The third term in this sum follows from (6.3) by reversing the roles of ty

A

and ti.) If & solves the primal and B solves the dual, then

N
~

s(ti,ti) i (Yi(GN(tN),tN) - Yi(GN(tN_i,ti),tN)) =0
N-1i

by complementary slackness. Thus, since the Xi terms cancel out, (6.5)
follows.

If § is i-decomposable, then W(G,tN,A,B) must be an i-decomposable
partition function game, and so (6.6) follows from (5.1), (6.3), and (6.2).

Let W(6&,t,,x,8) be the partition function game such that, for all (S,Q)

N?
in ECL

-

g, q(Brtyh8) = T D T8 (5,0

0T (BT (6, = BLE,E T (8, (6, (b 1,E00)]
) tieTi

That is W is the same as W, except that the Xi terms are omitted. Using the

linearity and decomposibility properties of ¢, we get



(8.1) 0, (W(5,E,1,8)) = [0, (W(8,t,,h,8)) +

N2

L (s(ti,ti)xi(a,ti,tN) - B(ti,ti)Xi(G,ti,(tN_i,ti)))],

t.eT,
i~

because w(G,tN,A,B)-W(G,tN,A,B) is a completely decomposable partition
function game.

To prove the first senteunce of Lemma 1, use (5.3) to get

¢i(w(-))-¢.(W(-)) = I fR(W(-)) - I fR(W(-))-
J R 2 {i} RZ {3}
If {i,j}ZS, then 6S only influences ¢i(W(.)) and ¢j(w(.)) through the
fS(W(.)) terms, which cancel out in the difference. The Xi terms in (8.1)

depend only on 6N-i and § and thus can not depend on GS if {i,3} € S. This

{ip’

conpletes the proof of the lemwma.

Proof of the Theorem. We begin with some definitions. Let

2
T, = U (Ti X Ti). There exists some number M > 0 such that, for every
ieN
2
Ty

A in A, there exists some 8 in IR+ such that B is an optimal solution to the
dual for A and [[R[ £ Mc To prove this fact, observe first that the feasible
set for the primal is compact and is independent of A. So the simplex A can
be covered by a finite collection of closed convex regions (each region
correspondiug to an optimal basis for the primal) such that, within each
region, an optimal solution to the dual can be given as a linear function of

A. Each of these linear mappings is bounded on its compact domain; let M be
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the smallest bound which works for all of the mappings. We let

Then B is a compact domain within which we can always find optimal solutions

for the dual.

For any player i and any ty in Ti, let

@t_(a,x,s) = pX @i(W(G,tN,A,B))-

i t. .eT
-i

N N-1i

So 3t.(G,A,B) is the fair demand of type tie
i

-i) be the highest expected utility which type t; of player i

Let Gti(GN

can get against strategy GN ., that 1is
~-i

G (8. .) = waximum I r ¢ (d

N1 ON-1
di€0¢1} nmi dy-1

t t .
ley ) ¥, (g »d.0,e)
For any semi-solution (6,A,8) and any t; in Ty,

(8.2) B, (8:0,8) 2 A G (8y_y)-

That is, the fair demand of any type is not less than the weighted-utility
which the type can get alone against the threat of the complementary
coalition. To prove claim (8.2), suppose that it were not true for type ty of

~ ~ l'\" ~ ~ ~ «
player i. Let § be such that Gg’ = GD if 1 ¢ S, Gs(ts) = GS(tS) if 1€§ but

A~ -

t, #t., 8§,..(d.lt,) =1 for some d, which achieves the maximum in the
i i {i}V i1 i

~

definition of Gt (GN_i), and § is i-decomposible whenever i is type t;.
i
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Using (6.6),

Et_<a,x,e> =L 0, (W(8,t.,),8))
i N—-1

z [AtiXi(G,ti,tN) + EZ B(r.,t) (X, (8,t .t ) -X.(§,t .t )]

i
>
T
[}
T
~~
(2]
=
|
[
N
+
>
™~
w
~~
T
[N
-
T
N
~~
[
~~
o

> A G (8,

So if (8.2) is violated, then Et (8,x,8) > Et (8§,A,8). but & differs from §
i i
only in that coalitions including player i in type £y have changed their

threats. Thus, there wmust exist at least one coalition S such tnat ieS and

-

the change from GS to 8_ is strictly prefered by i, even if all other

S
coalitions' threats remained fixed. (We use nere the fact that Et is

i
additively separable with respect to the threats of coalitions containing 1,

by (5.3).) But by Lemma 1, all members of S must also agree with i that this
change would iwmprove thneir fair demand, wihich contradicts the fact that § is a
threat equilibrium. Thus (8.2) nust hold.

Notice that (7.3) and (8.2) immediately imply the individual--rationality

condition (7.4), so all proper solutions are individually rational.

For any k > IT*l, we let

kK 1
A = {xenl At. > P Vti e T,}.
i
We now define a series of Kakutani mappings on A x Ak X B.

We define}Zl: A x A x B= A so that § ¢ Zl(G,A,B) iff GN solves the
ar

primal for A,ﬁfor every SC N and every tg in TS
Y 3
; ZD Gs(dslts) i .Zﬁ Qi(w((a—ts’ds)’tt’x’s))
s®Y% s €7
= max X hX @(W((G_ ,d‘),t ,)\,B))
d.eD ies T tg SN

s Tuas
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. k ~
We define Zz: A x Ak x B= A so that X € Z;(G,A,B) iff,

for every t; in Ty,

if t; € argmax (B (60,87 )T (8] then K L

tJET* J i

We define 23: A => B so that B ¢ Z3(A) iff B € B and B solves the dual
for A.
k k
We define Z : A x Ak x B= A x A x B by
k k
27(8,0,8) = 2,(8,1,8) x Z,(8,),8) x Z2;(N).
It is straightforward to check that Zk is nonempty-valued, convex-valued, and
upper—senicontinuous. (We use the construction of M and B to guarantee
Z3(A) # P.) A x A X B is compact and convex, so by the Kakutani Fixed-Point
. k k k
Theorem we can find some (8§ ,\ ,8 ) such that

(850K, 8%) e 28¢5 05,89,

For each k, (Sk,xk,sk) is a semisolution, by the definitions of the Zl

. . i s k
and A3 correspondences. Furthermore, using the definition of 2

9 we get
(8.3  max (B, (8%,85% ) - T, (6{)
t;eTy i i i
< Tyl max (Et_(ék,kk.ﬁk) - A%,ﬁt_(Gﬁ))
1 1

tiET* 1

< IT*IZ max (A%'ﬁt_(ég) - 5t_(5k,k&,8k))
tieT* i *i i
Il @, (6% - (3, 525,85k )
max » -
K plemy 0 M SR it
1Ty 12 K K
< ———— max (U, (83) - G, (§5_:))
k t; eTx ti N ti N-1i
e 1T4l?
S T

where M, max max (ﬁt (8,) - G, (8y))- In this chain of inequalities,

el tieT* i
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the second line uses the fact that we must nave ) >

e 2 TT:T_ for some ti
i

achieving the maximum in the first line. The third line follows from equation

“ . k
(6.5) ("Walras' Law"). The fourth line follows from the fact that At must
i
equal 1/k for £y achieving the maxinum on the third line. The fifth line uses

(8.2). Continuity of ﬁt. and Gt, and compactness of A guarantee that My is
finite. ’ :

Since A x A x B is compact, we can find some subsequence of the
(6k,xk,sk) converging to some point (8§, A,8). We now show that this (8§,A,8) is
a proper solution. & is a threat equilibrium and B solves the dual for A,
because each ék and Bk have these properties for Ak (and Zy and Z4 are upper-
semicontinuous). Condition (7.3) follows from (8.3) as k » =. (7.%) also
implies

Atiﬁti<sN> > 5ti(s,x,s>,
and (6.5) guarantees that none of these inequalities can be strict. So

(6,1,8) 1is a proper solution.

Q.E.D.
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th

component of t and

specified, then t; (for any player i) must denote the i N?

(for any SCCN) tS = <tJ)j€S' Conversely, whenever some type—vectors tg in TS

.) have been specified, then ty must

and tyng in TN\S (or some ty and tN-1

denote the type-vector which combines these two lists of the players' types.
For any ty in Ty, we let Pi(tN_ilti) the conditional probability that
CN—-i is the combination of types for all players other than i, as would be
assessed by player i if t; were his type. (We use the notation
N-i = N\{i}.)
Thus, a cooperative game with incomplete information is defined by these

structures:

)

ieN’(Pl ieN

(2.1) (g or (T4 ).

S$7seC i’ieN’?

We let BS denote the set .of all probability distributions over Dy

;)

that is,

Dg = {y:pg » R | I y(dg) = 1},

dseus

where ZR+ denotes the nonnegative real numbers. A randomized strategy for

coalition S is any mapping from TS to US' We let AS denote the set of nixed

strategies for S. Thus, for any 53 in AS, we have

as(ts) € DS’ VggeTg,
or, equivalently,
o’ = ! > ( ! 3
(2.2) T Ss(dslts) 1 and Gs(dslts) > 0, VtSeTS, VdSeDS

dSeDS
In the strategy SS’ Ss(dslts) represents the probability of coalition S
choosing the action dS when its members' types are ts.
In our notation, Gs(ts) is equivalent to GS(.ItS), for any 8. in Ag.
We let A = X Ag. A typical point § = (GS)SeCL in A is to be

SeCL
interpeted as a vector of threats, describing what each coalition would do if

it were to form. In this context, we do not need to assume any special

relationship between the threats of two nondisjoint coalitions S and R, since



primal objective function (3.2). The second term measures the value of dN in
state ty for increasing incentive—compatibility, by rewarding each player i
with Yi(dN’tN) if his type is t; and he is honest. The third teru measures
the cost of dy in state ty for reducing incentive—compatibility, by rewarding
each player i with Yi(dN,(tN_i,Ei)) if he reports t; when Ei is really his
type (and all others report tj honestly). Then a(tN) equals the total
contribution of the best decision in state Eye

In some examples, it may be possible for some types to costlessly prove
that other types are false. For example, if a person can play the piano, then
he can prove that he is not a non-pianist simply by playing a few bars. On
the other hand, the non-pianist cannot prove that he is not really a pianist,
unless he is given the proper incentives.l In general, if player i could
costlessly verify that ti was false if Ei were true, then we must

drop from the primal problem the constraint which says that i should

not be tempted to report ti if t, were true, and we must set the dual
i

~

variable B(ti,ti) equal to zero. With these revisions, our model can easily
accomodate the case of verifiable types. Nevertneless, throughout the rest of
this paper, we shall consider only the case of unverifiable types.

If there were no incentive-compatibility constraints, then the solution

to the primal problem would be simple: for every t GN(.ItN) would put all

N’

probability weight on the decisions which maximize I At Yi(dl’t ). The

. N N
i i
incentive—compatibility constraints complicate matters by interconnecting the
decisions in different states tye However, we can decompose the primal
problem by using the dual variables to remove the incentive-compatibility
constraints. That is, by the duality theorem of linear programming, if GN is

optimal for the primal then, for every tN in T GN(.ItN) nust put all

N’

probability weight on the decisions wihich achieve the maximua in (3.4).

1. 1 am indebted to Paul tilgrom for pointing ovat this issue.
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k 2 k
We define Z;: A x Ak X B = A so that A ¢ ZZ(G,A,B) iff,
for every t; in Ty,
if ty E argmax [(87 (8,X,B8)/a7 )-Uf (8)]  then Ati = %
tJET* J J J
We define Z3: A => B so that B ¢ 23(A) iff 8 € B and B solves the dual
for A.
We define Zk: A x Ak x B = A x Ak x B by
k k
Z (8,A,B) = zl(a,x,s) X ZZ(G,A,B) X ZB(A).
It is straightforward to check that Zk is nonempty-valued, convex-valued, and
upper—semicontinuous. (We use the construction of M and B to guarantee
23(A) # P.) A x A x B is compact and convex, so by the Kakutani Fixed-Point
. k .k k
Theoren we can find some (8§ ,X ,8 ) such that

(84,05, 85) ¢ 25k 0K, 85y,

For each k, (Gk,xk,sk) is a semisolution, by the definitions of the Zl

and Z3 correspondences. Furthermore, using the definition of z;, we get
(8.3)  max (3, (65,8518 ) - T, G5
tieT* i i i
= k yk ok k = k
< [Tl max (@, (6%,A7,87) - Ag U, (8y))
tieT* i i "1
— — b}
< ITel?  max K T (6% - F 652585
tjeTy "1 71 i
T4 12 K = sk ok okypk
S —f— max (Uy (GN) - (Qt.(G SA 4B )/At-))
tie * 1 1
Ty 12 N K
< max (T_. (&) G, (8§5_.))
k £ eT4 t1 N ti N-1i
Ma 1T l?
S TTE
where i, = max max v (GN) - Gt (GN_i)). In this chain of inequalities,
i

SecA tieT* i
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. . 1
the second line uses the fact that we must nave At > TT—T_ for some ti
: %

achieving the maximum in the first line. The third line follows from equation
(6.5) ("Walras' Law"). The fourth line follows from the fact that At. must
equal 1/k for t; achieving the maximum on the third line. The fifth 1ine uses
(8.2). Continuity of ﬁt. and Gt. and compactness of A guarantee that Mg is
finite. : *

Since A x A x B is compact, we can find some subsequence of the
(Gk,kk,Bk) converging to some point (8§,A,8). We nhoww show that this (6§,A,8) is
a proper solution. § is a threat equilibrium and B solves the dual for A,
because each Gk and Bk have these properties for Ak (and Zy and Zy are upper-

semicontinuous). Condition (7.3) follows from (8.3) as k » . (7.3) also

implies

. L. N
i i
and (6.5) guarantees that none of these inequalities can be strict. So

AT, ()2 Sti(a,x,e),

(8,A,8) 1is a proper solution.

Q.E.D.



