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1. Intraduction

This paper presents an approach to non-linear optimization problems
in which the objective function is of unknown functional farm and expensive
to evaluate, There are several types of problems in which the difficuley

and expense of evaluating the objective function is a primary issue.

Dne example of interest is the use of simulation models for system
aptimization, A typical question facing the user of a sTmulation is; '"'"What
is the optimal operating point fer this system?” This is a complicated
non-ltinear optimization problem because the objective function cannot even
be written in closed form; it is enly evaluated by rumning the simulation
model. This is often gquite expensive, both in terms of analyst time and
computer time, so the presence of a budget constraint in the gptimization

iz a very real element of the problem,

Most approaches to the optimization of smulation models have been
based on direct-search non-linear prograsming {NLP) algorithms or on
response surface methods, A& concise summary of procedures is provided by
Farrell [4). MHyers (7] discugses the response surface metheds in detail,
and Smith [13] has done empirical comparison of several methods. Because
such procedures were originally developed to be used in an environment
where evaluation of the objective function to be optimized is not costly,
they tend to reguire a large number of éuch evaluaticons. While the number
of such evaluations required in any particular applicaticn depends on &
number of factors, including how g&cd a starting solution is available, it

is not uncomzon to require several hundred function evaluations, and thus



these aloorithms may not be implementable iIn a practical situation where
each evaluation is a simulation experiment costing hundreds or thousands

of dollars.

b second example of the general problem class of interest is a
situation in which one wishes to gptimize a function whose arguments are
the optimal solution{s] to complicated subprobliems, themselves requiring
an optimization, ln this case, evaluating the objective function reguires
selution of one or more optimization subproblems, which may be guite expen-
sive, A good example of such a problem is 3 network design problem in
transportation systems in which the designer wishes to select opiimal
capacity additions to a network. The objective function is usually total
cost of travel over the network, which is te be minimized. However, this
cast is a Functioq of the flows on arcs of the network, and if there are
congestion effects, finding these flows for a Tixed network is itself an
HLP problem. Thus, to evaluate the objective function of the network design
problem, one must solve an MLP to assign flow to the network. Froblems of

this type are discussed by several authors, including Abdulaal and LeBlane [1].

As with the nptimizati%n of simulation medels, the presence of a
hudget constraint for finding the optimal solution is a very real element
of this probliem, especially for sizable networks. The premise of this paper
is that to deal effectively with such optimization problems, the budget
constraint must become an integral part of the algerithm proposed for seeking

the optimal soclution,

The approach suggested here is to adopt a perspective on the problem
based on statistical decision theory. The decision to be made by the

anzlyst is the choice of the optimal solution vector {or, as we shall see



latar, a characterization of this solution in terms of parameters of an
estimated function), Before making this decision, the anzlyst has the
option of performing experiments {evaluations of the objective function)
at selected points in a feasible region. These experiments provide
additional information about the function, and about the location of the
unknown optimal sotution., The analyst can choose to perform additional
experiments until either: {T} the experimental budget is exhaustad, or
{2) the expected information gain from an additional experiment is less
than the cost of that experiment. The key points in the prucedure.are the
method far approximating the unknown objective function, the means for
evaluating performance of a particular additienal experiment, and the method
of selecting the next experiment from among a set of possible experiments

which could be performed.

Because we are approximating the unknown objective function with a
fitted function of known form, this methed is similar to response surface
methodology [7). However, our perspective on the problem is basically
different, Traditional NLP and response surface methods are ariented strictly
to finding an optimal solution. Minimizing the computational cost of finding
the solution is certainty a secondary objective, but the overriding concern
is with finding the solution {at least to within scme srall error tolerance).
What we are suggesting is that in many cases, the analyst may be willing {or
may be forced)} to settle for a sub-optimal solution, but is interested in
finding the best soiution possible within a limf ted experieental budaget,

This perspective, and the statistical decision methodolegy used o implemsnt

it, differentiate this approach from eartier procedures.
Pp P



Section 2 of the paper provides a more formal definicion of the
prablem, and describes the progedure for salving it. Section 3 discusses
empirical results {rom testing the procedure on several known functions.

Conclusions are given in Section &,

2, Froblem Defirnition and Solution Pracedure

] - e =
Let xgR , ¢:Rn+ﬂ. U represents the unknown function to be minimized

by selving problem (P):

(P min  Hlx).
x

¥ s assumed to be continuous, differentiable, unimodal and comolicated in
the sense that the cost of computing a value of ¥ for 3 given x is of con-
cern to the analyst. The cost per evaluation, ¢, is assumed to be constant

and known, Furthermorz, W is assumed to take on values in the same units

as ¢, so that they might be compared (i.e, if ¢ is in dollars then so s 9).

We assume that the analyst can perform at most N evaluations, i.e.

he faces a total budget B where:

cN < B <c(i+l) ,

This budget constraint is a very real aspect of selving many problems. When
¢ is very smalt rzlative to B we don't observe such 3 constraint, because

in 81! likelihoad it will not be active. However, such a constraint is
often binding on the analyst, and in these cases the real gbjective is to

find the best solution pessible to (P}, within the available budget.



Let x*.be the optimal solution to {P). 3hi1e it is true that
Tix") = 0, since we do not know what G{x) is, we cannot easily usea such a
first order condition to find the optimum. Instead we will approximate %(x}
with a function of given functicnal form and optimize the approximating
function. Feor a particular approximation, this yields a point X. As we

improve the approximation, we will generate a sequence {ET} converging to x*.

Let the approximation function f(x,2) be as follows:

fix,a} = a +a” =+ k"o =
(x,@) = o o7 %+ 2,

n N . 1
where QODER, ] DER and o is an nxn symmetric matrix. Thus, the parameter

vector @ is of dimension k where k = [n{n+3)/2] + 1. If f(x,a} is strictly
convex in x {i.e, o positive definite} then its minimizer Xle) is a
continucus function {from ak to 8"} of u (see [2]). Given our previous
specification of f{x,a), Q{a} is given by:

-1
x{ot) = - o .

[ 3 '0
~ oo o
Notice that the pre-image of x{a), I'{x) = {aeR™[x=x{a)}, is nron-empty
since & = -x, @ = I a_ =2, always belongs to I'{x) for any arbitrary
value of a. Furthermore, I'{x) is a point-to-set map; & o is totally

irrelevant to the computation of x{a}, and may be picked arbitrarily.

Therefore, there exists o el {x*}.

Thus, for some ¢, fix,a”} has the same optimal solution as W{x}.
Notice alse that for any afl{x"), the optimal solution to f{x,8} corresponds

to a non-optimal selution to (F). Since x{a) is continuous then sequences



of o converging to @ will generate sequences af % converging to x*. Thus,

My

the problem of optimizing ¢{x) can be reposed as one of optimizing T{a),
where

y, ”~

Ylad = pixlw),
over aeRk.

At any stage t, let Et be the candidate for & . Our objective is to

proceed sequentially Tn driving at to & . Consider the problem of minimizing

the following function

(P} min J (o« - St}' Al - at} £ (o |z)ea®
“t
where z is the vector of parameters for the density £ on @°, and A is a
positive definite matrix. The Function {&* - at" Ale™ - @) provides a
measure of the penalty incurred if & is the coptimal parameter value and we
chabse to stop search?ngtand accept our estimate &t as the optimal parameter
value. Minimizing this penaliy corresponds to our objective of creating a

~ x
saquence of M converging to o .

t

We have thus cast the problem of finding o as a statistical decision
problem. In the terminciogy of statistical decision theory, the function

(@@ - a)” afe” - &) is termed 3 loss function, and the optimal value of

(P”) is called the Bayes risk, o{Z}, against the distribution £ [3]. ti
general, one would like to have A reflect properties of y. However, since

t is unknown, A is salected arbitrariily to be the identity matrix,



In decision theoretic terms, the decision to be made is the value we
wili use to estimate a*. We can view the sequence of & as being the
estimates arising from a2 linear regressiaon process. Under appropriate
assumptions, &t will be the estimate of u* which minimizes the Bayes risk.
Tn this sense, 1t wilt be the eptimal decision at stage t. We now discuss

the nature of the assumptions under which this is the case,

Let
Y, = ¢{xt] o,

whare X, = {xit,...,xnt}' ER“ and n, is a normally distributed random
variable with zerg mean. HNote that this is & geaneral formulation which
admits both deterministic and stochastic problems. If the function Pi{x)
may be observed without error, Ng has zero variance and becomes irrelevant,
However, in many situations pf{x) cannot be observed directly, and we must

be satisfied with "noltsy"’ observations.

Define
hl ® xz E's xzf
My e N2 o 0 *m
xt = - . . . .
1 xz X x2
e © 7 Fae It t72t © 7 " 7 nt_J
| —

The data matrix X© is txk, where k = {n{n3)/2] + I, and therefore we can

express f{x, o) far xJERn as:



Fix., a} = ¥,
{XJ } i@

where xj 15 the jth row of xt for t > j. At stage t we have observations
t . .
{xT, yT}T=] that say be written as a data matrix Xt and dependent observation

t .
vectar y = {y],...,yt} . .

We will assume that this constitutes a k-dimensicnal Normal regression
process {see [8], Ch. 13) with parameters (o, h)} where h is the {unknown)
precision of the process, We further assume that {aﬁ, h} is distributed
Mormal-gamma with parameters &, v, X°X and & (see [8], p. 343}. After t

observations:

ve = O - x50 " - x5 )/ (k)
a, = (x5 ey

and
6§ = t-k

The fact that the loss funmction Tn {P7) is quadratic means that the

Bayes risk is [3]:

c(Z) = tria Eyixftov{u|x, v}
where Cov(') deno<es the covariance watrix, and Eyix[*] denotes the expecta-
tion with respect to the distritution of y given X. Since A =1 in

our analysis, this may be simplified slightly to



{?]_ p(£) ='tr{Ele[Cov{a|K,y}]} ]

If @ is the result of a Norma] regression process, it can be showun
that after t observations:

@) £, . [eovilalx®, vOI = v [ xB17h

y X
Substituting (2} into {1) provides a value for pt{g}, the Bayes risk after

t observations,

n, A,
To the degree that f approximates § correctiy, ptfg} approximates the

expected foregone improvement to ¥ if we do mot cantinue with the sampling
process. Eut what if we were to continue? The assumptions made sbove altow
us to compute a pra-posterior risk EEE, %) which (s a function of the next
point xeR" at which we would sample, This follows the same formula as (1)
except that the expected covariance term must be computed based on a pre-
posterior analysis (i.e. before observing Yyg 10 response to xt+t}' It

can be shown [8) that the pre-sosterior expected covariance term is:

t I~ v t Lt
o,y =x at} {y =X at}

PP SO S | Tovroly, o !
) = (XY (x"}) - [{x*) (X ]'xt-!'lxt‘i“i} } t-k-2

ﬂ(xt+l

P . t+1 . .
This is clearly a8 function of xt-l-l’ the t+15t row of ¥° , which is generated
by the point xt+]ERn. The pre-poesterior risk (i.e,, the best estimate of the
Bayes risk that will ke computed after obsarving {xt+1’ Yt+ll} is

Bea € %) = erli ()],
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Since Pt+1(5’ x) is the pre-posterior risk as 3 function of the next

point to be sampled, we have two obvious, but different possible procedures:

1) pick that point xeR" that minimizes o, , (£, x) and evaluate the

t+]

risk at this point:

i

ﬂ_,. Ead ~
2) evaluate pt+i(£, x) at x = X, x{atﬁ.

The first procedure would be optimal if we were employing the correct
structural mode!l in our analysis. Of course, in general we are not; we
do not assume that ¥ is quadratic, The second procedure recognizes that
;t embodies useful information since it {presumably) approximates x",
If the approximation is poor, however, sampling at ;t may be worse than

employing the first procedure. We shall present empirical results in

Section 3 on the relative effectiveness of the alternative procedures.

Thus, let the pre-posterior risk Et+1{53 be:
1 T
) min p . {£, x}
xER
T
Peey 18 = 4 Coer
I‘L, "~
TR
and the t+) candidate for sampling be:
r .Y
arg min p__ (€, x)
xER
* =
X = or

bl

respectively.,



[}

¥
Since 2, ., (&) provides the best estimate of what pt+]{E} will be after

r+1
sampling at §t+t’ then we will only proceed to stage t+] {i.e. sample at
A4 .
xt+]] if

" -
30 p &) >p,, B)re,

(£), exceeds the cost of sampiing, c.

",
i.e,., if the predicted gain, ﬁtfg} " e

- )

If condition (3} fails to be met at some t < N, then x [s taken to

- . - *
be x, = x{at}. 1€ {3) is met for all t < N then x 1is taken te be

g, = x{a_) and the difference o (£} - E; (E} - ¢ provides the marginal
N M N N+1
gain from relaxing the budget constraint enough to allow arother experiment.

In summary, the algorithm can be viewed as follows:

t
STEP O:  Read to points {(xT, yT}} ® to initiate computations: et
T=]
STEF 1: Compute G Ry
= STEP 2 Compute p (&), 8, (E), x4
¥ -
STEP 3: If thE] - p_+]{E} > ¢ and t < N then
[
a)  ter+l
b) ob =%
ooserve Yt at xt = xt

¢) go to STEP 1

Fat

e
else, stop: x = X,
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3. Testing the Technique

The procedure cutfined in Section 2 was tested by applying it to
three non-quadratic functions. For all of these experiments, it was assumed
that the function values could be observed withtout error. The functions

used were the following:

, o 3.2 1 22
(&) #ifx], xz} = (1 2x] T KXy T FX] F3 le .

2,2
1)

(5)  9,{xys xp) = 1000x, - %207+ (0 - x)?,

% 2
(6)  9ylx). xpr o) = 100 - & 7 ¥ixpe %1705

Equation {4) is agquartic with moderate curvature in cowparison to
{5} which is the well-known Rosenbrock funmction [9). Both functions have
a minimal value of 0 at x = {1,1), The Rosenbrock function is particularty
difficult due to its rapid functional value change {e.g. ¢2{5,‘5} = 40,016}
and its peculiar level set properties {see [5], p. 196 for a diagram of this

-—

funetion).

The third functicon is essentially an upside-down normal density func-
tion. The parameter g will be varied in tha tests to provide further
information on properties of the proposed technfque. This function is not
convex; however, it is pseudoconvex. The function resembles a bowl with

an extensive "1ip". Again the minimun value of zero Ts attained at x = {1,1].

It is assumed that the analyst can pick a region F over which to place
the starting experiments, This region was also used to constrain the mini-

mization of 5 {£, ») when the first pre-posterior computation precedure

t+]



outlined in Section 2 was employed., The assuwrption that an znalyst can
reasonably pick such 2 region is not very restrictive, since one generally
has scme feel for where the optimum is likely to ke, if only in 3 vague

sense.

The region picked was [-5, 5] x [-5, 5]. Eight Initial exparimentai
points were placed at the corners and midpoints of the houndaries of the
region, and a ninth point was placed at the center {0, 0), Nine points
were used since far n = 2 we have k = &, thereby requiring t > k+ 2 = 8
from the formula for A (x) given in Sectien 2 above. Since we wish to
compare accuracy of the procedures, the marginal cost of experimentation

{c) was set to zero, and the maximum number of experiments, N = 20,

Table 1 provides a summary of fifteen experimental rums; the first
column Tndicates the function used. Three types of runs were made. The

l£) as

e
second column carresponds to computing the pre-posterior risk pt+]

min Et+1(E’ %) (where F = [-5, 5] x {-5, 5]}, The third column examines
xeF

A,
the alternative procedure of evaiuating ¢ (£, %) at ;t and performing the

t+1

—

next experiment aft X - In the fourth column we extend the third cotumn
results by restricting the estimation of f to be quasiconvex (see [6]).
Ex ante, one would expect this to help the process, by sharpening the

specification of the candidate optimum, We see, however, that this

is not always true,

Three implications can be drawn frem the resuits in Table 1. First,
given the typical values of the initial experiments, the minimal amount of
structure in the problem, and the very limited experimental budget, all

procedures do reasonably well. The values of the starting experimental points
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for wl ranged frem 1 to 7396, and those for @2 ranged from ! to 20016. 9n
the other hand, the typical values for w3 reflected mostly the flat portion

of the function, providing little curvature information.

The second implication is that the procedure of sampling at the pro-
posed optimum appears to dominate the procedure of picking the point that
(£, x). This reflects two impertant aspects of the analysis:

e . W
minim
i izes pt+]

- - Fl - q" ; "
1. Since f s an approximation to ¥, © {£) may be a poor estimate

e

A, .
of p_ . {E] and x may be a poor estimate of the best point to

r+1 t+1

sample at next when the first procedure is used. This is because
we do not have the "correct' structural model when we use T.
Thus, the regressicon model i3 misspecitied, vicolating the assumptions

on
under which o (£} is the minimum risk.

t+1

Z. f the optinmum-sesking procedure works, in the sense.that Pt
generates {;T} with decreasing ® vatlues, then clearly each ;t
is & very worthwhile place at which to sample, Following such a
- procedure reflects an attempt to incérporate intg the search

process the added information that x embodies,

The third implication concerns the results of column EOur. Restrict-
int the estimation of f to be quasiconvex appears 0 be a useful idea if the
function has reasonably strong curvature (e.g. Wy, &y, and ¢3 for o = 1),

{On the other hand, this restriction appears to be counter-productive when
the function is '"'tlatter’’. If we horrow the rocions of "peakedness' of a
distribution from statistics, it would appear that the more leptokurtic
{highty peaked} a function, the more valuable is restricting the estimation,
while the more platykurtic the function, the less valuable {and, in fact,

passibly counter-productive) the restriction is.



We note that there is no guarantee that any procedure based on drawing
finlte size samples will be an always improving {i.2., 8 continuously con-
verging) procedure. The initial selection of experiments can be very in-
fiuentTaf, singe -mly by taking large random samples might such influence

be damped. Clearly, hawever, the procedure ocutlinad above is not con-

structing a random sample of xaﬁn; rather, 1{ is used to compute the

5t
“rir=t
next x to be sampled [this is true for both procedures of updating

"

p. . (E)). Thus, this is a limitation, or sensitivity of the procedure. Of

t+]
caurse, various hedristics suggest themselves. For example, cne could stop
the process f sampling leads to an increase in the observed # value, or

allow the procedure te proceed as described sbove and then scan the results

for the minimum, Hejther of these variations appears justifiahle strictiy on

theoretic grounds, but may be useful in specific situvations.

4. Summary and Conclysions

This paper has addressed a class of MLP problems in which the objective
function to be optimized s expensive to evaluate. These problems are aften
ores in which the objective function cannot be expressed in closed form; two
examples are optimization of a response from & simuiation madel, and NLP
probiems which contain other NLP's imbedded in them as subproblems, In

such cases, the avallable budget with which to conduct a search for the

optimum can be of grest iTportance.

A method has been suggestad for incorporating this budget comstraint
directly intoe the search procedure by posing the problem in the context of
statistical decision theory, The analyst constructs an initial astimate of

the optimal solution by estimating an approximate response functien. This
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estimate is then used to help the analyst select a desirable point for the
next experiment {evaluation of the objective function), and the information
thus obtained is used to update the estimated response surface, This, in
tern, leads to a ew experimental peint, and the process repeaks., The process
continues in this fashion until the expectad gain in information from the
next experiment 15 less than {he cost aof evaluating the objective function,
gr until the budget is exbausted, whichaver occurs first., The proposed
procedure cannot be guaranteed to find the optimal solution, but it is really
solving a somewhat different problem, that of finding the best sn{uticn

possible within an available budget,

If termination is due to the budget constraint, the expected value of
sample information from the next potential (but unperformed) experimant pro-
vides sensitivity information en the value of relaxing the budget constraint.
This is useful in a3 practical context, because it provides the analyst with
an idez of how valuable one additional experiment might be. Empiricatl tests
of the general methed on three known functions have indicated that it per-
forms effectively. Two specific procedures have been tested, involving
different criteria for selecting the next experiment. The procedurs of
sampling at the indicated optimum of the cﬁrrent response functicn seems to
deminate the procedure of minimizing expected loss over some feasible
region. Furthermore, if one expects significant peakedness, restricting

the approximating function to be quasiconvex appears to be very useful.

The previous discussion leads to a general conclusion: the procedure
appears to be good in the "large'', but ngot the "small", In other words,
the procedure is effective at finding an estimate of the optimum which is
good relative to most other points in 2 Iarge.feasib]e region (this is

the notion of being gcod in the large}., The procedure doss not appear,
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however, to be very effective in Emproﬁing on 3 reasonably good existing
solution. This is reflected by the algoerithm's performance on the
{g = 5). In a crude

relatively) platykurtic functions v, (o = 3) and @

3 3
sense, most unimodel {differentiable) functions tend to be relatively
platykurtic leeal to their optimum and comparitively leptokurtic when

viewed far from their optimom.

Thus, in situations wherein we might expect some considerable peaked-
ness to the response surface, and where we have only vague infarmation about
the cptimum, this procedure appears to be very useful and effective. On the
other hand, for situations wherein_one would expect a retatively flat response
surface, or know (with reasonable precision) an estimate of the optimum, an
alternative methed might work better. This s, however, consistent with the
motivation of our analysis, namely that cur objective is to get a reasonable
estimate of the optimum {i.e. a point with low objective function value}

within a cost constraint.

_ Finally, this alsc suggests that tha outlined procedure could be
useful in finding a good starting point for standard NLP algorithms. Since
the procedure can be readily-constrained to use only a small number of
function evaluations, and appears to be effective in the large, it could

provide a useful complement to algorithms which tend te be more effective

in the small.
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