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Solutions for Two-Person Bargaining Problems

with Incomplete Information

1. Introduction.

Consider first the simplest of bargaining games, in which two risk-
neutral players can divide $100 in any way that they agree on, or else they
each get $0 if they fail to agree. 1In this example, there is an natural
common scale (dollars) for making iaterpersonal comparisons of utility, and
both players have equal power to prevent an agreement, so $50 for each
individual is the obvious bargaining solution. This 50-50 split is fair, in
that each player gains as wmuch from the agreement as he is contributing to the
other player, as measured in the natural utility scale. One goal of
cooperative game theory is to provide a formal definition of fair equitable
agreements for the widest possible class of bargaining games. Such a theory
of fair bargaining solutions can be useful both for prescriptive purposes,
providing guidelines for arbitrators, and for descriptive purposes, if we
assume that individuals tend to reach agreements in wiaich each gains as much
as he contributes to the other.

The bargaining solution of Nash [1950, 1953] is the best-known solution
concept for two-person bargaining problems. It selects a unique Pareto-
efficient utility allocation for any bargaining problem with complete
information, and it coincides with the 50-50 split for the simple example
above.

A game with incomplete information is a game in which each player may

have private information (about the payoff structure of the game) which the
others do not know, at the time when the game is played. Harsanyi and Selten
[1972] proposed an extension of the Nash bargaining solution for two—person

games with incomplete information, and a modified version of this solution



concept was used in Myerson [1979a]. However, this solution concept uses
probabilities in a way which cannot be based on the essential decision-
theoretic structure of the bargaining game. In this paper, we will develop a
new generalization of the Nash bargaining éolution to games with incomplete
information.

In a bargaining game with incomplete information, the players may be
uncertain about each other's preferences or endowments. To describe such

situations, we shall use the concept of Bayesian bargaining problem, based on

ideas from Harsanyi [1967-8]. Formally, a two-person Bayesian bargaining
problem is an object of the form

(1.1)  (C,c™,T},Ty , Up,Up,2),P))

whose cowmponents are interpreted as follows. C is the set of collective
choices or feasible outcomes available to the two players if they cooperate,

*
and c¢ € C 1is the conflict outcome which the players must get by default if

they fail to cooperate. For each player i (i=1,2), T, is the set of possible
types for player i. That is, each tie Ti represents a complete description
of player i's relevant characteristics: his preferences, beliefs, and
endowments. T, and T, are disjoint sets. Each U; is a function froum

C x Tl X T2 into the real numbers, such that Ui(c’tl’tZ) is the payoff which
player i would get if ¢ in ¢ were chosen and if (tl’tz) were the vector of
players' types. These payoff numbers are wuweasured in a vonieumann—Morgenstern
utility scale for each player. Without loss of generality, we shall assune
that utilities are normalized so that Ui(c*,tl,tz) =0 for all i, t;, ty.

P, and P, are the conditional probability distributions which each player
assesses over the other players' type. That is, Pl(tl’tz) is the conditional
probability of player 2 being of type t), as would be assessed by player 1 if

he were of type tj. Similarly, P,(t;,ty) is the conditional probability of



player 1 being of type t;, as would be assessed by player 2 if he were of type
tr. For wmathematical simplicity, we shall assume that C, Tl, and T, are
finite sets; throughout wost of this paper.

The players in a bargaining problem do not have to agree on a specific

outcome in C, instead they may agree on some choice mechanism, which is a

contract specifying how the choice should depend on the players' types. Since
we will allow randomized strategies, a choice mechanism is here defined to be

any real-valued function = on the domain C x (T1XT2) such that

(1.2) 'Z w(c'ltl,tz) =1 and w(cltl,tz) >0,
c'eC
¥ceC,¥t €T ¥t eT..

17717 72772
That is, w(cltl,tz) is the probability of choosing outcome ¢ in the mechanism

m , if t; and t, are the players' types.
Since the players can agree on a choice mechanism, they do not need to
reveal anything about their actual types in the negotiating process. That is,

instead of player 1 saying "I demand choice ¢" if he is type t; and saying "I

~

demand choice ¢

if he is type £ he can say "I demnand a mechanism with
n(cltl,t2)=1 and n(cltl,t2)=l" in both types, and thus wmake the same

~

effective demands without revealing whether t; or tl is true. Throughout this
paper, we shall assume that neither player will ever deliberately reveal any

information about his true type until the choice mechanism is agreed upon.

One might call this the poker—-face assumption.

In order to conceal his type, each player must phrase his bargaining
offers and demands in a way which is independent of his type. However, this
poker—face requireunent can creaté a new kind of dilemma for a player, because
it can easily happen that player 1 kunowing only his own type would be

indifferent between two choice mechanisms 17 and =w (for any type tl)’ while
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player 2 might prefer w1 over w if t, is his type and ¢ over 7w if t2 is his

-~

type. So player 2 would prefer to argue for « if ty is true and for g if

t2 is true; but such a policy would certainly reveal information to player 1,

Ly

which could destroy player 1l's indifference between # and w. For example, 1
might be indifferent between betting that 2 can or cannot speak French until 1
learns that 2 wants to bet that he can.

Thus, each player must be careful to use a bargaining

strategy which maintains a balance between the conflicting

goals which he would have if he were of differeut types, even though he
already knows his actual type. That is, in bargaining games with incomplete
information, we need to understand not only how fair compromises between
players 1 and 2 should be defined, but also how fair compromises between

alternative types of the same player should be defined.

2. Feasible Choice Mechanisms

We must now clarify one additional question of interpretation relating to
our Bayesian bargaining problems: are the players' types verifiable or

unverifiable? 1If the types are verifiable, it means that players can

costlessly prove their types to each other. One may think of a verifiable
type as consisting of information written on a governuent-certified
identification card, waich each player keeps hidden during the bargaining but
can pull out to prove his type afterwards. If the types are unverifiable, it
means that players cannot prove their types to each other, and so each player
would lie about his type whenever such a lie might be profitable. For
example, an unobservable subjective preference would be unverifiable in this
sense. When types are unverifiable, players will not reveal their types
honestly unless they are given incentives to do so.

Actually, by appropriately redefining the set of choices C, one can



describe any situation with verifiable types by a more elaborate model with
unverifiable types (by building the verification procedure into the definition
of a "chosen outcome”); so the unverifiable-types assumption is more

general. Nevertheless, we shall find it convenient to treat both of these two
cases separately in this paper. Thus, to completely define a Bayesian
bargaining problem, we must add to the structures in (l.1) a specification as

to whether the players' types are verifiable or unverifiable.

To simplify our notation, we let T denote the set of all possible type-—
pairs t=(t;,ty); that is:
T = Tl x Ty
Given any choice mechanism 7 satisfying (1.2), we let ﬁi(niti) denote
conditionally expected utility for player i, given that he is of type tis if

the mechanism = is implemented. That is, for any ie{l,Z} and any tis Ti’

(2.1) 6i(n|ti) = T r P(t) U (c,t) m(clt)
t ieT_i ceC

We use the notation T_; = Ty, t_| = ty, T_, =Ty, t_, = ty, and t = (ty,ty)
throughout this paper.

We can now formally define the set of feasible choice mechanisms under
each of the two assumptions about verifiability.

For a Bayesian bargaining problem with unverifiable types, we say that a
choice mechanism 7w: C x T » R is feasible if it satisfies the following

conditions:



(2.2) CEC m(clt) =1, ¥teT,

(2.3) m(clt) > 0, ¥teT, ¥ceC,

and

(2.4) Ui(nlti) > I I Pi(t) U, (e,t) n(clt_i,si),
t_ieT_i ceC

Vie {1,2}, Vti € Ti’ Vsie Ti.
Conditions (2.2) and (2.3) simply repeat (1.2), asserting that w=(.|t) must be

a valid probability distribution over C, for any types pair t.

Condition (2.4) is an incentive-compatibility condition. It says that,

if player i is of type tys then his expected utility ﬁi(nlti) from
participating honestly in mechanism # cannot be less than his expected
utility from pretending to be of any other type Si° That is, (2.4) asserts
that honest participation in the choice mechanism w1 is a Nash equilibrium for
the two players. If (2.4) were violated, then at least one type of one player
would be tempted to lie about his type and so, since types are unverifiable,
the mechanism 1w could not be implemented. (It can be shown that even
dishonest equilibria or equilibrium behavior in more general wechanisms cannot
achieve any expected utility allocations which are not also achieved by
incentive=-compatible mechanisms satisfying (2.4); see Myerson [1979a]l, for
example., Thus there is no loss of geunerality in restricting our attention to
such incentive-compatible direct revelation wmechanisas.)

ForiBayesian bargaining problem with verifiable types, we say that a
choice mechanism w1 is feasible iff it satisfies conditions (2.2) and (2.3).
That is, only the probability conditions are required in the case of
verifiable types. With verifiable types, one can compel players to reveal

their types honestly, without incentive-compatibility, so (2.4) can be

dropped.



Given any wechanism =, we let ﬁ(n) denote the vector of all ﬁi(nlti)
conditionally expected utility levels for each player, given each of his
possible types. That is,

J(n) = ((Ui(nlti))t,ET, )i€{1,2}’
i1

so U(m) is a vector with lTll + |T2| components.

If player i is of type Li» then he would prefer wmechanism ; over w if
and only if ﬁi(;lti) > ﬁi(nlti). Thus, an arbitrator could be sure that
both players prefer ; over m only if
(2.5) ﬁi(;lti) > ﬁi(ﬂlti) vie {1,2}, vee T..

We say that a feasible mechanism w is efficient iff there does not exist any
feasible mechanisn ; such that (2.5) holds. {(Whenever we refer to a
mechanism as "feasible", it is understood to be in the sense appropriate to
the problem, that is, satisfying (2.2)-(2.3) in the verifiable case, and
satisfying (2.2)-(2.4) in the unverifiable case.)

Notice that our definition of efficiency implicitly makes U(m) the
relevant utility allocation vector for welfare analysis. It would not be
appropriate to average player i's expected utility over his various types,
because we are assuming that he already knows his true type at the time of
bargaining. On the other hand, an arbitrator (or an extermal social theorist)
does not know which t; is true, so welfare analysis must be based on
consideration of all of the Ui(nlti) numbers, for all possible t;. Even if
the players bargain without the help of an arbitrator, all of the couponents
of U(m) may be significant in deteruwining whether mechanism w is chosen (not
just the componeunts corresponding to the two true types), because each player

must express a compromise among the preferences of all of his possible types

in bargaining, in order to not reveal his true type during the bargaining



process.
Notice that (2.1)-(2.4) are all linear in #, so the set of feasible
mechanisns (in either the verifiable or unverifiable case) is compact and

convex. Furthermore, by the Separating Hyperplane Theorew, a mechanism = is

T T
efficient iff there exists sowe vector A = (A_ ) . in lil 2
t.t.eT,UT
S R | 2
such that
2
y L] > i =
(2.6) At,‘ 0 VtiETl' T2 , .Z b At. 1,
i i=1 t.eT, i
i i
and such that 7 maximizes
2
(2.7) b LA Ui(ﬂlti)

i=]l t . eT, 1
i~ i

over all feasible mechanisms. Thus, the problem of finding all efficient
mechanisms is a parametric linear programming problem: to maximize (2.7)
subject to (2.2)-(2.3) (in the verifiable case) or (2.2)-(2.4) (in the
unverifiable case), as the vector X varies over the range defined by (2.6).

We shall see more of these linear programs in Section 6.

3. The probability—invariance axiom

Harsanyi and Selten [1972] proposed that the solution to a Bayesian
bargaining problem should be the mechanism which maximizes
P(t,) P(tz)

3.1 L on Fele) V10om Tl

tleT1 t2€T2

over the set of all feasible mechanisms (although they defined the set of
feasible mechanisms somewhat differently from in this paper). In formula

(3.1), P(t;) denotes the marginal probability (as would be assessed ex ante by



an outside observer) that player i is type t;. Formula (3.1) is a natural
generalization of the product maximization formula characterizing the Nash
[1950] bargaining solution, and Harsanyi and Selten have derived it from a
very convincing set of axioms.

A fundamental property of the Nash bargaining solution is that it depends
only on the decision-theoretically significant structures of the problem.
(Nash's scale invariance axiom follows from this property.) For a solution
defined on general Bayesian bargaining problems, this property implies the

following axiom:

Probability-invariance: Consider any twc Bayvesian barzaining problems
Yy ¥ 3 I

~ ~

(C’c*’Tl’TZ’Ul’UZ’Pl’PZ) and (C’C*’Tl’TZ’Ul’UZ’El’gz) having the same choice
sets, type sets, and couflict outcome, and with the same assumptions about
type-verifiability. Suppose that Pi(t) Ui(c,t) = ﬁi(t) Gi(c,t) for every
i, ¢ in €C and t in Tlx TZ. Then these two bargaining probleas must have the

same solutions.

To see why the probability-invariance axiom must hold, notice that
whenever we compute an expected utility, we always multiply probabilities by
utilities, as in the axiom. Thus, both bargaining problems in the axiom have
the same sets of feasible mechanisms, and each mechanism w generates the
same vector U(w) of conditionally expected utilities ia both problems.

In effect, the probability-invariance axiom states that probabilities
cannot be meaningfully defined separately from utilities. when state—dependent
utility functions are allowed (see Myerson [1979b] for a basic development of
this idea). This axiom was first observed by Aumann and Maschler [1967]. It

implies, for example, that there is no loss of generality in consideriang only
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problems in which the two players' types are .stochastically independent
provided that U;(c,t) is allowed to depend on both components of t in any
arbitrary way. In Myerson [1976], this axiom was extended to n—person
dynamic games, in which the probabilities of some players' types may depend on
the choices of earlier players. The general probability-invariance axiom can
be used to reduce any dynamic problem, in which ;i(tlc) depends on ¢, to an
equivalent static problem in which all players' types are independent.

For our present purposes, the most important application of the
probability-invariance axiom is to rule out Harsanyi and Selten's solution,
because the probability exponents in (3.1) depend on the probabilities
separately from the utility functions. (In fact, our Bayesian bargaining
problens do not even specify unconditional marginal probabilities for types,
although we could have easily revised the definitions in Section 1 to include
such a gpecification.) Thus, we are presented with a dilemma: Harsanyi and
Selten have derived (3.1) uaiquely from a couvincing set of axioms, and yet
this criterion violates the probability-invariance axiom. To resolve this

dilemma, we must relax one of Harsanyi and Selten's axioms.

4, The feasibility graph.

Given a Bayesian bargaining problem, the set of all feasible
conditionally—-expected utility allocations is
(4.1) F(1) = {UCr) | n is a feasible mechanism}
(Recall that "feasible” wmay mean either satisfying (2.2)-(2.3) or satisfying
(2.2)-(2.4), depending on the assumptions about type-verifiability. The

significance of the "}" in F(l) will become evident shortly.) The set F(l) is
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-t
a closed convex subset of R .

The efficient mechanisms are the ones
which give utility allocations on the upper boundary of F(l). Nash [1950]
assunmed that the bargaining solution should depead only on the set of feasible
utility allocations and on the conflict playoffs (here norumalized to zero).
Extending this idea, Harsanyi and Selten [1972] assumed that their bargaining
solution concept nust be defined on the set of feasible utility allocations in

TIUT2
R , together with a specification of all the types' marginal
probabilities. That is, they assumed that the set F(y) carries all relevant
information about the relative power of each type of each player, so that a
fair allocation on the upper boundary of F(L) can be chosen only with
reference to F(}) and the vector of margnal probabilities. Since the
probability~invariance axiom disallows using the marginal probability vector,
we must find some way to extract wore information about the structure of the
bargaining problem than is contained in F(l).

To develop our ideas, it will be useful to also consider bargaining
problems with transferable utility and free disposal of utility, even though
such problems cannot be formally modelled in the format of (l.l), without an
infinite choice set C. (With bounds on the transfers and disposals, such
problems could be wodelled with finite C, however.)

Let us consider two examples. In Exauple 1, T1= {la,lb} and T2= {2}.
The two types of player 1 are equally likely, and they are verifiable. Both
players measure utility in dollars, and the players can transfer money between
themselves by sidepayments. If the two players cooperate then they can get
$100 together from an outside source, paid to player 2, who can transfer any
part to player l. Players 1's type has nothing to do with their ability to

get money, but the players could still agree to transfer different amounts of

money depending on l's type, since it is verifiable. Thus, the set of
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feasible utility allocations (with free disposal) is:

oy, 7 0y, 0y < 100}

In Example 2 everything is the same as in Example 1, except that now the
players can get $200 together if 1's type is la, but they cannot earn any
money together if 1's type is lb. So type lb has nothing to contribute to
player 2, but their ex ante expected income is still $100. The feasible set
F(l) for this example is the sawme as for Example 1. To see this, observe
that, when they cooperate and divide the available income, giving w to 1 if

la

t;=la and giving w to 1 if t;=1b, then 2's expected payoff is

1b

w,= (.5)(200 - wla) + («5)(0 - w,,) = 100 - (.5)(wla + ).

1b “1p

In both of these examples, the Harsanyi-Selten solution would be
(wla’ Wy wz) = (50,50,50). That is, player 1 nust get $50 whether he is
type la or type lb. This seems like a reasonable solution in Example 1, since
both types of 1 contribute equally to 2's ability to get the outside money.
But in Example 2, this solution is not so reasonable; instead we might expect
player 1 to demand 3100 (half of $200) if t;=la, and $0 if t =lb, so that
(wla, Wps wz) = (100, 0, 50) is the utility allocation. After all, player 1
can always prove his type, and type 1b has no power to contribute anything to
player 2. 1In the solution theory to be developed in this paper, (50,50,50)
will be the unique solution for Example 1, and (100,0,50) will be the unique
solution for Exanple 2.
To distinguish between Examples 1 and 2, we need wmore information than is
contained in F(l). We need to use the fact that, if player 1 refused to

cooperate when he is of type lb, then player 2 would lose some ability to earn

money in Example 1, but he would lose nothing in Example 2.
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Returning to the general Bayesian bargaining problem, we let a
participation vector be any vector q in [O,l]T. (Recall T = T; X Ty.) That

is, = (q,.)

e teT is a participation vector if each q¢ is a number between 0

and 1, to be interpreted as a probability that the two players will cooperate

if t = (tl’tZ) is their vector of types. For any q in [O,l]T, let

(4.2) F(q) =- U(n) | = is a Fea31ble nechanism, {
i ¢ and ﬂ(v ft) > l-q , ¥teT J
Tl U T2
That is, F(q) is a subset of R , representing the set of all utility

allocations which can be achieved using mechanisus which would still be
feasible even if the players were only going to be available for cooperation
with probability q, when t is the vector of types. When q =‘;.= (l,e00,1)
(4.2) reduces to (4.1). With no danger of confusion, we let F denote the
Zrapn of this feasibility correspoudence; that is,

(4.3) F = {(q,w) | qE[O,l]T and weF(q)}.

We shall refer to F as the feasibility graph of the Bayesian bargaining

problem.

In our two examples, we get (for any qe(O,l]T)

1 1 1
(@) = {o |5, + 50 ¥y €5 (100q,, )+ 100q), o))}

la
in Example 1, and we get
F(q) = {w | l—w +-l w,,+ w <L (200q + 0)}
2 "la 2 71lb T2 7 2 (la,2)
in Example 2. Thus, the feasibility graph F does distinguish these two
exauples, even though the simple feasible set F(1l) does not.
When there is no uncertainty ({T[=1), the feasibility graph reduces to

= {(a,aw)] 0 < a <1 and msF(l)},

so the feasibility graph F can be entirely derived from the feasible set



F(}). Thus, F contains no more information than F(L) when |T|=1. But when
there is proper uncertainty, then F cannot be derived from F(1), as our
examples have shown.

In this paper, we shall develop a bargainiag solution concept which
depends on the entire feasibility gpaph F, rather than just on F(l). In doing
so, we do not mean to imply that we expect some participation vector other
than q=L night be imposed on the players or on their arbitrator. The role of
F(q) for q # 1 in our theory will be analogous to the role of
v(S) for S # N in classical n-person game theory. In n-person game theory,
one expects all the players to cooperate in the grand coalition N, but one
also expects that the allocation chosen by the grand coalition will depend on
what might have been achieved by small coalitions. In a Bayesian bargaining
problem, we expect that the players will be fully available for cooperation,
but we also expect that the allocation chosen wmay depend ou what wmight have
been achieved with only limited participation of the players.

We now list some of the basic properties which any feasibility graph uwust
satisfy. First, any type which is sure to not cooperate must get zero
utility. So we say that (q,w) is admissible iff, for every player i and every
type ti in Ti’ if W, # 0 then there must be some t~i in T

i
We let A denote the set of admissible points:

such that qt > 0.

T.UT
(4.4) A= {(q0) e [0,1]T x R 2

| (q,w) is admissible}.
For example (O,w) € A only if w = 0.

Any feasibility graph F which is derived from a Bayesian bargaining
problem (as in Sections 1 and 2) by (4.2) and (4.3) must satisfy the following

properties:
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(4.5) F is a nonempty convex subset of A;j

(4.6) if 0 < ;t < q, €1 ¥teT then F(;) 2T F(q);

(4.7) if 0 <y £ 1 then F(yq) = {le weF(q)}, qu[O,l]T;

(4.8) {weF({) | 0, >z VtieTlisz} is a compact set, ¥ z ¢ R.
i

To verify these conditions, observe that (q,w) is in F iff there exists some
1 satisfying (2.2), (2.3), (2.4) 1if types are unverifiable, and

(4.9) 2, wlelt) < q.» ¥teT,

c¥c

such that = U(m). Since U(,) is linear, and all of these conditions ou
® are linear inequalities, F is actually a compact polyhedron. However, we
only note compactness of tne iatersection of F(l) with an orthant above z,
because we will also want to consider bargaining problens with transferable
utility and free disposal of utility (conditions which were not allowed in the
framework of Sections 1 and 2) which do not give compact feasibility graphs.
Conditions (4.6) and (4.8) use our assumption that Ui(c*,t) =0

for all i and t.

Henceforth, we may use the term feasibility graph to refer to any set F

satisfying (4.5)-(4.8), with F(q) = {wl(q,w) € F}.

5. Axioms for the bargaining solutions

Assuming that the feasibility graph carries all of the relevant
information about the relative power of each type of each player, we can now
develop a solution theory directly on the set of feasibility graphs. For any

F which satisfies (4.5)-(4.8), we shall let S(F) denote the solution set for
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F. That is, S(F) will be some subset éf F({), denoting the set of utility
allocations which should be considered fair outcomes for the bargaining
problem. Once S(F) is defined for every F satisfying (4.5)-(4.8), one can
return to the strategic structure of the Bayesian bargaining problem (l.l), to
study feasible mechanisus which implement the solution set, in the sense that
U(n) e S(F).

The simplest feasibility graphs to study are those defined by a single
linear coastraint. So, suppose that p=(pt)teT is any probability

distribution over T = T x Typ. Then we define FP to be the feasibility graph

i ™M~

(5.1) FP= {(q,w) € A |

< .
. L opuw, < 2 ptqt}

1 ¢ceT i teT
(Recall (4.4).)

To interpret Fp, consider the following story. The two players' types
are first determined by a chance move, according to the probability
distribution p. The two players can then earn one dollar together if they
cooperate, regardless of their types. 1In addition, the players camn make
arbitrary contracts (or "bets”) to transfer money as a function of their
types, which are verifiable. Both players have utility which is linear in
money. If q is the participation vector, so that q is the probability of
cooperation for types t, then I P 4, is the expected income which the

teT
players can get. For the utility allocation w, I ptwt is the ex ante
teT i
expected payoff to player i, before his type is known. So the constraint in
(5.1) says that the ex ante expected payoff to the two players must be less
than or equal to the players' expected income. Suppose that the players are

working with an arbitrator who is willing to involve himself in any system of

sidebets with the players when they cooperate, provided that the arbitrator's
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expected payoff must be nonnegative. Then this arbitrator can implement a
utility allocation w consistently with a participation vector q iff
(q,w) € FP,

Thus, FP is the feasibility graph for a situation in which the two
players earn a dollar together, and can also make bets about some otherwise
inconsequential types which are generated according to the consistent prior
probability distribution p. For such a situation, there is an obvious
bargaining solution: divide the dollar equally, and ignore the
inconsequential types. That is, since both players contribute equally to
their earning power, regardless of type, the allocation w such that ;t,= )
for all t; in T, U T2 is the obvious fair allocation. If player 1 were to
advocate aany other allocation (e.g.: "you take all our income if I cannot
speak French, but I take it all if T can,” when the cooperative task has
nothing to do with speaking French), then player 2 would probably interpret
this offer as an indication that 1 was of a type which would gain more than
half under the plan, and so player 2 would prefer w . As Milgrou and Stokey
[1980] have shown, it can never be common knowledge that both players expect
to gain from a system of bets when their types come frowm a commonly accepted

prior. Thus, we are led to the followed axiom.

Axiom 1 (Equal division). Let w in R 2 satisfy

at = .5 for all ti in Tl;}Tz. Then a € S(Fp), for any probability
i
distribution p over T satisfying Py > 0 for all t.

Qur second axiom is an exteusion of Nash's axiom of independence of

irrelevant alternatives (ITIA).
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~

Axiom 2 (IIA). If F © F and weS(F) and weF(}), then weS(F).

This axiom asserts that, if we reduce the range of feasible alternatives
available to the players under all participation vectors, then a former
bargaining solution which is still feasible should still be a bargaining
solution (since there are now fewer feasible alternatives to be proposed
against it).

Qur third axiom is an extension of Nash's axiom of scale invariance.
Since we are assuming that a player already knows his type at the time of

bargaining, there is then no way to test assertions comparing a utility wvalue

~

for i conditional on type ti with a utility value for i conditional on type
ti# ty That is, if we doubled all Ul(c,tl, t2) numbers but left all
Ul(c, tl’t2) numbers unchanged (for all ¢ and tz), then we could not

distinguish the new utility function from the old one in any decision problem

which player 1 could face at the time of bargaining. If he knows that tl is

true then the Ul(c, t t2) numbers are irrelevant to his decision—making

l’
behavior (and doubling a utility scale cannot affect behavior); and if he

~ ~

knows that t, is false then the Ul(c, t

1 tZ) numbers are irrelevant to his

1’
decision-making. Before he learned his type (if there ever was such a time),
such a utility transformation would have had decision-theoretically testable
implications, but that is all past history at the time of bargaining. If our
solution concept is to depend only on the properties of the utility functions
which are decision-theoretically observable at the time of bargaining, then we
must avoid intertype comparisons of utility, as well as interpersonal
comparisons. This idea is forwalized as follows.

T,. T
. 1> 2 . s .
For any vectors u and w in R , we define p*w to be the vector in
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TlU T2
R such that

* =
(u w)t. He Y2 lW:ig TIUTZ
i i~i

If we think of p as a vector of factors for transforming the utility scales
of each type of each player, then u transforms the feasibility graph F into

u*F = {(q,u*w)|(q,w)eF}
and transforms the solution set S(F) into

u*s(F) = {u*wlweS(F)}
in the new utility scales.

T, UT
Axiom 3 (Scale invariance). For any vector p in R ! such that

ut.> 0 for every t; in T UTy, and for any feasibility graph F,
i
S(u*F) = u*S(F).

We let conv(F Yy {(&,w)}) denote the smallest convex set containing
FU {(1,wm}. It is straightforward to check that
conv(F {J {(J,w)}) satisfies (4.5)-(4.8) if F does. With this notation, we can

state the following weak continuity assumption.

Axiom 4 (Continuity).Suppose that wEF(A) and there exists sonme

(-]
k=1
for all k. Then w & S(F).

sequence {wk} converging to w, such that mkeS(conv(FL/{(l,wk)}))
M

There certainly do exist solution correspondences which satisfy these
axioms, since letting S(F) equal the entire efficient frontier of F(A) would
satisfy all four axioms. Our goal is to find the strongest (smallest)

solution concept consistent with these axioms.



_20._

Axiom 5 (Minimality). If S'(,) is any other solution correspondence

which satisfies Axioms 1 throught 4, then S'(F) =2 S(F) for every

feasibility graph F.

It is easy to verify that there exists a unique solution correspondence
S(.) satisfying Axioms 1-5; Let H be the collection of all solution

correspondences S'(.) which satisfy Axioms l-4, and then let

(5.2) S(F) = ! S'(F)
S'ed
It is straightforward to check that S(.) must also satisfy Axioms 1-4, and it
satisfies minimality as well,
flenceforth, we let S(,) denote the solution correspondence satisfying

Axioms 1-5, and we refer to S(F) as the set of bargaining solutions for the

feasibility graph F.
Formula (5.2) is a rather abstract way to define the bargaining
solutions. Our main results are to give a more practical characterization of

the bargaining solutions, and to show nonemptiness.

Ly, 0
We let A denote the unit simplex in R , and we let A~ denote the
relative interior of A. That is,
TlUTZ .
(5.3) A={x R | = A =1, i >0 ¥t.},
. C. C. i

t,eT,iT i i

i1~ "2
G.4) A% = [xealr. > 0 we, ]

t, i

i
T .
E} denotes the nonnegative orthant of rT,
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Theorem l. Let F be any feasibility graph satisfying (4.5)-(4.8). Then

) k., o 3 0 k
weS(F) iff weF(}) and there exist sequences {A }k=l in A and {«a }z=1 in

T
R, such that

+
k k
(5.5) by Ap Ve S I agqp, ¥(q,v)eF;
t.eT YT i i teT
and 11 2
. k k . 2} T
(5.6) w,o =lim [ I (o /2, N, vie{1,2}, ¥t eT..
i koo t_ieT_i i

Notice that (5.6) implies that wt > 0, so our solutions are
i
individually rational. 1t is also straightforward to check that our solutions

satisfy the probability~invariance axiom of Section 3,since they are defined

on the feasibility graph, which is itself probability-invariant.

Theorem 2 For any feasibility graph F satisfying (4.5)-(4.8),

S(F) # 0.

The proofs are deferred until Section 7.



6. Analysis of the solutions

To get a clearer understanding of our bargaining solutions, consider

first the following corollary of Theorem 1, proven in Section 7.

Corollary l. Suppose weF(l), where ¥ is a feasibility graph. If

. . X T ,
weS(F) then there exist vectors A in A and a in ZR+ such that

(6.1) maxinum ( I A V. )< I a.gq,., qu[O,l]T’
t.eT,UT. "1 %1 ter °°F
and veF(q) i—T1vY T2
'2 = i p L]
(6.2) A w z at/Z, Vls{l,l},VtieTi
i1 t_ieT_i

Conversely, if there exist vectors A in AO and a in ]RI satisfying (6.1) and

(6.2) then weS(¥).

Thus, (6.1) and (6.2) are necessary conditions for w to be a bargaining
solution, and they are sufficient conditions if A is in the interior of the
unit simplex. These are the conditious which we nust try to interpret.

Siance weF(l), (6.1) and (6.2) imply

(6.3) maximum ( I A v )= I a = hX kt w,

{ . . F 1! . .

UeF(}) tiéflJTz i i teT tieTl‘lTZ i i

Then (6.1) and (6.3) imply that @, can be interpreted as the shadow cost (at
q=1) of decreasing the probability of cooperation in state t, when the

objective is to maximize the weighted sum of expected utilities I Xt V.
€ i i

1f a is the shadow cost of disagreemeunt when 3 and t, are the players'

types, then a fair arbitrator might credit types t; and ty each with half of
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this "shadow value"” of their agreement. After all, type £y of player 1 and
type t, of player 2 both have equal power to force disagreement in state t.
Then the right side of (6.2) is the total credit owed to type ty for not

t.), for any t_.. Condition (6.2)

forcing disagreement in any state t=(t_;,t; i

asserts that the weighted utility payoff expected by player i if t; is his
type must equal the total credit owed to type t; by this fair arbitrator. So
we may interpret (6.2) as a fairness condition, where fairness means that each
type of each player should gain as much from cooperation as he contributes to
it, as measured in the A —weighted utility scales.

Given any A, we can now show how to compute a so that (6.1) and (6.3)
are satisfied.

Suppose first that F is the feasibility graph for a Bayesian bargaining

problem as in (l.1) with verifiable types. Then

naximun z AV
veb(q) TV T

=  maximun (T L £ A P _(t) U,(c,t) n(clt):
. t, i i
T ite i
subject to (2.3) and (4.9)

2
[ 2 (max ( Z A_ P _(t) U,(c,t))) q_].
teT ceC i=1 ©Ti T 1 t

Thus, for a Bayesian bargining problem with verifiable types, (6.1) and (6.3)
imply that
2
(6.4) a=max ( T A P (t) U (c,t)).
t . £, 1 i
ceC i=1 i

For a Bayesian bargaining problem with unverifiable types, things are

more complicated. The left side of (6.1) is now the optimum value of the
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linear programming problem to maximize (2.7) over m, subject to (4.9),(2.3),

and (2.4). When we set =1, the dual of this linear program is to choose

Tle TZXT

+ such that,

. . T 1 .
uonnegative vectors a in ]R+, B° in R
for all t and c,

2

(6.5) a, > E[(xt + I B, S)P,(t) Ui(C,t)
=] i s.eT i*°f L

- L 3 . Pl(t—i’si) Ui(c’(t_i’ Sl))]’

so as to
(6.6) minimize Z a, .

teT

In the dual problen, Bt is the shadow price of the primal constraint

71

(2.4), which says that player i should not be tempted to claim that s; is his
type when his type is really ti' The dual variable at is the shadow price of
the primal constraint ) * n{cit) < 1. From the theory of duality in linear
programming, it followsctﬁat a satisfies (6.1) and (6.3) for A 1iff
a is an optimal solution to the dual problem (6.5)-(6.6) together with some
81and B2.

Thus, given any vector of utility-weights A, it is a straightforward
linear programming problem to compute the shadow costs a satisfying (6.1) and
(6.3). The hard part of computing solutions is to find some A such that the

corresonding o will also satisfy the fairness condition (6.2). A fixed -

point argument will be required to show that such a A can be found.
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7. Proofs.
Lermnma 1 Suppose that

F = {(q,w)eA | A < w S as q}

T,UT
for some A in R, 2 and o in iRE » where all components of o and A are strictly
TuT T
positive. (We use here the usual dot product in R and R".)
Let wt.= T at/(ZAt'), Vi, VtieTi.
i t_.eT_, i
-i =i
Then  weS(F). ’
P = let = A
roof Let P, at/( by as), and le ut‘ T at/At.
seT i t .,eT . i.

Then it is straightforward to check that F = u*Fp and w = u*a, where FP is as

in (5.1) and w is as in Axiom l. So weS(F), by Equal Division and Scale

Invariance. Q.E.D.

Lemma 2 If  satisfies the conditions of Theorem 1 for ¥, then w nust

be a solution for F, for any solution correspondence satisfying Axioms 1-4.

Proof Given the sequences {Ak} and {ak} as in Theorem 1, let

“k k 1 k k

a = a + k(At At )y > 0,
1 2
N
and wk = z ak/(Z}\k )
t. t t,
i t .eT . i
-i -1

Then (5.5) implies that F & {(q,u)eAl Ak-u < ukcq}, and (5.6) implies that the

k Kk ~
mk converge to we. By Lemma 1, w eS({(q,U)sAI Ao < ak

.q}).



_26_

By 1IA, wkes(conv(F U{(l,wk)})). Thus, we have constructed the sequence

required by the Continuity axiom, so w must be a solution. Q.E.D.

Lemma 3. The solution set defined by the conditions in Theorem 1

satisfies Axioms 1-4.

Proof. To check Equal Division, simply let

k p./2 and al = p /2 for all k. Then A%ex0, (5.5) is satisfied

>
Il
™

i t .eT .
-i =i

for FP, and(5.6) is satisfied for w.
IIA is satisfied, because making F smaller only makes it easier to
satisfy (5.5).
To check Scale Invariance, observe that, if {Ak} and {ak} satisfy (5.5)~
(5.6) for w and F ,then {;k} and {;k} satisfy (5.5)-(5.6) for
p*w and p*F, where
Tk “k

A, = A7, ), a
t t t )
i i i t,eT U T

ok, k k . k , k
=a /M, and M" =" 3 (Ati/ut ).

2

-

1

1

To check Continuity, let {wK} be a sequence converging to w.
k
1f wk satisfies the conditions of Theorem 1 for conv(FU {(l,w }}) then we can

find Ak and ak such that

. } . k
F &:COHV(Fﬂ_{(},wC)}) = {(q,v)eAl Ak:u < a -q}
and lwk - b ak/(ZXk ) < lwk -w,_ | for all t..
t, t t. t, t, 1
i t .eT . i i i

-1 -1

Then {Ak} and {ak} verify (5.5) and (5.6) for w as a solution for F.
Q.E.D.

Theorem 1 immediately follows from Lemmas 2 and 3.
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Proof of Theorem 2. We begin with some definitions.

Given the feasibility graph F, let

E = {(q,0w)eF | o > —(max qs), VtisTlL'Tz}.
i seT

Let M = maximum ( I lw_ 1)
weE(1) tieTlL)Tz i

Let B = {asz; | 0 < a < M, ¥teT}.

For any A in A, let L{A) = maximum A * w.
weE(L)

For any k > ITlif Tyl, let

k
A = {xepl A, o2

1

( .
VtieTlu_Tz}

= |-

We can now begin to construct a Kakutani correspondence. For any

A in A, let

Z,(A) = {weE(1) ] Xew = LV},
Z7(A) = {asBl a-1=L() and a-q > A - w, V(q,w)eE}.
Let Wt.(a,k) = z (at/ZAt.)), if At. > 0.
i t .eT_. i i

=1 -1

For any k > ITlliTzl, if AsAk, let Z?(w,a,k) be the set of all A in Ak such
that, for any t; in T Ty,

if W (a,A) - w < maximum (W (a,A) —w ) then A =
L. S S t

i i sjeTlLT2 j j i

1
k L

k
It is straightforward to verify that Z1s 2o and Z3 are convex-valued
k
upper—semicontinuous correspondences, and that Zy and Zy are nonempty-
valued. The only fine point is to verify that Z,(A) is a nonempty set, for

any A in A.
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Let H(A) = {(q,h)e ZRT x R| a> L(}) max qt}.
teT

Using (4.6) and (4.7) for F, if

(q,w)ek then (yl,w)eE and (l,é—m)eE, where Y = max des

teT

and so X -w £ L(A)Y. So H(X) and
G(A) = {(q, x:w)| (q,w)eE}

are disjoint convex sets. By the Separating Hyperplane Theorem, there exists
some o in BKT such that (-a,l) separates H(X) from G(}). (The 1last
component of the separating vector cannot be zero, since the projection of
H(A) onto jmi covers 'm?.) Since (g,O)EG(X) and H(A) is an open cone,

-a ~q+ A= w<z<0 for all (q,w) in E and =-a ¢ 1 + L(A) = 0. It is
straightforward to check that 0 < a, < L(A) € M for all t in T. So

anz(X) @

By the Kakutani Fixed Point Theorem, for any k > lTliJ Tzl, there exist

k
sowe w in E(1l), ak in B, and Xk in Ak such that

k k .k k k k .
(w ,a ,A e Zl(k ) x Zz(kk) X Z§ (w ,u ,Ak). Since E(i) is compact, we can
k %
choose a convergent subsequence of the {w }, converging to some w in

%
E(1) " F(l). We will show that w eS(F).

Using wke Zl(Ak) and ake Zz(Ak), we get

k k k k k Lk
Ia e, =L o =L A W (a, ).
T T e, id

k k, k k

Because A 823(w »Q ,Ak), if w, < Wt (ak,kk) then xt =

1 1 1

= f—

k
t,
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i k k k k , k .k
So z Ai max {O,Wt (ak,k ) - w, } = I At max {O,wt - Wt (a ,A )}
t, i i i t, i i
i i
1 k M
S G Sk

So, for all k and tj

7.1 W @9 sef + T
i i K
Suppose k > M. Then (7.1) implies that W > -1, Vti. If (q,v)eF and

i
Ak TR VI ak- q, then sowe Yy > 0 sufficiently small,

~ - ~

(g,v) = (yq+ (1A-v) 1, yv + (l-Y)wk)e E and Ak VD ak-q, which contradicts

the fact that akaZZ(Ak). So Ako U < ak.q, for every (q,v) in F.

“k K
Now let = +
e o, a, (

. “k k k .k 1 k M+ 1
< += < —
Then 0 < Wt.(a s A ) < wt_(a SA ) S ”
i i i
Ak W (ak,kk)
“k st
Let Ati = { ” HF 1 Y.
We | Kk
i
“k "k %k, _ k ,M+1
Then 0 < At. and Wt.(a s A ) = W + ”
i i i
for all Ei. Furthermore, since
“k k “k k *k “k
Ati < Ati Vti and a, > a, ¥t, A v < a -q ¥(q,v)eF.

A A

Unfortunately, Ak is not AO because I At < 1, but this is easily remedied.

t. 1
i

Let §= I A, ke L gk gk L Ok
k , ) 8 5,
T, i k k
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k ,0 ~k

Then X €A, A »V &k. q ¥(q,v)eF,

A

and  lin W_ G5, = lim W @25

k> i k> i
+
=1im (wk + il ” 1 ) = lim w = W
t.
k> i k>0 i i

for all t;. Thus, recalling the definition of Wt (.), we see that the

1

- - *
k Ak sequences verify the conditions of Theorem 1 for w . So

a and

w €S(F) # 0. Q.E.D.

Proof of Corollary 1. 1In Theorem 1, each AkeA, and (5.6)
inplies 0 < at < Zwt +1 for all k sufficiently large. Thus there must exist
i
some cluster points A in A and a in jmi for the {Ak} and {ak} sequences. Then

(5.5) and (5.6) imply (6.1) and (6.2) in the limit for A and a.
Conversely, if (6.1) and (6.2) are satisfied with
X in AO, then letting Ak=k and ak= a for all k satisfies (5.5) and

(5.6). Q.E.D.
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8. Example

In Section 4, we discussed Examples 1 and Z, two simple examples with
verifiable types. It follows easily from Lemma 1 that w = (50,50,50) is a
solution for Example 1, and that w = (l00,0,50) a solution for Example 2, as
asserted in Section 4.

For a third example, with unverifiable types, let us consider the example

in Myerson [1979a]. 1In this example, T, = {la,lb}, T2 = {2}, and player 2

1
assigns a probability of .9 to ty=la and a probability of .1 to t,=lb. The
two players can jointly undertake a project (say, a new road which both
players would use) which costs $100. The road is worth $90 to player 2, and
it is worth $90 to player 1 if he is type la, but it is only worth $30 to
player 1 if he is type lb. The problem is to decide if the project should be
undertaken, and if so, how much should each player pay.

If the types were verifiable, then an obvious plan would be to always
undertake the pro ject, with each paying $50 if t, = la, and with 1 paying $20

1b. 1In this way, both players gain’equally in each

and 2 paying $80 if t
state ($40 if la, $10 if 1b) and the expected utility allocation is

(8.1) (w b,wz) = (40,10,36).

1a*%1

In fact, it is easy to verify that (8.1) is our solution for this problen,

with verifiable types. (Use Ala = 9, A, = 1, A =1, 80,

1b 2 “(la,2) ~

a(lb 2) = 20, and apply Leumma 1l.)
b

However, with unverifiable types, the above solution is infeasible, since
it would induce la to pretend he was lb. Our solution for this problem with

unverifiable types is

w,) = (61=L, 0, 36).

(8.2) ((U 13°

la’wlb

This allocation is implemented by the following choice mechanism: if t] = la



-32-

then the project is undertaken and 1 pays $48.46 and 2 pays $51.54; if t) = 1b
then the project is undertaken with probability T%’ in which case 1 pays $30
(his full value for the project) 2 pays $70. 1If the project is not
undertaken, ‘then neither player pays anything.

This mechanism is incentive-compatible. Player 1 in type la would prefer
to pay only $30, but the T%-chance of losing the project prevents him from
claiming to be 1lb., This mechanism is efficient, in spite of the fact that
there is a positive probability of not undertaking a project which is
certainly worth more to the players than it costs. Without the positive risk
of losing the project, type la could not be induced to bear his fair share of
the cost, and this would hurt player 2.

To check that (8.2) is indeed a solution, one must examine geometry of
the problem in greater detail. The feasible set F(i) is described in Myerson
[1979a] as the convex hull of five points in ]R3, and the efficient frontier
is a triangle perpendicular to the vector
13 2 15
307 30° 30

Thus, choosing XA as in (8.3) would allow (6.3) to be satisfied for any

(8.3) (Ala’klb’AZ) = ( ).

efficient w. Also, for any efficient mechaniswm, either the costs are divided
independently of t;, or else there nust be a positive probability not
undertaking the project when £t = 1b. But if there is a positive probability
of no project when ty = 1b, then we must have zero shadow cost of conflict
when t) = 1b; that 1is,

(8.4) 0.

*(1b,2) ~

Then (6.2) implies Alaw 1

la =2 *(la,2) = *

and A 0. (8.2) is the

2%2 15°1b
only efficient allocation satisfying these equations, for A as in (8.3).
In fact, (8.2) is the unique solution for this problem with unverifiable

types. However, if we simply charged both players $50 for the project,
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independently of T then we get

(8.5) (mla’mlb’w2) = (40,-20,40)
3 = _1_ = = .!'_ = = S
With Xla =5 Alb = 0, AZ =5 a(la,Z) 40, “(1b,z) 0, (8+5) can be shown

to satisfy (6.1) and (6.2); however this A is not in AU. In fact, (8.5) is
not even individually rational for lb, so we know that (8.5) cannot satisfy
the conditions for a solution, given in Theorem l. Thus, (8.5) shows why
(6.1) and (6.2) are only necessary conditions and not sufficient for a
solution, when some At. = 0.

As stated in Myer;on {1979a], the feasible allocation (with unverifiable
types) which maximizes the Harsanyi-Selten criterion (3.1) is
(8.6) w = (39.5, 13.2, 36).

This allocation is implemented by the following incentive—compatible
mechanism: if t; = la then the project is undertaken and 1 pays $50.50 and 2
pays $49.50; if ty = 1b then the project is undertaken with probability .439,
in which case 2 pays the entire cost of $100.

Notice that player 2 gets the same expected utility in both (8.6) and
(8.2). The only difference is how well the two types of player 2 do. From
the point of view of our new solution concept, player 1 in type lb has no
bargaining power, since his only threat is to force the project to be
abandoned, and that is already going to happen with positive probapbility (both
in the mechanism wnich implements (8.2) and in the mechanism which implements
(8.6)). Thus, if player 1 were to argue for (8.6) rather than our solution
(8.2) then player 2 might interpret this as evidence that ty = lb. But if 2
believes that t; = lb, then he would no longer be indifferent between the
mechanisus which implement (8.2) and (8.6). In fact, player 2's utility from
the mechanism which implements (8.6) would be -4.39 if ty = 1b, and so he

would be inclined to reject this mechanism.
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It is significant that our solution requires a positive probability of
the conflict outcome, which is ex post Pareto-inefficient. When types are
unverifiable, ex ante efficiency does not imply ex post efficiency, because
the incentive—compatibility constraints must be satisfied before the players
can be made to reveal their information for collective use. We may
often find a positive probability of conflict in the solutions for bargaining
problems with unverifiable types. Thus, the theory of bargaining with
incomplete information can offer us basic insights as to why cooperation must

sonetimes break down into a conflict in which both players lose.
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