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1. Introduction

My goal is to point out the close theoretical link between the extent
to which investors are insured and the extent to which assets have the
martingale property. If assets are included in an Arrow-Debreu model with
complete markets for contingent contracts, then the assets' prices have the
martingale property. If investors are not fully insured, then asset prices
have the martingale property only by accident. However, one can justify a
short-run martingale property, even if there are no insurance markets. If
a model included money, then investors would use money to insure themselves
nearly perfectly over short periods of time. For this reason, the martingale

property would be approximately valid over such short periods.

An asset price is said to have the martingale property if the price of
the asset in any period equals its expected discounted future return. The
discount rate applied to the future return is either the market interest rate
or consumers' pure rate of time preference. In this paper, the discount rate
is the pure rate of time preference.

One might assert that the discount rate applied to future returns should
include a risk premium. Unless this premium is constant, the martingale property
is simply an identity. It turns out that if consumers are not fully insured,
then there is no reason to expect the risk premium to be constant.

A simple arbitrage argument provides an intuitive justification of the
martingale property. If an asset's price exceeded its discounted expected
return, an investor would find it worthwhile to sell the asset and hold money
or short-term bonds. Similarly, he would buy the asset if its price were less
than the discounted expected return.

This argument is valid only if the expected discounted return really
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reflects the value of an asset to an investor. That is, the return must
be proportional to utility. If the investor is risk averse and not
perfectly insured, then return would be proportional to utility only by
accident. Thus, the intuitive justification of the martingale property
must be based on an assumption that investors are fully insured.

There is a natural measure of the extent to which a consumer or investor
is insured. This measure is the constancy of the consumer's marginal utility
for the unit of account. For this reason, I focus my analysis on the marginal
utility of the unit of account. In an Arrow-Debreu model with complete markets,
this marginal utility is constant, for it is simply the Lagrange multiplier
associated with the consumer's budget constraint. The alternative to an
Arrow-Debreu model is a temporary equilibrium model. In such models, each
consumer has a different budget constraint in each period and a Lagrange
multiplier associated with each such constraint. The multipliers are the
marginal utilities associated with the unit of account used in each period.
Asset prices have the martingale property if these marginal utilities are
constant over time.

Suppose that money is included in the temporary equilibrium model and
is used as the unit of account. Then, consumers should trv to use reserves
of money to hold constant the marginal utility of money. They can do so
approximately, in the short run. However, I show that normally they must allow
the marginal utility of money to drift in the long run. This is so even if
money pays interest or if consumers can borrow and lend. Roughly speaking,
capital markets cannot fully compensate for a lack of insurance.

This conclusion is somewhat contrary to the spirit of Milton Friedman's
theory of the optimum quantity of money (Friedman, 1969). The conclusion also

directly contradicts statements in my paper on the subject (1980a). Friedman
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claimed that consumers would hold the socially optimal quantity of money

if money earned interest at a rate equal to consumers' pure rate of time
preference. In my paper, I showed that in a rigorous version of Friedman's
model, there would be no equilibrium if money earmed such a high rate of
interest. The problem is that consumers would want to hold an infinite
amount of money. I also claimed that if the rate of interest were only
slightly less than the pure rate of time preference, then there would exist
an equilibrium. I suggested that in this equilibrium, consumers would keep
their marginal utilities of money nearly constant, so that the equilibrium
would be nearly Pareto optimal. This suggestion is false. FEcuilibria may
not exist if the rate of interest is too close to the rate of time preference.
When an equilibrium does exist, consumers are not necessarily able to keep
their marginal utilities of money nearly constant. These two points are
demonstrated by an example in section 5.

In my previous paper (1980a), I made an error. It is not true that
equilibria exist whenever the interest rate is less than each consumer’s
rate of time preference. Equilibria necessarily exist only if the interest
rate is sufficiently close to zero. The error is explained and corrected
in Appendix II of this paper.

The analysis of this paper owes a great deal to Robert Lucas' paper,
"Asset Prices in an Exchange Economy,' (1978). He was, I believe, the
first to discuss the martingale property in terms of a general equilibrium
model. I adopt his way of introducing assets into such a model. The
advantage of his approach is its simplicity. He introduces assets without

ever introducing production.



Lucas' conclusion is somewhat different from my own. He concludes
that asset prices would normally not have the martingale property. It is
easy to understand intuitively why Lucas reaches this conclusion. Lucas'
equilibrium is a temporary equilibrium in the sense that consumers face
a different budget constraint in each period. Hence, the prices of each
period require a separate normalization. He has a single consumption good
in his model and he normalizes prices so that the price of this good is
always one. This means that asset prices are always measured in terms of
current consumption good. The martingale property has to do with comparison
of asset prices in different time periods. In a temporary equilibrium model,
asset prices in different time periods are measured in different units. It
makes sense to compare these prices only if there is reason to expect that
the units of different periods are somehow of equivalent value. One sense
of value is marginal utility. In Lucas' model, the marginal utility of the
consumption good should fluctuate if its supply fluctuates. As Lucas points
out, his asset prices would indeed form a martingale if the marginal utility
of the consumption good were constant. In conclusion, Lucas' criticism of
the martingale property is based on his choice of units for prices.

It seems to me most natural to measure asset prices in terms of money.
If this is done, then one can justify at least a short-run martingale property.

The plan of the paper is as follows. In the next section, I define a
version of Lucas' model with complete Arrow-Debreu markets for contingent claim
contracts. I prove that in such a model, asset prices have the martingale
property. In section 3, T discuss Lucas' model and show that if one simply
renormalizes the prices in his model, one obtains the Arrow-Debreu prices.

(The link between Arrow-Debreu prices and Lucas' prices has been pointed out
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by LeRoy and La Civita (1980).) 1In section 4, I introduce money into Lucas'
model. 1In section 5, I show by means of an example that in this monetary
model, the equilibrium marginal utilities of money are not necessarily
constant., They are not necessarily even asymptotically constant as the
rate of interest on money approaches consumers' common pure rate of time
preference. Section 5 is the only section of the paper which is analytically
difficult (besides Appendix II). In section 6, I show that the monetary model
may be interpreted as a model with borrowing and lending. In section 7, I
point out that money and credit cannot be counted on to provide perfect
insurance. This conclusion is implied by the example of section 5. 1In
section 8, I give an argument to support a short-run martingale property.
There is a large literature on the martingale property of asset prices.
An excellent survey has been written by LeRoy (1979a). LeRoy has stressed
thaf asset prices have the martingale property if consumers are risk neutral
(LeRoy, 1973, 1979b). The link with my work is clear, for in a Lucas model
risk neutral consumers would have constant marginal utility for the consumption

good.



2., Complete Markets Give Rise to the Martingale Property

In this section, I define a model which includes Lucas' notion of
assets in an Arrow-Debreu model of pure exchange with an infinite horizon
and random fluctuations. I show that the model has an equilibrium and that

equilibrium asset prices have the martingale property.

The Underlying Stochastic Process

There is an underlying stochastic process {st}:= _,, Wwhich influences
utility functions and the availability of commodities. 1 assume that {st}
is a stationary Markov process on a set S. S 1is a Forel subset of a
Euclidean space.

If £ : S > R is a real-valued function, (R denotes the real numbers),
then f(st) denotes both a number and a random variable. E f(st) denotes
the expected value of the random variable. The same notation applies if f
is a vector-valued function.

I nowhere need the assumption that {st} is Markov. I make this
assumption only so that I can use notation which facilitates comparison of

my work with that of Lucas.

Utility
There are L goods and 1 consumers,and the utility function of the
.th . . . . oL .
i consumer for consumption at any time t 1is wu,: R, x S—>R, i = 1,...,I.
i +

(RL denotes L - dimensional Euclidean space and Ri is the cone of vectors

. L . . . e

in R~ with non-negative components.) ui(x,st) is the utility to consumer

i at time t of the bundle x if the state of the environment is Sp
Consumers must plan their economic life over an infinite future. They

L .
choose a consumption program (xo,xl,...), where X, ¢ S - R+ is a measurable

function for all t. I assume that the functions X, are uniformly bounded.



A consumer's utility for such a program is the expected value of discounted
utility. Each consumer discounts future utility at the rate p, where

0< p< 1l. p is the pure rate of time preference. Therefore, the utility
to consumer 1 at time zero for a program (xo,xl,...) is

Ui(xo,xl,....) = Etiof (l+p)_tui(xt(st),st).

Assets

An asset is a right to a fluctuating stream of commodities. An asset
is described by a measurable function a : S — Ri. The bundle yielded by
the asset at time t is a(st).

There are C assets where C 1is a positive integer. The cth asset
is described the function Ac : S~ Ri. Ac(s) should be thought of as a

column vector. Its components are denoted by Akc(s)' A(s) denotes the

L x C matrix whose kcth entry is Akc(s)'

Investment Programs

An investment program forra consumer is a sequence of uniformly bounded
measurable functions (Yo, Yl,....), where Ye ¢ S - RE.

th(s) denotes the share of the cth asset owned by the consumer at the
end of period t if the state of the énvironment is s. If the consumer holds
Yt(s) at the end of period t, then at the beginning of period t+1 he

receives the commodity bundle ) th(st) € Ri. I denote this

C

Ac(

s
1 t+1

[T

bundle by A(St) Yt(st).

The Initial Investment

The model specifies each consumer's initial holdings of assets,

€ RC. Y

Y -1 Y is the proportion of asset ¢ held by consumer i
3’

i,~1l,c

at the beginning of period zero. I assume that Y 1.e 2 0 and that
s



‘L Yi,—l,c =1, for all c.
i=1

Allocations
An allocation for the economy is of the form ((xi), (Yi))£=l, where

each X, = ( is a consumption program and each

XiO’Xil"'°')

Y; © (YiO Yil""') in an investment program. The allocation is feasible if
1 C

2 x.,.(s) = 3 A(s), forall t and s, and if E v, {(s) =1,

. it c . itc

i=1 c=1 i=1

for all t, s and c.

Prices

A price system for goods is of the form P = (po,pl,...), where each
p, ¢+ $> R’ 1is a measurable function and O < Et§0 ptk(st) < =, for k=1,...L.
These prices are Arrow~Debreu prices for continge;t claims contracts as in
Arrow (1963-4) and Debreu (1959), Chapter 7. All trading takes place at
some imaginary starting point, say at time - 1. I must call the starting
date imaginary, for I do not specify the state of the environment at the

starting date. ptk(s) is the price at the starting point for a unit of

good k to be delivered during period t if the state of the environment is

An asset price svstem is of the form q = (qO,ql,...,), where
q, : S— RC is a measurable function and 0 < E Z q, (s )< «, for all «c.
t + £=0 tc t
q t(s) is the price at the starting point for the delivery of an asset
c

¢ in period t if s occurs.
A price system is of the form (p,q), where p is a price system for

~ o~ ~

goods and q 1is a price system for assets.

Remark: Strictly speaking, the model does not include a complete set of

Arrow-Debreu markets. In order to have all such markets, allocations and



prices at time t must depend on the complete history of the environment

up to time t, (....,s ). However, in a full Arrow-Debreu model,

S
t-1,%¢t

consumers would not need to recall history, for utility functions and supplies

at time t depend only on Ses {st} is Markov, and consumers observe S.

The Budget Constraint

The budget set of consumer i, given a price system (p,q) is

~ o~

2.1) Bi(g,g) = {(§,I) [ X is a consumption program, Y is an

investment program and

§ pt ) xt + qo * (‘YO - Yl,-l) + § qt * (Yt -Yt_l)
t=o t=1
< + 3 .
S Pofg Yy, T 2 P AL Tpg)
t=1
L
In this formula, P, Xy denotes Ek§l ptk(st) xtk(st)° Similarly,
¢ ,
qp " Yy denotes E 2 9t (st) th(st). At denotes the random variable

c=1 ,
whose value at S, is the 1, x ¢ matrix (Akc(st)). Finally, ptAth—l

C L

denotes E 3 z Py (st) Akc(st) Yt_l’c(st).
c=1 k=1

Demand

The demand correspondence of consumer 1 is

£, (p,0) = {(x,Y) € B.(p,0)| U (x) 2 U;(x,), for all (x,y) €B8; p,}.

~ T~

Observe that gi(p,q) may be empty.

Equilibrium

I
An Arrow-Debreu equilibrium consists of (((Xi,Yi)) , (Pya)),
~i’a i=1 R
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where
i) ((xi’Yi))I is a feasible allocation,
T i=1
ii) (p,q) 1is a price system and

iii) (fi’xi) € gi(g,g), for all i.
The equilibrium is said to be stationary if (xit’Yit) = (xiO’YiO) and
_ -t
(Pt’ qt) = (1+0) (PO’ qo)’ for all t.

The Martingale Property

The price system (p,q) has the martingale property if

2.2) ) A (s

_ |
9 se) = Elapyg(Spyp) + Pryy (e er1) | S¢!
almost surely, for all t. By "almost surely," I mean that the equality

holds with probability one. E [qt+l(st+'l) + Py (Sppg) Alsyy) | s, ]

denotes the conditional expectation of the random variable

) A(s ) given S, Observe that I need not condition

+
Uy1 Gerr) T Pea1Gea t+1
on s, for n<t, because the process {st} is Markov.
The martingale property is easier to interpret if one uses current

value prices. Let Qt (st) = (l+p)tqt and let Pt = (1+p)tpt, for

t =0,1,... . Then, (p,q) has the martingale property if and only if

Q(sy) = (140) 7 E[Quyp(spyp) + Pryg(syy) & (spyp) | s.]



almost surely, for all t. In words, the current price at time t equals
the discounted expected value of the sum of the price in period t+1 and

the value of the dividend in period t+1.

Assumptions

I list the assumptions I use.

2.3) {st} is a stationary Markov process. st varies over S.
L . .
2.4) ui : R+ xS -+ R 1is measurable, for all 1.

By this, I mean that u; is measurable with respect to the Borel o-field

L
on R+ X S. (Recall that S is a Borel subset of a Euclidean space.)

L . . .
2.5) ui( *58) R, = R 1is continuous, strictly increasing and strictly

concave, for all s.

By strictly increasing, I mean that u,(x',s) > u,(x,s) 1if x' =z x and x' # x
i i - )

2.6) ui(x,s) is bounded as a function of s, for all i and x.
I
£ > i .

2.7) izl Yi, “1,c 1, for alle, and Yi,—l,c z 0, for all i and ¢

2.8) Akc(s) is bounded as a function of s, for all ¢ and k.
C

2.9) For all i, there exists r > 0 such that 32 Ak (s) . (s) zr,
o=1 c i,~1,c

for all s and k.
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Theorens

Assume that assumptions 2.3 - 2.9 apply.
2,10 Theorem -There exists a stationary Arrow-Debreu equilibrium.

2.11 Theorem If (((Ei;?i))l ,(p,q)) 1is an Arrow-Debreu equilibrium, then
e i=1 ~ ~

(p,q) has the martingale property (2.2).

~ o~

A Lemma
In proving theorem 2.10, T make use of a simple lemma, which expresses
the fact that if share prices have the martingale property, then consumers

cannot gain by trading in assets.

2.12 Lemma Suppose that (p,q) has the martingale property (2.2). If

~

(fsr) € Bi(B’S)’ then

o8
J
el
1A
I ™ 8

t=0 t

Proof First of all, I show that
2.13) Q@ " V3.1 " i, P, At Yi,—l’

By applying the martingale property (2.2) repeatedly, I obtain that

q5(sy) = E [py(sq) Alsy) + «vnn +po(sp) A(s) | sl + E lap(sy) | sl

T
almost surely, for all T > 0. Hence, 9y Yi,—l = til ptAtYi,—l
+ qr* Yi,-l' By assumption, til E qtc(st) < », for all ¢, so that
C : C
lim 2 E ch(St) = 0. Since dp * Y1 £ X E ch(St)’ (2.13) follows.

T+ =1 c=1



I now prove the lemma. The budget constraint for consumer 1i,(2.1),

may be written as

fl 4 8
o
M
IIA

i o™ 8

0ot g (Qpyg ¥ Pegg Appn ~ 9T F (Qp+ Py Ap) vy g,

By the Martingale property (2.2), the infinite sum on the right hand side of

o0
this inequality is zero. Hence, % P, +

- X S p, ALY, _
£=0 t 0 0 'i,-1

99 ° Yi,-1

-2 2 p, A ¥ The equality follows from (2.13).

t 't 'i,-1°
Q.E.D.

Proof of theorem 2.10 First of all, I define a one-period economy

which corresponds to the economy of the theorem. Xnown theorems imply that
the one-period economy has an equilibrium. I then show that a stationary
equilibrium corresponds to the one-period equilibrium,

The commodity space for the one-period economy is the set of bounded
measurable functions from S to RL. The consumption set of each consumer
is the set of such functions with non-negative components. Call this
consumption set X. The utility function of each consumer is Vi : X >R,
defined by Vi(x) = Eui(x(so),so), for i = 1,....,I. The initial endowment

C
of each consumer is N € X, defined by mik(s) = czl Akc(S)Yi,—l,c(S)’

for k=1,...,L and s € S. In matrix notation, ®, = A Y;o_1°
b

An allocation is of the form (xi)¥

, where x, € X, for all i. It is
i=1 i

I
feasible if b (xi(s) - mi(s)) = 0, for all s. A price system is a
i=1

measurable function p : S - Ri such that 0 < Epk(SO) < =, for k=1,...L.
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The budget set of consumer i, given p, is ﬁi(P) ={x €X | pxs p-wi},

where p+«x denotes E p(so) . x(so). The demand correspondence of consumer

iv

i is Ei(p) = {x € Bi (p) I Vi(x) Vi(x), for all x € Bi(p)}. An
equilibrium is of the form ((xi), p), where (xi) is a feasible allocation,

p 1is a price system and X, € gi(p), for all 1.

If S is a finite set, then it follows from the standard equilibrium
existence theorem that the one-period economy has an equilibrium. (See
Debreu (1959), p. 83.) If S 1is an infinite set, then one can apply results
from a paper of my own (1972). By Appendix II of that paper, the utility
functions Vi are continuous with respect to a certain topology called the
Mackey topology. It then follows from (1972), theorems 1 and 2, that an
equilibrium exists.

Let ((xi), p) Dbe an equilibrium for the one-period economy. I now
define a stationary Arrow-Debreu equilibrium for the economy of the theorem.

For ¢t = 0,1,..., let X, T X and P = (l+p)—tp. It is easy to show that

q.(s.) = E[ 2 (1+p)_tp(s ) A(s)) ] s.] 1is well-defined and that
00 =0 t t 0

-t
E ch(SO) <o, forec=1,...,00 For t=1,2,..., Ilet 9 = (1+p) 90¢
Let Yie = Yi,—l’ for t = 0,1,.... Finally, let P = (po,pl,...),

q = (qO,ql,...), X, = (xiO’xil"") and Yy T (YiO’Yil"")' T claim that

(((xi, Y.))I , (p,q)) is a stationary equilibrium. Clearly, it is stationary.

Also, ((xi, Yi))I 1 is a feasible allocation and (p,q) is a price system.
~ ~ i:

~ o~

Hence, I need only show that (xi,Yi) € Ei(P,Q), for all i.

\

First of all, I show that (xi, Yi) satisfies consumer i's budget

constraint (2.1). Since Yie = Yi.o10 for all t, it follows that (§i, Yi)
~ ~i, ~



2.

14) 3 P, * X, = b3 p, A

15

satisfies the budget constraint if

t 't Yi,—l'

Observe that Py T Xy = Py * @ since X, satisfies the budget constraint

i
of the one-period economy. Recall that @, = A Y5 _1° Hence,
b
p, ~x, = (140) " p - x, 5 (1+0) T p-- @, = (1+p) T p Ay =p A ¥
t i i~ i i,-1 t 't 'i,-1°

for all t. Thus, inequality 2.14 is valid and (xi,Yi) € Bi(p,q).

Next, observe that X, solves the problem

~

max {V,(x) | b p. * X_= 5 P. A v, }.
i's £=0 t t e 1

This follows from the facts that Ui(x) =E 3 (l+p)--t ui(xt(st)) and that
"~ t=0

p, = (1+0) " p, for all t.

Finally, let «(x,y) € Bi (p,q). (p,q) clearly has the martingale

~ ~o o

property (2.2). Hence, it follows from lemma 2,12 that

¢ t Therefore by the previous paragraph,

§ P, = X = § Py A
=0 t-0

. t Ti,~-1°

< i £ .
Ui(f) = Ui(fi)' This proves that X, € gi(p,q)

N~

Q.E.D.

Proof of theorem 2.11 The budget comstraint for consumer i, (2.1), may

be written as



2.15)
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oo < o0 _
Zoppcx = 2 (qpyy F Py Ay T 9)Y F (gp R AO)Yi,—l'
t=0 t=0
First of all, I show that
E [qt+1(st+l) + pt+l(st+l) A (St+1) ‘ St] - qt(st) 2z 0 almost surely,

for all t. Suppose that this were not the case. Then, there would exist

t, ¢ and a measurable subset B of S such that Prob [st €B] >0 and

Elapyy,c(se4p) * : Pegp,k(Se+D) Ay (seq) | 8] - ap (s)) <0, for almost
every s_ € B. It follows at once from (2.15) that ?itc(st) = 0, for all
I —
s, € B and for all i. Since 2 ¥, = 1, this is impossible.
t i=1 itc
Next, I show that
Elapyy(spqp) + Py (Spgg) A (s s ] - qp(s) =0 almost surely,

for all t. If this were not so, there would exist t, ¢ and a measurable

subset B of S such that Prob [st € B] >0 and
Eldpy,cGeyp) * i Peat, ik Gear) AecGear) | 5] = g (sp) >0, for almost

every s, € B. It follows that the consumer could make the right hand side
of inequality (2.15) arbitrarily large simply by making th(st) sufficiently
large for all St € B. This is impossible since each consumer i is in
equilibrium at (%i,'fi).

This proves that

Elapyg (Seyp) *Peya(Seyg) Appr(seqn) | sl - a.(s) =0 almost surely,

for all t, which is the martingale property (2.2).
Q.E.D.
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3. The Lucas Model of Asset Prices

In this section, I relate Lucas' work to that of the previous section.
I show that Lucas' asset prices may be obtained from the Arrow-Debreu prices
just defined simply by renormalization.

First of all, I specialize the model of the previous section, so as to
obtain a model ﬁhich is essentially that of Lucas. Let there be only one
consumer and one consumption good, so that I =1 = 1. Let there continue
to be C assets. Because there is one consumer, his initial holdings must

C -
be the vector Y_1 = (1,...,1) ¢ R. I write this vector as 1.
u: [0,0) > [0,») denotes the current period utility function of the one
consumer. He discounts future utility at the rate p > 0, as before. Since
u 1is deterministic, random variation appears only in the assets, A(st), so
that I may identify S¢ and A(st). I call the resulting random variable

Ay = (Appseeashy).

denotes the range of variation of At'
Prices are normalized so that the price of the consumption good is always

1. Hence, a stationary price system is described by a function Q :4d - RE.

This function is assumed to be continuous. The price of asset ¢ at time t
i A).
is Q. (A)

Lucas' definition of equilibrium involves the notion of a valuation

. . . . . C
function. A +valuation function is a continuous function v : R.+ x d -+ R.

V(Y,AO) may be interpreted as the discounted expected value of the consumer's
current and future flow of utility, given that he holds the bundle of assets
¥ at time zero when the state of the environment is AO.

A Lucas equilibrium consists of an asset price system Q and a valuation

function v such that



-
3.2) v(1,A

18

3.1) V(Y,AO) = max {u(x) + (l+p)_l E[V(Y‘,Al) | AO] _— E‘R

and x + Q(AO) (v' - v) = A0 * v} and

-1 ->
Ape) +(1+0) T E Iv(1,A)) | Ajl, for all Ay € 7

C
0)=u(§

c=1

A Lucas equilibrium is really a temporary equilibrium. If one eliminates
the evaluation function from his model, one arrives at the following. The
consumer chooses an infinite horizon program of the form
(f’I) = ((XO(AO)’ YO(AO))’ (xl(AO,Al), Y1 (AO,Al)),....). Observe that

consumption and investments at time t depend on A ..,At. The consumer's

0*°

L) | x (Bgseensh) + QMAD « (v (Ayyeneshy)

budget set is Bi(Q)

= Yoo BgoeeesA 1)) S AL - v (Bg,eeA ), for all Ag,...,AL

and for all t}. His demand, gi(Q), is the set of solutions to the problem

o

max{E[ 2 (l+p)_t u(xt(AO,...,At)) | (x v) € Bi(Q)}. Equilibrium occurs if

t=0
Q is such that (f,r) € gi(Q), where Xt(AO"°"At) = i Atc and
-
Yt(AO,...,At) =1, for all AO,...,At and for all t. This equilibrium is

clearly a temporary equilibrium since the consumer faces a different budget
constraint in each time period. It is not hard to see that the price system
Q of a Lucas equilibrium is also the price system of a stationary temporary
equilibrium. (It is sufficient to use Blackwell (1965), theorem 6, part f,
in order to assert that a program which satisfies the Bellman equation, 3.1,
also solves the infinite horizon optimization problem. Aloisio Araujo also
has shown me a simple proof of this fact.)

By a temporary equilibrium, I mean an equilibrium in which there are no

forward markets and consumers have a different budget constraint in each period.



Grandmont (1977) has written an excellent survey of temporary equilibrium theory.
I now show that the prices of a Lucas equilibrium correspond to those
of an Arrow-Debreu equilibrium. First of all, I make the following

assumptions.

3.3) u: {0,») - [0,») dis continuously differentiable, bounded, strictly

increasing and strictly concave.

3.4) The transition probabilities of At are generated by a continuous
function F : & xd - [0,1]. F(A',A) = Prob (A= A { AO = Al.

3.35) The Markov process At has a unique stationary distribution.

I will assume that the At are distributed according to the stationary

distribution.

Assumptions similar to (3.3) - (3.5) were made by Lucas. I add the

following assumption.
3.6) A is compact.

By Lucas' Propositions 1 and 3, there exists a Lucas equilibrium (Q,v).

For each t and A, let p_(A) = (1+0) "¢ j—;@ A2) and let g, (A) = p_(8)Q(A).

This defines a price system (p,q). Let (E'?) be defined by ;;(A) = ZAC

c
-— -
and Yt(A) = 1, for all t and A.

Proposition ((x,vy), (p,q)) is a stationary Arrow-Debreu equilibrium.



Proof Lucas shows that Q satisfies the equation

. _ -1
du (7 Apo) @ () = (To) ~ Eldu (2 4;0) (Q(Ap) + ) | 451,

for all A, € 7 (See Lucas (1978), equation 6, p. 1434.) When written in

0

terms of 128 and U this equation becomes

9 (A) = Elq g (A q) ¥ pyg A p) Ay | A, forall t and A.

That is, (p,q) has the martingale property. Hence by lemma 2.13,

~oo

if (x,y) belongs to the Arrow-Debreu budget set of the consumer, (2.1),

then,

—
. P, (At) At 1.

IIA

=

Il ™8

p(A) x (A) =E
o t ottt .

I ™8

t

(Assumption 3.6 guarantees that these infinite sums make sense.) The program
_— _ -
(x,y) satisfies this constraint since xt(A) =A -+ 1, for all t and A.

N

since p,_(A) = (1+0) " du (%, (A)), for all t and A, it follows easily
dx

that (x,y) solves the problem

-

pt(At)At 13,

1A

max {E ; (1+p)_t u(xt(At)) I E ; pt(At) xt(At) E ;

t=0 t=0 t=0

Therefore, (;;;) belongs to the Arrow-Debreu demand correspondence.

Q.E.D.
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It is possible to obtain a Lucas equilibrium from an Arrow-Debreu

equilibrium. Add the following assumptiomns.

There exists r > 0 such that Ac z r, for all ¢ and for all A € &.
The support of the stationary distribution of At is «.

The second assumption means that if B 1is an open subset of RC which
intersects ¢, then Prob [At € B] > 0.

By Theorem 2.10, the economy has stationary Arrow-Debreu equilibrium,
(x,v), (p,q)). Let Q(A) = pO(A)_lqO(A). It is easy to see that Q is

well-defined and almost everywhere equal to a continuous function. Hence,
I may assume that Q 1is continuous. By Lucas' Proposition 1, there exists

. . C ] . .
a continuous bounded function v : R+ x 7 - [0,9) satisfying expectation 3.1,

with Q as just defined. It is not hard to prove that Q and v form a
Lucas equilibrium.
I am not the first to notice the link between Arrow-Debreu equilibrium

and Lucas equilibrium. This link is used by LeRoy and La Civita (1980).
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4. A monetary Model

I now define a temporary eguilibrium model with money and assets. It
seems to me that the martingale property is best discussed in terms of some
such model, for one normally thinks of the martingale property as referring
to prices of assets in terms of money. I show that asset prices satisfy the
martingale property, provided that the marginal utility of money is constant.

In a temporary equilibrium, prices and programs must be history dependent.
It is most convenient to allow them to depend on the infinite past. In order
to do so, I introduce new notation. 3 denotes the set of doubly infinite

paths {st} , where Se €5, forall t. s = (evens s_l,so,sl,....)

t = -
denotes a typical element of Z. s, may be viewed as random variable,

S, ¢ 2+ S. < denotes the smallest o -~ field on 2 such that all the random
variables s, are measurable with respect to /. & N denctes the smallest
og-field on Z such that all the random variables s, are measurable with
respect to B%t’ for n = ¢t. ‘Jt represents the information available at
time t. E[ - !—Jt] denotes the conditional expectation with respect to & e

Finally, o : 2 - Z denotes the shift operator defined by G(g)t = s

t+l
L xC LxC

The asset function A 1is now written as A0 : 2~ R+ , Wwhere R+
denotes the set of L x C matrices with non-negative entries. AO(§) = A(so),
where A is as in section 2. At denotes Aooct. That is, At(E) = A(St)'
At(f) is the matrix of asset bundles available in period t.

‘The utility function of consumer 1 1is written as Uy Ri x 2 >R,
uio(x,g) = ui(x,so), where u, is as in section 2. Uy gives the utility
from consumption at time zero. The utility of consumption at time t 1is

given by uit(x,s) = ui(x,st). Consumers discount future utility at the rate

po. p 1s the pure rate of time preference.
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I permit consumers to have endowment flows which are not associated
with assets. I do so because in an equilibrium all assets might eventually
belong to one consumer. In this situation, the economy would really have
only one consumer, unless consumers had income which came from some other
source than assets. Of course, a one consumer economy is not at all
interesting from the point of view of monetary theory, since money never

changes hands in such an economy.

e e .. . . . L
The initial endowment of consumer i 1is given by a function @ ¢ Z > R+

t .
W, = w.,,° 0O gives the

@ 0" “it i0

10 is measurable and depends only on s

endowment in period t.

(-]

Programs are now written as x = ( )t=0 and Y= (Yt)t=0’ where

x
~ t
X, z *—Ri and Yt : 2> RE are measurable with respect to a’t. Similarly,

a price system is written as (P,Q), where P = (P ):=0 and © i‘(Qt):;o

~ o~ t
L C .
P : 2R, and Q_: 2> R, are measurable with respect to </ .
t + t + ¢
Yy o1 ¢ Z- RE gives the initial investments of consumer 1 held at
b
the end of the period -1. +, is measurable with respect to o/ _

i,-1 1°
I now introduce money. I follow Friedman (1969) and allow money to earn
interest. It earns interest at a constant nominal rate r = 0. The total
nominal stock of money is one. Each consumer i pays a lump sum tax Tir
each period. I assume that 3 T, 1, so that the nominal stock of money
i
remains constant.

The initial money holding of consumer i 1is given by a function

Mi 1 7 » [0,1], which is measurable with respect to ”-1' Mi
3

_1$8)

b

is the quantity of money held by consumer i at the end of period -1.

Let the price system (P,Q) and the program (x,y) be given.



'Mit(P,Q, X,Y,*) ¢ % - [0,») gives the money held by consumer i at the

end of period t if he follows the program (x,y) when the price system

is (E,g). Mit is defined by induction on t. Mi,—l(g’g’f’x’f) = Mi,—l(f)'

~ o~ o~ N A~

YR VR VR N N~ e

+w; (s) - x.(8)) +Q.(s) - (y._;(s) - v (s)).

Given (E,g), the budget set of consumer i is Bi(Mi 10 Yy -1’5’9 )

LV VIR VRV

= {(x,v) | Mi t(P,Q,X,Y,S) =z 0 almost surely, for all t}. His demand
~o s

correspondence is the set of solutions to the problem

max {E[t§0<1+p>‘tuit<xt<§>,s~> | Goyp) € B0n vy 5.RQ0 b

An allocation is of the form ”(xi,Yi))i=I It is feasible if

? Xit(f) = i Atc(f) + i mit(f)’ almost surely, for all t.

A monetary equilibrium, given the initial conditions ((M, 2V ))?_ s
i,-1°"'i,-1"7i=1

consists of (((x.,y ))?_ , (P,Q)), where
~i’ai’71i=1" 23

. I . . .
i) ((Ei’zi))i=l is a feasible allocation,

ii) (§i,1£) € gi(Mi,_l, Y&,—l’E’Q)’ for all i, and

-1

iii) there exists b > 0 such that b =P __(s) £b

tk
and b = th(s) < b“1 almost surely, for all t, k and c.
The last condition excludes equilibria with prices which diverge to infinity

or converge to zero. It guarantees that the long-run average real rate of

interest equals the nominal rate r.
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The notation for an equilibrium that I have just introduced is
cumbersome to use. In subsequent sections of the paper, I eliminate assets
from the model. In a model without assets, I use the more convenient
notation ((fi)’ E, (gi)) for a monetary equilibrium. 1In this expression,
(51) is a goods allocation, P is a price system for goods and

M, = M

i ), where Mit(s) is the equilibrium money balance

M M “es
i,-1’ 710’ i1’
of consumer 1 at the end of period t. ©Notice that the vector (Mi) includes

I
i,_l 1=l.

the initial condition (M
The monetary model has other equivalent formulations, which are
discussed in section 6 and Appendix III. In section 6, it is pointed out that
the money balances may be interpreted to be credit balances. In Appendix III,
I show that r may be interpreted as a rate of deflation. I also show there
that one may introduce market determined interest rates.
Given a monetary equilibrium (((fi’ri))i=l’ (E,g)), it is possible to
define associated marginal utilities of money (}i)}=l’ where }i==(lit)t=0
and each xit: Z + (0,o] 1is measurable with respect to th. lit(ﬁ) is
the marginal utility of money of consumer 1 at time t. There is a technical
difficulty, which is that it is not obvious that the Xit(g) are finite,
Assume that they are finite.

It is not hard to see that the marginal utilities of money satisfy the

following relationm.

4.2) For almost every s and for all t,

~

N () 0 () 2 (1) T ED L (Q  + P

e+1,e F Pea1 A, ) L1068,

it+l

for all ¢, with equality if Yitc(f) = 0,
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Now suppose that the marginal utilities of money are constant. Then,

I
since 2 v (s) = 1, almost surely, for all t and c¢, (4.2) implies that
i=1 ite ©

Qt(i) = (l+p)—lE[Q I,Jt](g) almost surely, for all t.

t+1 T P Ao

In summary, constancy of the marginal utilities of money imply the
martingale property.

This condition guaranteeing the martingale property is the éame as that
of theorem 2.11. It is not hard to show that if the marginal utilities of
money are constant, then the prices (E’g) are simply current value versions
of the prices of an Arrow-Debreu equilibrium.

I do not know whether monetary equilibria exist. However, the existence
question is not really relevant here. I will argue that even if equilibria
did exist, consumers would not necessarily be self-insuring, so that the model
does not provide a justification for the martingale property.

If there are no assets, then monetary equilibria do exist, provided
that r 1is sufficiently small. This fact is proved in Bewley (1980a). As

I mentioned in the Introduction, the error in the previous paper is corrected in

Appendix II of this paper.
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5. An Example

The example of this section is of a monetary economy in which consumers'
marginal utilities of money are not constant in any equilibrium. They do not
even become constant asymptotically as the interest rate converges to consumers'
pure rate of time preference. In fact, there is an interest rate r Iless
than the rate of time preference and such that no equilibrium exists if the
interest rate exceeds r.

There are no assets in the example. The example may be modified so as to
include a small amount of assets. I do not give the modified example, for
assets complicate and obscure the argument. At the end of the section, I

discuss briefly what happens if assets are included.

The Example There is one kind of consumption good and there are two
consumers, indexed by 1 and 2. The random variables, s ., are independently
and identically distributed. S¢ takes on two values, a and b, each with
probability 1/2. The utility function of each consumer is u(x) = log (x+1).
Notice that utility is deterministic. The pure rate of time preference of

each consumer is 0.1. The initial endowment of consumer i at time t is

mit(f) = mi(st), where w, is defined as follows.
w (a) = o, (b) = 1,4, w(b) = w,(a) = 13/4. Notice that the total supply of

the good is constant, since mlt(s) + mzt(s) = 2, for all s and t. There

is one unit of money in the economy. The tax paid by each consumer each period

is r/2, where r is the interest rate.

Let ((Xl’XZ)’P’(Ml’MZ)) be a monetary equilibrium for the above example

and let (Xl,Xz) be the vector of associated marginal utilities of money.

~



In Appendix I, I prove that the A\, exist and are finite-valued.
In what follows, I make use of conditions (5.1) and (5.2) listed below.
If either condition were violated, it would be possible to construct a program

in the consumer's budget set fhat gave him higher expected utility. This

would contradict the fact that the x, are equilibrium programs.

~

5.1) For all t, for i = 1,2 and for almost every s,
du, (x. (s),s)
. > it it ~70~" -1
Nig(8) Pp(s) 2 dx (e ®) + D7,

with equality if xit(g) > 0,

5.2) For all t, for i = 1,2 and for almost every s,

A () 2 WL EN | #,1(s), with equality if

i,t+1

Mig(s) > 1, (s),

where _git(s) denotes the minimum balance of consumer i at the end
of period t. <Mit(s) is the smallest balance consumer i can hold and be
sure that with probability one he will never be obliged to hold negative

balances. The M, are defined in Appendix I.

(s)

Since each consumer is obliged to pay the tax Y/2 every period, -Mit
may be positive. 1In fact, the Mit(g) may be made arbitrarily close to 172
by letting r be close enough to the pure rate of time preference, 0.1. As

r approaches 0.1, each consumer's desire for money balances increases

without bound. This demand for money forces prices down toward zero, so



that the tax T/2 becomes infinitely burdensome relative to consumers'
monetary incomes, Pt(f) . wit(f)' It is for this reason that money does
not provide perfect insurance asymptotically as r approaches the rate of
time preference.

It is possible to bound -Mit(f) away from TY/2 in a given equilibrium.
By the definition of a monetary equilibrium, there exists P > 0 such that
Pt(s) z P almost surely, for all t, Since wit(g) = 1/4, for 1 = 1,2
and for all s and t, it follows that each consumer has an income of

~

at least (1/4)3_ in each period. This fact implies that

5.3) <Eit(s) = max (0,1/2 - @/é)r_¥g) almost surely for i = 1,2 and for all t.

This definition of a monetary equilibrium asserts that there is P
such that pt(s) < P almost surely, for all t. Also since (xl,xz) is
a feasible allocation, Xit(s) = 2 almost surely, for i = 1,2 and for all

t. Hence (5.1) implies that
5.4) Xit(s) = (35)—1 almost surely, for i=1,2 and for all t.

I now show that if 0 = r < 0.1, then consumers' marginal utilities of
money cannot be constant in a monetary equilibrium with interest rate r.

-1
Let & > 0 be such that & < 70.1 - r)(2.1 + %) ~. I prove that

5.5) there does not exist X > 0 such that Prob {s ] ]xit(s)-xl = \g

for i = 1or 2} = 3/4, for all t,



~n
A\

where Prob stands for '"'probability of."

Suppose that there did exist X as in (5.5). Let 7 i = {f [ [ on(f)-x |
=xege, for j = 1,2, and Mio(f) >-Mio(f)}’ where 1 = 1,2. Since
MlO(f) + Mzo(f) = 1, it follows from (5.3) that ZlU 22 = {f | Ikio(g) -
=\Neg, for i =1 and 2}. Hence, Prob (Zl U ZZ) =z 3/4,

Since MiO(f):> Mio(f) when s € Zi, inequality 5.2 implies that for

almost every s € Zi,

-1 -
Mo(® = () DT EDy) [ 2016 = (/2) ) .DTHOZ () + 200 (s)),

a _ b _
where Xil(g) = E[Xil ] JO and s, = al(s) and Xil(f) = E[Xil | JC

A
IIA

= I 44 _ b _
and s; = bl(s). Let s ¢ Zi. 1f | Xil(f) x| A ¢ and ]Xil(f) A X e,

then A(1l-¢)

A

Xio(f) £ (1+r) (lolfq'X(l+e), which is impossible because of the
choice of ¢. Therefore, either |Xil(§) -x|>Xe¢eor | X?l(f) - X ] >xe.

I have proved that Prob {f | lxil(f) -A] >Xxe, for i=1or 2}

= €/2)pProb (Zl U 22) = @1/2y(3/4) = 3/8. But by hypothesis, Prob {f | lxil(g)-x |
>\e, fori =1 or 2} =1 - Prob {g [ ] Xii(§) - X | =Xe, for i =1 and 2}

= 1/4. This contradiction proves (5.5).
.6) there exists no monetary equilibrium if r exceeds 0.1.

, N ; -1
Inequality 52 implies that E xit = (1-1) (1+r) Exi,t—l

t -
s....s - a7t e Mjo- Hemce, lim E X, =0 if r>0.1. This

t >
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contradicts the fact that the Xit are bounded away from zero (see 5.4).

Finally, I prove that

5.7) there exists r such that 0 < r < 0.1 and no monetary equilibrium

exists if 0.1z r =z r.

The idea of the argument is as follows. By inequality 5.4, consumers'
marginal utilities of money are bounded away from zero. Some consumer must
at some time have a marginal utility of money very near to the lowest level
it ever reaches. If this is so and if r dis close to 0.1, then it follows
that the consumer’'s marginal utility of money must remain near its minimum
level for a long time afterward. (This assertion follows from inequality 5.2.)
If the consumer's marginal utility of money is nearly constant over a long
period of time, then he does not protect himself against a run of bad luck by
increasing his marginal utility of money and so buying less. (Bad luck occurs
if the consumer's indowment is only 1l/4.) 1In fact, I show that the consumer
will with positive probability eventually hold negative money balances. This
contradicts the definition of a monetary equilibrium.

I now turn to the formal proof. Let A = min inf ess inf Xit’ where
- i t

ess inf Xit = sup {c > 0 | Prob [Xit(s) < c] = 0}. By 5.4, A > 0.

I first show that

5.8) Pt(§) s (211)—1 almost surely, for all t.
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Since xlt(s) + x2t(s) = 2 almost surely, for all t, it follows that for

each t and almost every s, there exists i such that xit(s) z 1. By

~

inequality 5.2, for this i one has A-Pt(§) £ Xit Pt(s) = (l+xit(s))_1'§l/2.

This proves 5.8.

I next prove that
5.9) Mit(s) = 1/2 - (8 r_l)—l almost surely, for i = 1,2 and for all t.

If the state Siel is bad for consumer i, then his endowment is

wi£+l(s) = 1/4, so that by inequality 5.8 he can earn at most (8_&)_l

by selling his endowment. Hence, if Siel is bad for consumer i, then
-1
= _T/o
Mi’t_'_l(f) s (1+r) Mi’t(f) /2 + (8 \) . But then, Mi’t_'_l(f) < Mi’t(f),

v

unless Mit(s) l/2 - (8 r A)—l. In fact, if Mit(s) < l/2 - (8 r_l)_l,

( . ) . - P
then Mi,t+K§) < 0 if K 1is sufficiently large and if St412 oSy are
all bad for consumer i. But St+l"""st+K may all be bad for i with
positive probability. Since Mi t+Y(S) is almost surely non-negative, a
’ ™o

contradiction occurs unless 5.9 is true.

I now choose an event and a time period for which the marginality utility
of money of one of the consumers is very close to A. Choose t such that
for i = 1 or 2, Prob {s I Xit(s) < A (1+e)} > 0, where & > 0 will be

determined below. Without loss of generality, I may assume that i = 1 and

t = 0. Let



)
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5.10) 25 = {s | A (s) < & (1+e)}.

By assumption, Prob ZO > 0.

Let & be a small positive number. § will be determined below. I

now show that the ¢ of 5.10 and the r of 5.7 may be chosen so that

5.11) 'Xit(s) = (1+8) A for almost every s € ZO if 0=t = 40.

~

Inequality 5.2 and 5.10 together imply that

5.12)  A(I+e) 2 Ay (s) 2 <—i+—§) t [(1/2)t A (9) + (1- (1/2)t)_>\_] , for

almost every s ¢ ZO and for all t.

The second inequality above follows from the fact that conditionmal on the
history (....,s_lso), there are Zt possible values of Xit’ each occurring
with equal probability and all at least as large as A.

A rearrangement of 5.12 yields Xlt(s) £ A+ 2t lK%i%) t (1+e) - q

A

40f /1.1\ 40 , 40 /1.1 \40 _
A+ A2 [(i;i) (1+¢) —l] . Clearly for given §, 2 [<l+£_> (1+¢) l]

< 8, provided that r is sufficiently close to 0.1 and e is sufficiently

small.

I now show that
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5.13) Pt(s) Xy (s) 3(8_})~1, for t =0,1,...,40 and for almost every

v

t
§€ZO)

provided that & is sufficiently small and (5.11) is true.

In order to prove (5.13), I express the equilibrium consumption of the
consumers and the price of the consumption good as functions of the marginal
utilities of money. I drop the variables t and S, for the moment, so
that X, is the consumption of consumer i, Xi is his marginal utillty of

money and P is the price of the consumption good, all at one moment of

time and in one state of the world. These variables satisfy the following

relations.
~1 . . .
(xl+1) = Xl P, with equality if X > o,
(x2+1)"1 =%, P, with equality if x, >0, and

Solving these relations, I obtain that le =(2/3)Xl-l, if Xl = &/3 Xz and
Px, = (& X\, A )_1 (3 A, = \,) if (l/$ A, A, =3 Px, 1is a non-

1 172 2 172 2 -
increasing function of Xl and a non-decreasing function of Xz. Therefore,

if A, = (146) A and X

1 2 A, it follows that

2
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Px, 2 (4(1+5).12)‘1 (3x - (1+8) M) =(1/4)(1+6)'1 (2-6) }fl > 3(8L)_1,

provided that & 1is sufficiently small. By the definition of A,

X2t(§) 2 A, for all t and almost every s. By 5.11, Xlt(s) = (1+8) A,
for almost every s € ZO and for t = 0,1,....,40. Therefore, 5.13 is true.

-

I now assume that & 1is so small that 5.13 is true. Also, I assume
that r 1is so close to 0.1 and ¢ is so small that 5.11 is true. I also
assume that r > 1/20. This determines r and e. Notice that r does
not depend on A or on the particular equilibrium in any way. r is a true
a priori bound.

. . . | 1 = = = =
I now derive a contradiction. Let ZO = {g € ZO I sl 52 e 540 a}t.

(s) </~ 8rv)™ 1 e

Clearly, Prob 2} > 0. I will show that M1 40

s € Zé- This contradicts 5.9.
By 5.9, M, O(s) 2(1/2)— (8:})—1 almost surely, so that Ml 0(s) <172
’ ~ ’ ~
+(8{})_1 almost surely. If s € 26 and 1 =t = 40, then wlt(s) = 1/4,

so that by 5.8, Pt(s) . mlt(s) < (85)_1 almost surely. Also by 5.13,

i

_l _
Pt(§)xlt(§) 3(80) almcst surely. Hence, Ml,l(f) = (14r) Ml,O(E)

(1+r) (172 + )Y - /- 38071

A

a’ -
C/Dr Pi(s)x,(s) + P (5) w;4(8)
-1 _1 -1 -1 . . .
+(8)\) = 7/2 + (8r}) - (8)\) almost surely. Continuing by induction cn t, one
. 1 -1 -1 -1
obtains M1 40(s) = 1/2 + (8r})) ~ 40(8\) " < 1/2 - (8rM) almost surely
s 2

for s € Zd. The second inequality here follows from the fact that r < 1/20.

Since inequality 5.9 has been contradicted, there exists no equilibrium if

0.1z r=r.



The results of this section remain true if a small quantity of assets
is included in the example. The proofs of 5.5 and 5.6 apply without change,
so that consumers are not self-insuring if r <« 0.1 and no equilibrium
exists if r > 0.1. Finally, no equilibrium exists if r 1is close to 0O.1l.
Asset prices are bounded above by r_l sup ess sup PtAt, which is a

-1~

. 1 . .
multiple of r "A *. Hence, assets cannot provide a reserve against a

sufficiently long run of bad luck.
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6, A Credit Model

In this section, I show that the monetary model is equivalent to a
model with credit. This implies that credit does not make consumers self-
insuring.

I continue to consider a model with no assets. Recall that in a monetary

equilibrium, ((Xi)’P’(Mi))’ money balances evolve according to the

~ ~

equation

Mg = (WM, g = Ty F P g~ %y
where P '(wit - xit) denotes the random variable Pt(f)' (wit(f)-xit(f)).

This equation may be rewritten as (M, - Ti) = (1+r)(Mi,t—1 - Ti)

it

+ P - x, ). Let C, =M, - T4 and interpret this as consumer 1i's

t (wit it it it

net credit balance at the end of period t. The above equation becomes

c. = C ) - .
T L P R A T T

The constraint Mit = 0 becomes

Cit = 'Ti‘

Ty may be interpreted as a legal upper limit on consumer 1i's debt.
This upper limit or debt may seem to be arbitrary and unnecessarily

restrictive. I now replace it by the constraint



6.1) 1lim inf (it(§) > - » almost surely.
t

This constraint simply says that consumers cannot engage in Ponzi schemes.
It seems to be a minimal restriction on borrowers. I call the model with

this constraint the unlimited credit model.

I do not know whether this model has an equilibrium. What is important
is that the example of section 5 shows that even if such equilibria did
exist, consumers would not be self-insuring.

Let ((fi)’P’(Ci)) be an equilibrium for the unlimited credit model,
<= where Cit(§) is the credit balance of consumer i at the end of period t.
Let (51, }2) be the associated marginal utilities of credit. These may be
defined as in Appendix I. They are essentially bounded and bounded away from
zero, I claim that assertions 5.5, 5.6 and 5.7 all apply to this equilibrium.

] ) , -1
Assume that r > 0 and observe that if Cit(g) < - r = sup ess sup Pt- wg
t

then consumer i would never be able to pay even the interest on his debt,

t)
so that he would violate constraint 6.1. Hence,

-1
C,,(s) = -1 ~ sup ess sup P_. . almost surely, for all t.
it & t it

6.2)
By the definition of equilibrium, Pt(s) is essentially bounded. The
wit(s) are bounded in the example. Hence, the right hand side of 6.2 is
finite. It follows that it is possible to define minimum credit balances

C;+(s)  (see Appendix I). C, (8) is the smallest credit balance that consumer



can hold at the end of period t and be sure never to violate condition 6.4,
If r =0, let glt(s) = - » . In any case, no equilibrium exists if
r = 0, for inequality 5.2 becomes an equality and implies that
1im E ?\.it = e,
B
In section 5, replace Mit and Mit by Clt and git’ respectively.
Also, replace the equation Mlt(s) + M2t(s) = 1 by the equation
Clt(s) + CZt(s) = 0. Finally, replace the restriction
Mit(s) = 0 by restriction 6.2. Then, all the results and arguments of section 5
apply with certain obvious changes. For instance, inequality 5.3 becomes

Eit(s) = - 1 -1_P, and inequality 5.9 becomes M, (s) = (8 r_>\_.)—1.

>



7. Money and Credit Do Not Provide Perfect Insurance

The problem brought out in the previous two sections is that in an
infinite horizon wodel with no insurance markets, only infinite financial
reserves can provide perfect insurance. This fact makes full self-
insurance infeasible, even if one allows consumers to borrow.

It might seem that one could avoid the infinite reserve problem by
using 2 model in which consumers have finite lifetimes. For instance, one
might use a version of Samuelson's model with overlapping generations (1958).
But if a consumer is mortal, he is sure not to be self-insuring, for near
the end of his life his effective rate of time preference would exceed the
interest rate.

Another objection to my argument might be that I do not allow credit
institutions to take risks. In the models of the previous section, lenders
take no risks at all, for I require that debtors never default. But it seems
to me best to make a sharp distinction between credit and insurance for the
sake of conceptual clarity. One can also make the following argument based on
the problem of moral hazard. A debtor might promise to behave so as to
default only rarely, but how would the creditor know when the rare events
occurred? If he could know, then specific insurance contracts could be
written.

My conclusion is that only complete insurance markets can provide perfect
insurance. One implication of this assertion is that the martingale property
of asset prices is wedded to the Arrow-Debreu model.

A series of papers have studied the extent to which money or credit

make consumers self-insuring. These include Schechtman (1976), Yaari (1976),
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Bewley (1977) and Grossman, Levhari and Mirman (1979). These papers

all studied the problem of one consumer. That is, they took a partial
equilibrium point of view. The general conclusion is that consumers can
insure themselves to some extent, but they cannot insure themselves perfectly,
except asymptotically as the rate of interest approaches the rate of time
preference from below.

I mention in passing that the example of section 5 is a counterexample
to the proposition that rational expectations equilibria give the same result
as do Arrow-Debreu equilibria. I have never seen this proposition stated
formally, but there seems to be a tendency among many macro-economists to identify
the two kinds of equilibria. For instance in a recent paper, Lucas says that
"one may sometimes (though certainly not always) think of contingent-claim
equilibrium as being determined via a sequence of 'spot' markets, in which
current prices are set given certain expectatioﬁs about future prices."”

(This quotation is from section 5 of Lucas (1980).) It is possible

to be more precise about the relation between temporary and Arrow-Debreu
equilibrium. If an economy has one consumer or many identical consumers, then
indeed a temporary equilibrium with rational expectations will normally be
optimal and so corresponds to an Arrow-Debreu equilibrium. However, if there
are diverse consumers, then temporary equilibria may not be Pareto optimal,
even if consumers have rational expectations and have access to perfect
capital markets. As I have just shown, consumers may not be able to insure
themselves perfectly. It is probably true that temporary equilibria in
stochastic models are almost never Pareto optimal when consumers are diverse,

although I have not proved this assertion. It may be true that temporary
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equilibria with rational expectations become Pareto optimal asymptotically

as one lets the rate of time preference go to zero. One can define a

form of equilibrium for an economy in which consumer's rates of time
preference are zero. I called this equilibrium stationary equilibrium in
another paper (1980b). A stationary equilibria is Pareto optimal. Tt is
intermediate between temporary equilibrium and Arrow-Debreu equilibrium.

A stationary equilibrium is temporary in that it involves no forward trading.
A stationary equilibrium is Arrow-Debreu in that each consumer has one budget
constraint for all time, instead of a different one in each period. The
constraint is that long-run average expenditure per period not exceed long-

run average income,
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8. A Short-Run Martingale Property

It is possible to justify a short=-run vérsion of the 'martingale
property, for money can provide nearly perfect insurance against every day
short-~lived fluctuations. I argued this point in a previous paper (1977).

As I mentioned before, this paper used a partial equilibrium model of

one consumer. In this model, money paid no interest, and prices, income and
preferences fluctuated according to a stationary stochastic process. I
showed that if the consumer's time horizon were sufficiently distant and

if his pure rate of time preference were sufficiently small, then his
optimal program would be such as to make him nearly perfectly self-insuring.
These results of mine are generalizations and interpretations of results
obtained by Schechtman (1976).

One could give a more convincing justification of the short-run martingale
property by taking the following general equilibrium approach. One should
prove that the monetary equilibrium of section 4 has a statiomary equilibrium
with interest rate equal to zero. A stationary equilibrium is one in which
prices and all other variables fluctuate according to a stationary process. One
should prove that as the rate of time preferences goes to zero, the marginal
utilities of money become asymptotically constant. Letting the rate of time
preference go to zero corresponds to speeding up the fluctuations in the
economy so that they become short-run fluctuations.

In orier to make this argument, one has to prove that monetary equilibria
exist when assets are present. As I mentioned earlier, I know that monetary

equilibria exist only when there are no assets. And in this case, I do not
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know whether equilibria exist which are stationary. It seems to me that

one must deal with stationary equilibria if one is to prove that the

marginal utilities of money become constant as the rate

goes to zero.

of time preference
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APPENDIX I

The Marginal Utility of Money

and Minimum Money Balances

I here prove that in a monetary equilibrum consumers have well-
defined marginal utilities of money and minimum money balances. Since
I use these objects only in section 5 and Appendix II, I make strong
assumptions which are satisfied in these two places. T assume that there
are no assets. Also, I make the following assumption which avoids measure

theoretic technicalities.

A I.1) S is a Markov process on a finite set S.

I am here using the notation of section 4. Recall that the utilities and

initial endowments are determined by functions u,: Rg

Y X S+ R and

Wy’ S Ri . Since S 1is finite, w; is bounded and hence all feasible

allocations are bounded. Finally, I assume that

A.T.2) for any s ¢ S and for all i, ui( *,8) = Ri -+ R 1is continuously

differentiable, increasing and concave.

Let ((xi)i=1’P) be a monetary equilibrium with interest rate r.

I first define the marginal utilities of money. I proceed by defining

T .
T-period horizon marginal utilities of money, A, and letting T go to

it’
infinity. The definition is by induction on T.
duyp Gy (90,9

Bxk = tk(§)’ for
k=1,...,L1, where t = O,i,.... By assumption A.I.2, xgt(g) is

0
For T =0, I let Xit(g) = min {a\
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well-defined. Given K?t’ let K (s) = max {K?t(f),(1+r)(1+p)_1E [K?tLyt](f)}.
it should be clear that Kit (i) = Kit(f) almost surely, for all i,
t and T.
I now show that the x{t(f) are essentially bounded, uniformly in
t and T. That is, there exists b > 0 such that xzt(f) = b almost
surely, for all t and T. By the definition of KIt’ it is sufficient
to show that the xgt are essentially bounded. To see that this is so,
observe that since the u, are continuously differentiable and the feasible

allocation (xi) is essentially bounded, it follows that the

u, (%, (8),8)
S are essentially bounded. Also, by the definition of a monetary
k
equilibrium, the prices Ptk(s) are essentially bounded away from zero.

These facts together imply that the th are essentially bounded.

it now follows that the limits xit(g) ;1m x (5) are well-defined and
finite almost surely. The Kit are the de31redmmargina1 utilities of money.

I now define the minimum money balances. 1 define T-period horizon minimum

balances and let T go to infinity. Again, the definition is by induction on

0
T. Let Mit(g) = 0. Suppose that M (s) has been defined. Let

A.1.3) M (s) (1+r) "} max {0,7,r - ess inf [P 1(s) 1.

”. 1 P17 1 t+1

I must now define the symbol "ess inf'". The random variable following

”’t
respect to s . Let f: Z R

ess inf in A.I.3 1is measurable with e+l

¢

be any random variable measurable with respect to Jt+1' For each

a¢ s, let fa(f) = E[f\,;t and s . = a](f)' Let
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esijinf f(f) = min {fa(f) \ a ¢ S and Prob [st+1==a1 St:=§£] > 07. Assumption A.I.1
£ .
implies that ess inf £ is well-defined. Clearly, £(s) = (ess inf f)(s) almost
Ji oy
surely. Assumption A.I.1 implies that if g: Z + R is A" measurable

and such that £(s) = g(s) almost surely, then g(s) = ess inf £(s)
~ ~ . y
t

almost surely.
It should be clear that Mit(s) S'Ti almost surely and that
T+1 T . s
M (s) = Mit(s) almost surely, for all T. Hence, the limits
Mit(s) = lim Mgt(s) are well-defined. The Mit are the desired minimum

T
balances.
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APPENDIX II

A Correction of a Previous Paper

In a paper called "The Optimum Quantity of Money" (1980a), I claimed
incorrectly that monetary equilibria exist for all interest rates less than
ﬁhe smallest pure rate of time preference of any consumer. The example of
section 5 above is a counterexample to this assertion. It is true, however, that
equilibria exist if the interest rate is sufficiently close to zero. The
origin of my error was that I did not realize that consumers can hold no
less than the minimum money balances which I define in Appendix I of this
paper. The actual error is the "hence" in the fifth line of the second full
paragraph of page 194 of my previous paper (1980a). I discovered this error
myself, but it was also pointed out to me by Martin Hellwig.

By correcting the error in my previous paper, I strengthen its main
conclusion and contradict a suggestion made there., That paper analyzes
Friedman's idea of the optimum quantity of money (Friedman, [1969]). Friedman
had suggested that if all consumers had the same pure rate of time preference,
then money should earn interest at that rate. He called the quantity of
money that would be held in that situation the optimum quantity of money.

I constructed a rigorous version of Friedman's model and showed that generically
the optimum quantity of money would be infinite and so could not be realized.

I also went on to suggest that if the interest rate were set sufficiently

close to the rate of time preference, then the allocation of the monetary
equilibrium would be arbitrarily close to being Pareto optimal. 1In fact, I made
this suggestion the thesis of the paper, expressed in the first paragraph.

The example of section 5 strengthens the conclusion that the optimum quantity



of money cannot be realized, but the example contradicts the suggestion that
Pareto optimality can be approached asymptotically. Recall that in the
example monetary equilibria do not exist if the interest rate is too close
to the rate of time preference.

I now give a correct statement of the theorem on the existence of
monetary equilibria (theorem 1 in my previous paper). I must make one

slight change in the model of the previous paper. 1In that paper, the tax

I
paid by consumer i in each period was T where T4 > 0, -ElTi =r,
and r was the interest rate. I now let the tax of consume;— i be
I
747 where iélTi = 1. 1I use the notation of my previous paper. 85 denotes
consumer i's discount factor applied to future utility. 5;1-1 is his

pure rate of time preference.

Theorem Suppose that assumptions 1-9 of Bewley (1980a) apply. Suppose also

that ¢, (a) 5 or al i an a. There exists ; > 0, epending on max .
h 1( Y#0 £ 11 i d h i 0, depending 8

i
and there exists § < 1 such that a monetary equilibrium exists whenever

.

0<r<r and 3<g; <1, forall i.

In proving the existence theorem in my previous paper, I proceeded as
follows. 1 truncated the economy, eliminating all periods after period N.
I further changed the model by giving each consumer one unit of utility for
each unit of money held at the end of period N. I then proved that the
resulting finite horizon economy had a monetary equilibrium. The key steps
were to prove that prices in these finite horizon equilibria were bounded

and bounded away from zero, uniformly in N. T then allowed N to go to

1

)



infinity and applied a Cantor diagonal argument to obtain a monetary
equilibrium in the 1limit.

The error is in the proof that prices are bounded away from zero. This assertion
is lemma 8 of the previous paper. Before stating this lemma correctly, I
recall some notation from the previous paper.

The exogenous process {snl is a Markov process which takes values in
a finite set A. The initial money stock of each consumer is fixed at the end
of period zero and is independent of the history 6f {sn} up to time zero.
Therefore, all allocations, prices and so on can be written as functions of the
history of the process from period 1. A typical history is written as
ays 8gyeaerd .

The correct statement of lemma 8 (of the previous paper) is as follows.

A.TI.1) Lemma Let RERERFE: be fixed and such that 0 < éi <1, for

I
all i. There exist ¥ >0, p € Ri and A >0 such that p >> 0 and the
following are true. Let (p,(xi)) be an N-period monetary equilibrium with
interest rate r, where 0= r=T. Let (Ki) be the associated vector
of marginal utilities of money. Then, pn(al,...,an) = p and

xin(al,...,an) = A, for all histories a -sa and for all n.

177"

Before proving this lemma, I recall some more notation and some results

from the previous paper. ain(al,...,an) denotes the marginal utility of
expenditure of consumer i in period n. It is defined to be the smallest

b h that aui(xin(al’...,an),an) = a (a a_) for all k
number o suc a axk = P (@1 ---08)5 B

where (p,(xi)) is as in the lemma.



I
w € Ri denotes a vector such that 2 wi(a) <<y, for all a ¢ A.
i=1
q axe q are L-vectors such that 0 K g Dui(x,a) << q, for
all ae A and for all x ¢ Ri such that 0 = x = . The vectors

xin(al""’an) satisfy these last inequalities, so that

A IT1.2) Ain(al,...,an)pn(al,...,an) = Dui(xin(al,...,an),an) >> q, for

all i, n and a ,a_,

1".. n
where (Ai) is as in the lemma.

It is also true that

-1 -
A.11.3) pn(al,...,an) = mix w, (al,...,an)q, for all TP RRRTLN and for

all n.

This statement follows from lemma 1 of the previous paper.
I use the following result, which follows from lemma 2 of the previous

paper.

A.I1.4) max ain(al,...,an) <b min ain(al,...,an), for all n and

a ,a

1,.-. n’

where b = max g&lﬁk
k

I also use the minimum money balances, defined in Appendix I of this paper.

Min(al""’an) denotes the minimum money balance of consumer i in the



N-period equilibrium (p,(xi)). Min(a a ) 1is the minimum money

1°°""?%n
balance at the end of period n when the history of the state of the

exogenous stochastic process is S ERREEL S Observe that

Min(al,...,an) = 0, for all al,...,an.
I use the following facts, which correspond to formulas 28-30 of the

previous paper. T have simply corrected these formulas by taking account of

“the minimum money balances.

A.T11.5) xiN(al,...,aN) = max (aiN(al,...,aN),l). If n < N, then

xin(al,...,an) = max {ain(al,...,an),

5i(1+-r)E [Ki,n+1(a1"" an’sn+1)‘ s, = an]} .

A.I1.6) xiN(al,...,aN) > 1 only if Min(p’xi’al""’aN = 0.

If n< N, then Kin(al,...,an)

> 6i(1+r) E [}\.i’n_'_l(al,. '.,an’sn—!-l) ‘ Sn = an]

only if Min(p’xi’al""’an) = Min(al,...,an).

A.11.7) For all n, kin(al,...,an) > ain(al,...,an) only if

Xin(al""’an) = (.

Proof of lemma A.II.l. 1t is sufficient to find N as in the lemma,

= -1
for by A.1I.2 I may let p = (A) '¢.
Let r >0 be such that (l-i-r)'1 > max §.. Let K be a positive
i

integer such that



A.I1.8) min (5 (1 + s
i

Let

. |

2 — - A ke -1

A.II.9) X =b+b(q-w)2(1+r)k1maxTi.
k=1

By assumption 7, T4 >0, for all i, so that A< e,
Let

A.II.].O) e = min q - u)i(a).
i,a

Since 'wi(a) # 0, for all i and a and since g >> 0, it follows that
Let r be such that 0< r < r and so small that
-1

ALY T oz A+ < cv? @ )

[

k=1

I claim that r and A satisfy the conditions of the lemma. Let

(p’(xi)) and (Ki) be as in the lemma. I must show that

A,11.12) xin(al,...,an) =N , for all i, for all histories a .,a

12°°°2"n

and for all n.

I prove A.II.12 by backwards induction on n. First of all,

53

e>0.



54

A T1.12 1is true for n = N. 1In order to see that this is so, fix
al""’aN and let i be such that Min(p’xi’al""’aN) > 0. By A.IL.5
and A.II.6, aiN(al,...,aN) = xiN(al,...,aN) = 1., Hence, A.ITI.4 implies
that @jN(al,...,aN) = b, for all j. But then by A.IIL.S5,

xjN(al,...,aN) =< max (b,1) = b, for all j. Finally, by A.II.9,

b= X. This proves A.II.12 for n = N.

Suppose by induction that A.II.12 1is true for n+1,...,N. I now

show that

-1 - -1
A.I1.13) Ei,n+t(p’xi;a1""’an+t) < max (O’Ti.- r ¢ (A ), for

t=0,1,...,N-n and for all i and al""’an+t'
I repeat the argument used to prove inequality 5.9 of the present paper.

N, for all i, it follows from A.II.2 that

1A

Since Aj 4y (39500053,,)
pn+t(al""’an+t) = (X)-¥g . It follows that a 1lower bound on consumer 1i's
income in any of the periods =n+1,...,N is r}Ii + e(X)-l, where Mi is
his money balance at the end of the previous period and ¢ is as in A.IIL.10,
His tax payments are Ty Clearly, if rMi + e(X)-l =TT, then he

can keep his money holdings positive indefinitely simply by never spending

money on consumption. It follows that the smallest non-negative number Mi

satisfying this inequality is an upper bound on M This number is the

—i,ntt’
right hand side of inequality A.II.13.
I now prove that xin(al,...,an) = A, for all i,n and S ERREPL N Suppose

that xin(al,...,an) > N\,for some i. Without loss of generality,I may assume
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that i = 1, so that
A.11.14) xln(al,...,an) > A
I prove that A.II.14 implies the following.

A,II.15) There exist i and a history a 117 following a such

-t -1
that Ay o4 (@psee2 ) 2 (;(1+1) DR :nd
. =12 - - k-1
Mi,n+t(p,xi,a1,...,amt) =7, - A D (g0 w (kzl(Hr) y, for

t=0,...,T, where T = min(K,N-n).

This statement leads to a contradiction. First of all, suppose that
T=N-n. Then, A.II.9 and A.II.15 imply that MiN(p,xi; al,...,aN) > 0.

But then by A.II.6, KiN(al,...,aN) = 1. However by A.II.9 and A.II.15,

My (Bproeeeoay) = (51(14-r))n-Nb-13: = b"1% > 1, which is a contradiction.
Suppose that T = K. Then, A.II.8 and A.II.15 imply that

Ki;n+K(a1""’an+K) = (61(1+r))—Kb-17C > N, which contradicts the induction

hypothesis. This proves that A.II.15 1leads to a contradiction and hence that

A.11.14 1is impossible. Hence, the induction step in the proof of A.IT.12

will be completed once A.II.15 is proved.

I now prove A.II.15. Let i be such that M, (p’xi; al""’an) =74

i,n
where a;s...,a are as in A.II.14. Such an i exists by the assumption that
I I
.z MiO = .Z Ti==1 (assumption 7).
i=1 i=1

. -1 N
I first show that xin(al,...,an) =b "N . Observe that A< Kln(al""’an)

= max(aln(al,...,an),51(14-r)E[xl,n+i(a1,...,an,sn+1)] s, = an])

1A

max(“ln(al:---:an);él(L+r)7:) = ayp(3y5..-52,). The second inequality
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follows from the induction hypothesis on n (regarding A.II.12). Hence by

-1 -1=—
A.II.4 and A.II.5, Kin(al,...,an) = ain(al,...,an) =b aln(al,...,an):>b A
I have now proved that i exists such that the inequalities of A.II.15 are

satisfied for t = 0.

I now prove by induction on t that a exist as in A.II.15.

SRERREFL NP
Suppose that the conditions of A.II.15 are satisfied for t no larger than

some non-negative integer, call it t again. I may suppose that t < T.

-—12 - -, ¢ k-1 -1 —.-1
Then, Mi,n"'t(p’xi;al’ AL ’an"'t) E Ti = >\‘ b (q d U)) (kzl(l—‘.r) )>m3x(0;’1'i =T G(K) )'
The last inequality follows from A.II.9 and A.II.11. Hence by A.II.13 and

AIL6, Ny e @poerna ) = 8 (BTN, g @reesan oS i) | Sore ™ 2l
-1
so that for some an+t+1’xi,n+t+1(a1"’"an+t+1) > (5i(L+r)) Ki,n+t(a1""’an+t)
-(t+ .
= (61(1+r)) (t 1)b 1%. . The last inequality follows from the induction hypothesis
on t.

-1.2 -
I now show that Mi,n+t+1(P’Xi’al""’an+t+1) =Ty - N bT(q . @)
t+1

(k§1(1+r)k-1). if “i,n+t+1(a1""’an+t+1) < xi,n+t+1(a1,.,,,an+t+1), then by
A.11.7, xi,n+t+1(a1,...,an+t+1) = 0, so that

My prea1 (Po%58y500003 4 00) 2 (1+r)Mi,n+t(p,xi;a1,...,an+t) - T,

= ()i, - b2 (q - ) (k§1(1+r)k'1)] -rTy oz, -7 % (q - fu')(Ei(Hr)k'l).

The third inequality follows from the induction hypothesis on t.

Suppose now that ai,n+t+1(a1"'°’an+t+1) = xi,n+t+1(al""’an+t+1)'
. -1—
Then,by the choice of an+t+1’ai,n+t+1(a1""fan+t+1) >b "A. It follows

from A.I1.4 that min a, 1) > b-z'x, so that by A.II.3,

1,1 B B

2 -
b~ X 1'c_1 Hence,

Prte+1(317 - 7 3pne41) = Prtes1 (8170 - 2301

2--1~—- -
xi,n+t+1(a1""’an+t+1) =b N "(q* ). It follows that
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My e (%52 ) = (WM L (Bexgsag,eea ) Ty
t .
21 — - 12 - — k-1 2-1 - —
-b AT (qew) = (L+rﬂ7i = ATb (qgew) Z (I+r) 7] -TTy =b AT (qegy) = T;
k=1

£+
-l @e5) 2 (oL
k=1

This completes the proof that the two inequalities of A.II.15 are
satisfied for t+l, and so completes the induction step in the proof of A.II.15.

Q.E.D.

This completes the correction of the proof of the existence theorem in my
previous paper. The other arguments and results in the paper are true,
provided that cerzain easy adjustments are made in order to include minimum

money balances, For instance, inequality 9 of that paper should read

Kin(al,...,an) > 5i(L+r)El[Ki,n+1(a1,...,an,sn+11 s = an] only if

Mtﬂ (p)xi;alj--c)an) = Min(p;al,..-gan),

where Min(p;al,...,an) is consumer 1i's minimum money balance when the price

system is p.
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APPENDIX ITI

Two More Models of Money and Credit

The monetary and credit models of sections 4 and 6 are somewhat
mysterious. For one thing, the interest rate is not market determined.
In order to give more insight into the models, I describe two other models,
one equivalent to the monetary model and one equivalent to the model with

unlimited credit. I exclude assets from the models.

Deflationary Model: Friedman (1969) suggested that the government

could arrange for money to bear interest simply by steadily contracting

the money supply and so causing a steady deflation. The model of section

4 is equivalent to such a deflationary model. In the new model, money
bears no interest and the tax of consumer i in period t is rTi(1+r)—t,
where T is as in section 4. Let m be the money holdings of consumer

i at the end of period t. Then, m . evolves according to the equation

- r’l:]._(1+r)--t +p, - (0, - x.),

m, .
it it-1 t it it

where P, is the price vector at time ¢t.

Let ((xi), P, (Mi)) be a monetary equilibrium as in section 4. Then,
((xi), P, (mi)) is a monetary equilibrium for a deflationary model, where

_ -t _ -t
P, = (1+1) Pt and L (1+1r) Mit'

A Model with Market Determined Interest Rates: I now show how to

introduce market determined interest rates. Consider the model with unlimited
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credit, which was introduced in section 6. Change this model by normalizing
the price of the first consumption good so that it is always one. The
credit balances of a consumer may now be thought of as 'real balances,

Let Wit be the real balances of consumer i at time t. Wit evolves

according to the equation

A III.1) Wit = (1+rt) Wi, +p-w,, - x..),

t-1 t it it

where P, is the price vector at time ¢t and r, is the interest rate

at time t. The constraint is

A.III1.2) 1lim inf Wit(s) > — =, almost surely.
£t =

I show how to pass from an equilibrium for the credit model,
((fi)’ E, (gi)), to an equilibrium with market determined interest rates
((Ei)’ (E,E), (Hi)), where r = (ro,rl,...). By definition, the prices
Ptk(g) are essentially bounded away from zero. Let pt(g) = (Pt1(§))_1 Pt(g)
and W, () = (P,;(s) 71 ¢, (s), for €= 0. Let W=y
Multiplying the equation Cit(s) = (1+r) Ci,t—l(f) + Pt(f) . (mit(f) -

~

-1 )
xit(f)) by (Ptl(f)) , I obtain

AIIL.3) W, (s) = (Mr (8)) W;  (s) +p.(s) « (o (s)

- xit(g», where
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r(s) = (@ ()R (s) (1) - 1.

~

(In order to interpret this equation when t = 0, let P—l,l(f) = 1.)
Equation A.III.3 is simply equation A.III.1. Since the prices Ptl(f)
are bounded and the Cit(f) are bounded away from minus infinity, it
follows that the constraint A.III.2 is satisfied.

This new concept of equilibrium is still somewhat mysterious, for one
such equilibrium corresponds to each level of r in the credit model with
no debt limits. Hence, the interest rates rt(s) are only partly market
determined. 1In order to see that this is so, suppose that there are many
consumers and that the random disturbances experienced by each consumer
are mutually independent. Then, Pt would probably remain nearly constant,
so that r, would nearly equal r.

r 1is perhaps best thought of as an asymptotic real interest rate

which is determined by custom and perpetuated by expectations.
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