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ABS TRACT

Let d be any ordinal ordering of N > 3 alternatives. Select
some one dlternative and let 1 be some ordering of the remaining
{§-1) alternatives where Ur g need not have any relationship o
Uy - It is shown for a voting system coming from a large class of
weighted sumration voting systems that there exist examples of voter
profiles such that if the woters vote on N alternatives the aggregated
resuit is o, but if they vote om (N -1) alternmatives, the aggregated
result is o ;- This result holds even 1f the voting system changes

with the tumber of alternatives.



1. INTRCDUCTION

When a group of individuzls iz required to rank order W > 2
alterngtives often they adopt some sort of welghted voting procedure,
In practice, the resulting ordering is interpreted, or at least it is
used as though it were the group's aggregate linear ordering for the
N altermatives. But is it? If it were then when some subser of the
alternatives is considered separately this subset should inherit the
ordering given by the origipal ranking of all N alternatives. However,
if the subsets have cardinality two, then this subgzet requirement is
equivalent to the condition of binary relevancy, so it follows from
Arrow'z theorem that this condition can be violated,

It might be argued, or at least hoped, that this "linear ordering"
interpretation for a weighted wote could be parcially salvaged, After
all, even Lif the rankings of some two alternatives are transposed, there
still might remain & useful relationship between the original ranking of
the N alternatives and the ranking of a subset of these alterpatives --
a relationship which could be expleited. The main purpose of this paper is
to show that in general this iz false =« there need not be amy relatiomship

whatsoever between the different rankings. This 13 a consequence of the

stronger result proved here that if e is a specified ordering of N
- 4!

alternatives while ay ; 1s an arbitrary ordering of some subset of (W-1)

alternatives, then there exigt profiles of voters so_that the group outeome

is g when N alterpatives are considered but EN-I when the specifisad gub-

set of (N-1) alterratives is considered.
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Fishburn [1] reperted an example which is in the spirit of this
conclusion., In higs example sewven volers use a Borda count to ramk
four sltermatives as & > b > ¢ > d. However, whem alternative 4
iz discarded, the voters rersnk the remeining zlternatives as e > b > a&.
This new ordering is the exact reversal of the ordering previously enjoyed
by these three alternatives!

The Borda Count for N altermatives iz where 2 voter casts (N=-i+1}
points for his ith place alternative, The chofece of these assipgned
welghts iz not the culprit which explains this example as our conclusion
holds for most weighted voting systems commonly used. Indeed, we ghall
show that cur conclusion depends more upon the geometry of a simplex in
N dimensional Euclidean space thanp upon the choice of the welghts., In
fact the effects of the geometry are so strong that it iz impossible to
avoid our conclusion by devising a different weighted voting scheme for the
subsat of alternatives! In a future paper this geometry will be expleiced
to extend our conclusion to general seiection processes by obtaining a

statement which is io the spirit of Arrow's theorem (Saari [2]).

In order to simplify the exposition used to isolate the cemtral -
of the proof, first we prove the theorem for a class of weighted &
voting systems which share properties simllar to these of the Borda
This will be done in Seetions 2 and 3. Part of the proof (Szection 3)
Eenters around deterwining properties of the Condorcet triplet so common
designing counter-examples for various "expected" properties of
voting systems. Here we extend the bhagic structure of this tripler to X
alternatives and determine the basic "geometrie" properties whi;h make them

so important, A wmore detailed discussion will follow at a later date.
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In Section & the reatrictions on the voting systems are removed
so that they now include most welghted wvoting systems. Tndeed, the fipal
theorem, Thevrem 3 is general encugh so it even includes systems of
little practical interest since they miy have oo monotonicity or pareto
type properties. [n fact, just about the only interest in these
exapples is to illustrate that the comclusion holds even for weighted
voting systems not satisfving Arrow's assumptions, which in turn
highiights the above statement which asserts it is the geometry of the
simplex which wakes the result "work."

Tha paper ends with a brief discussion comcerning how to determine
restrictions on preferences or on rthe fraccion of voters with certain
profiles which ensure that the ordering could be wiewed as a linear

ordering. This is in terms of feasible sets from 2 linesr programming

problem.
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2_ THE GE(METEY AND THE MATN RESULT

We start by giving a gecmetric interpretation for cardinmal and
ordinal rankings of N alternatives. Let vector X = (xl,...,xﬁ)
in the pesitive orthant of Efltmi J denote a cardinal (complete,
transitiva) ordering of the ¥ alternatives where the mapnitude of
component X, measures the intensity of preferences for the ith
alternative. Thus, an individual ranks alterpative i oardinally over
alternative j if and ouly if =z, > L This means that the (g)
"indifference" hyperplanes [x|x; = x,, i ¥ j} divide K] into
comes, where each cone corresponds to ao ordinal ranking of rthe alternatives,
Wamely, each ordinal ranking corresponds to a umigque cone which Is an
equivalence eclass of cardirmal rankings of altermatives. Denocte these
classes or ordinal rankings by PH' Notice that degenerate cones are
admitted, e.g., the ranking of cosplete indifference among alternatives
corresponds to the ray t{l,1,...,E),t > 0,

Sinee ordinal rapnkings do not reflect intemsity of preferences, the
description can be simplified by normalizing vectors so that the sum of
their components equals unity. This is equivalent to intersecting plane

P) = {y ¢ 19‘1 ¥ 2 G, Eﬂyi = 11 with the cones. The resulting

=1
object 15 2 simplex which is diwvided into the ordinal equivalence c¢lasses

where these classes pive & lower dimensionsl representation for PN'
For example, the complete indifference class ntw corresponds to the
point N (L,1,...,1). Figure 1 illustrates P,. 2, 4is given by
the baricentric division of an equilateral tetrahedron, PH is given
by the division of an equilateral N=-gon lying in (¥-1) dizensicnal

space.
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FIGURE I,

This simplex {llustrates Pj, the set of

all transitive ordinal rankingz of rhe three
aiternatives, a,b,s. Each open triamgular regiom
represents the strict ordering given by the label., The

lines correspond to indifference relations,
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Let PM denote those crderings which only admit striet

~

prefersnces, 1l.e., Rq corresponds te the union of the open regions

in P,.. Each subset in P_ - P_ is contained in at leazt one
] k) N
indifference hyperplane, so it correspends te an ordinal ranking which
adwits an {ndifference between at leasc two altermatives.
In the Borda ceunt, 4 vector Is assigmed to each ordinal equivalence
class. Each voter selacts one vector, and the Borda count conclusion
iz the ordinal equivalence class containing the sum of the szlected

vectors. We generalize this by calling any weighted voting procedure

which satizfies these conditions a Borda method. More precizely:

Definition 1: A Rorda method is a summation voting method

which satisfiez the following.

1. Vegtorz are assigned to each ordinal equivalence class of

PH{ or of PH)'

2., The asgigned vectors Iie {m the ¢losure of the corrvesponding

equivalence class.

3., From the set of assigned vectors, sach voter can gelect ome of

ghem, and the group ordering i3 given by the ordipal class containing

the sum of selected wectors.

With this dafinition Borda wethods include the usuwal Borda count
[the weight vector lies in the interior of the ;H classes]; plurality
voring where the weight vector assigns one point for the voter's first
cheice alternative and zers for all others [the weight vectors are on the

boundaries of the P? classes]; cummlative voting where the voter casts
i
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non-negative Integer points for each alternative as long as the
point total equals & specified value kK, e.g., if k =2, then
" the voter may cast either ome peint each for his top twe choices or
two points for his top choice [more than one weight vector in each

p,. c¢lass]; or voting cardinzl preferences where voter casts his

]
cardinal preference vector provided the sum of the weights either
equals, or doesn't gxceed some specific value [an uncountable number

of vectors with differeme: Euclidean or Ll_,IEngths.I Thisz definition

does not adoit inverted voting systems where smzller wajzhts corres-

pond to more favored alternatives; these are discussed in Section &.

Definition 2. A Borda method is syusetrical {f the following hold.

a) Vectors are assliegned only fo classes in PH’ and each ¢lass

hzs assigned to it only ome vector.

b} Any welght wvector cin be obtained from any other weight wector

by 4 permmtation of the indices.

¢} The weight vectors are neot 2l] the same.

The effect of {a) iz to liwit the number of wvectors, and for some
pethods it carries with it the tacit assumption that the veoters are not
ind{ fferent between altermatives; or, if they are, they must vote as if
they had strict preferences. Coadition (b} is a neutrality or
sycmetry coudition among the alternatives wiaich ensures that no one
alternative iz given a preference in the assigoment of the weights and
that all voters have the saze selection of weight vectors. Technically

this will allow us to normallze the weight vectors so that they all lie on
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P{N}. Although this condition can be greatly relaged, it is a
reascnable condition and the symmetry properties significantcly
gimplify the exposition. Ceondition {(c) is imposed to ensure that
the weight vectors are not scalar mmltipliers of (1,%,...,1). Such a
vector means that each voter gmst cast 2 vote reflecting complete
indifference among the alternatives independent of the voter's actual
preferences.

Lat BN correspond to & symmetrical Borda Method owver the

H alternatives, and let BH-l correspond to a2 symmetricszl Borda method

over N-1 alternatives. We now state cur maln result, 8 result srated

wthout proof In [2].

Theorem 1. Let N > 3. Let e € EW be some ordering of the N

alternatives. Choose some one alternative amd let oy ; € Pyl be

some ordering of the remaining (N-1) alternatives. Let BH be &
syezetrical Borda Meihod for the W® altezpatives and le: Bl

be 3 syometrical Borda Method for rthe (N-1) alternatives, Then there
exist choices of woters' profiles so that the BH Borda ranking of

the ¥ alternstives is Cang 7 whlle the Bﬂ-l ranking of the selectsad

{¥-1) alternatives ig Togay®

We {illustrate this theorem by selecting for B,q the usual Borda
H

count, for ﬁH-l 8 plurality election, and for uﬁ-l 2 reversal of the

crdering.
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Corollary 1. Let W > 3. There exist examples where if the

N alternatives are grdered by the Borda Count, and if the

second from last place altermative is discarded, then the last place

alterpatives wing a plurality slection ameng the remaining (M-1)

alternpatives.

It will be clear from the proof that the conclusion of rhis
theorem holds for any subser of the ¥ alternatives, not only subsers
with cardinality ¥-1l. This supports our assertion that the ordering
resultipg from 3 weighted Borda method need not zdmit the interpretatiom

of a linegar ordering.



3. PROOF OF THE THEOREM

Before proving the theorem we highlight the basic {dea by
proving the special case where ES is a plurality election and where
By iz the Borda Count assigniung (2-i+l) points for the voter's
ith 2ltermative. Assume that the three alternatives are {a,b,c}

and that ¢ iz the discarded alternative,

Changing the magnitude of a vector dees not affect the ordipal
equivalence c¢lass in which it lies. Therefore, for couvenience of
exposition, we assume that all vectors lie in P{J) whera N isg
either 2 or 3, This meansz that the B2 waight wvectors are
{ % ;%} for (a > D) amd %,%} for (b > a). If m wvoters
prefer & to b while n voters prefer b to &, then the
(normalized) g, outeowe is ( Z=)GY) * ey Gr3) = Fgrmy Cemwie),
an outcore which is eguivalent to mRjority rule.
The m voters preferring (3 > b) come from three %ﬁ equivalence
clazges, namely (a> b > c¢),(a> ¢ >b), and (c >a >1b). The
53 weight vectors assipmed to these three classes are, respectively,
(1,0,0%,(%,0,03, and {ﬁ,ﬂ,l}. Assume that, raespectivaly, these
clasaes have ml,m':,,m3 voters where ml + 1:|:|2 + T, ¥ m, When these
voters cast their ﬂj ballots, the P3 cutcoxze i3 Eﬂ = mfl(m1+ mz,ﬁ,mﬂ).
This is a point on the convex hull of the weight vectors; that iz, some
point on the line from vertex a to vertex ¢ (see Fipure 2). Call
this set Ca. Indeed, for any point p £ Ca apnd for any ¢ >0, a
value of m and appropriztely selected values of @) 5Ty ,34, <N be

made so that ¥V is within ¢ distamce of p.
=t
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FIGURE 2.

Point EY is the sggregated cutcome given by a fixed
convex combination of ¥, and En vhere vy 1is determined
by the percentage of voter preferences between (a,b).
1
As ¥ changes in set G, to Eﬂ , the aggregated outcome
1
can chaoge (a,b) classes. By adjusting Em’ En and v,

it can be seen that ezazples exist where zlmest all voters

prefer b to =z, yet the P, outcoze haz a > b,
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A similar description holds for the n wvoters preferring b to g,
Their B, value is vector V which is in the convex hull of the weight
vectors {0,1,0Y, (0,%1,0), and (0,0,1). Denote this set by Gb. The BS
outcome of all voters is XY + (1-»)¥ where X = o/ (m+n), a vector
which lies in the comvex hull of the convex hulls.

Wow, without loés of generality assume that Tl is (b>a); that
iz mrmor A< %: . 1t 1s easy to show that if G alsc ranks b > a,

then rhere are exanples where the B, outcome is g and the Eq ; oDutcose
& a=

N
is (b » &), 5o, assume g ranks a4 > b, If the line connecting Eﬂ
and Y iz parallel to the lipe connecting vectors a amd b, then for
0 <y % , E? =YV + (1-Y)En liez in the repgiom b > &. However, 1f
v lies above thils parallel line, say at point E; {see Figure 2), then
there are some values of vy < %- so that V' = ¥ + {1L=-vI¥' lies in
e - -1

the region a > b, This is because the peints ¥ ,¥v ,¥' awd ¥ .,V ,¥7°

—o -~ n Y oY
define similar triangles. BEut, the line segment En’E; is not parallel to
the i{ndifference line a ~ b, therefore, neither will the line ET’E;
be parallel to this indifference line. Consequently, if vy is sufficiently
celose ko %- (ET is sufficiently close to the indiffereoce line) then
E; will Ilie in the region a > b, By an appropriate selection of the height
of Eﬁ and E;, E; can be gelected to lis in any of the P, classes.

3

Thug by an appropriate selection of T M the B3 outoone hgm + (1-—&)2“
¢3n be made to lie in any of the three classes having a > b, This completes
the proef for the special case,

The general theorem 1s proved in zmch the same way. The next several
lemnas 1llustrate that any symosetrical Borda Hetheod adoits a similar

reometric description
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Lemsa 1. Considar any subset, §5; of preferences in ;ﬁ, Let

5 < P(N) be the convex hull of the ecarreaponding weight veectors.

Then for vorers whoge preferences lie in S, their Pq cutcome lies in
I

$ . Furthermore, for any e > 0 and any p ¢ S there eRists soce

distribution of votera so that their 5;1!,q puteome is within distance
L

e 0Ef p.

The proof is obvious.

If the weight wveetors lie in the interior of the classes of ;N’ then
E must meet the interior of all classes in 5. However, if the weight
vectors lie on the boundary of the EN classes, then, as we have seen
with plurality wvoting, it is possible that § does not mest the interior

of any set of § and it may meet sope sets in only one point. The following

lemma asserts that this i3 not true for all choices of 5.

Definition: Assume that the N altermatives zre a 38y e ply
1 ¥

let oy = (;n{l) = aﬁ{z} e . awiﬁ)) be a given ordering where

T = (M{1),..., 083y is some permutation of the ¥ indices. Call the

set of N lipear ovderimgs {wy, (aypgy > -0- > 2 gy > @ 4y);

(“n(BJ o aﬂ(ﬂ) > 3n(1} - a“(z]},...,{aﬁ(ﬂj, -t ahfl} T oee. an{H-ljj 1
the Condorset N-tuple generated e+

If W =2, then the Condorcet 2-tuple xust be {(2) > 8;),(8 > ay)}.
Perzutation 7 can be viewed as being a labeling of the vertices of an
equilateral WN-gon ordered in & counter-clockwise direction. The

Condorcet Hetuple are the linear orderings corresponding to permutations
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obtained by rotating this N-gon. I1f p, is a rotation which generates
this rotetion group, let p(ﬂH} denote the corresponding element in
the Condorcet N-tuple. Then this N-tuple is given by

L - y 4 - k-1 - ¥ _
lo () | ®¥=1,2,...,N} where (ng) = plp (o)) and vhere o =1

iz the {identity element of the totation group.

Iemma 2. Let 5 be any Condorcet HN-tuple. Thes 5 has a non-emwty

jnterior which includes the complete {ndifference point {H-I,H-l,...,ﬂ-lj

and which meets the interior of any set of PW' {By interior, we

rean topological interior with respect to the ususl metric topology om

B ).

Proof: Without loss of generality, zssume that the Condorcet N-tuple
is generated by a; - T | aN and let the corresponding weight vector

be Hy = fwl,...,wH). According to Definition 2a, w, > Wy 2 oae. = y

1 X

where ({by Definition 2b) > v, and where the waeight vectors for the

s G

other clazses of 5 are given by the appropriate parmutation of coordinates
Wy It is easy to see that if the Condorcet N-tuple is given by
rotating the indices of Ty in one directlion with respect to order (=),
the weight vectors are obtained by applying the inverse rotation to the
indices of wi‘s, e.g., if ¥ is the weight vector for ocrdering
(89 83 > .00 > aN - alj then Wy = (wﬁ’wl""’wﬁ-lj'
First, we claim that N‘I{E‘ii) = (Hil,...,'ﬂ_l}. The rotation of the components

for the weight wectors iwmplies that each component of Iw {8 the zum of

i
the weights WyreresWg 3 SO the vector sum is a constant multiple of
I
{1,1,...,1). This miltiple must be unity bezcause the vectors w, were

_-i
normalized te lie on P(N}. Thus the complete indifference point lies in 5 .
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It S has a non-empty interlor, then trivially this point will lie in
the topolotical interior. As this point lies in the closure of ecach
set of %H’ the conelusion follows once we show E has a non-empty
interior.

E has 2 non-empty interior if ﬁii}f=1 forms a basis for R .
Since the wvectors are normalized, this is equivalent to showing that
each w, 15 a vertex of S. 1if one of these vectors, say 4y, were

not 3 vertex, then the convex hull defined by the remaining vectors

agrees - with 5. In particular, this means there exists
(1]

hy € io,11, = Li =1 such that
i=1
i#j
w
1) A ME, = #y In turn, this gives W coordinate scalar
i=1
1#3

equationg. By symmetry, each scelar equatfon contzine each L welght
once, each weight is on the right hand side in exeactly ome scalar equation,
and each welght is mmltiplied by hi in exactly one scalar equation.

Thusg, by rotating W times the order of these equations by taking the
first equations and making it the laest, we have N sets of equations,
From this it follows that each L satisfies a vector equation of the
type (1) where the o scalars retain the same value but change Index,
Consequently, either nome of the Ei‘s are vertices of E, ar they are
equal. The first conelusion cannot ogcour ag E is the comves hull of
thgse-points. The second can't occur ag it would foply Wy S W which

iz a contradiction (Definition Z¢). Thus & has & nom-empty interfor

and these weight wvectors are linearly independent.
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Lexma 3. If Sl = 52, then Sl < S,. In particular, if

Sy = PH’ then 52 satigfies the stated proverties of § in Lewma 2,

-~ ~

There 1s a patural projectiom, 7, f£from PN te P

N-p? Where

the image of this projection preserves the ordinal ordering of subsets
of 5 ?H crdering. To prove the theorem we need to show that ] dueg
not commte with summation of_ vectors; l.e., if N> 3, the geometry
of P(N) prevents the process of aggregation and any natural projection
from commting. In order te shoew this, we will need the inverse image

of this projection whieh we o311l a "1lift."

Definition 4. Let o , be a given ordering of (N - 1) of the

®
h)
which are obtained by the N ways the remaining alternative ecan be placed

N alrerpatives. Corrasponding to this ordering are N classas in

within the ordering G\T-l' Csll this set of W classes the 1ift of c.ﬂ_,.

In the special ¢ase,to prove that summzation and T do not commute we

used the fact that C, ard €, are not lines parzllel to the irndifference

b

line a = b. Essentially, the role this geometry plays iz to ensure that

1 1
set | 5o + 5 B 1 a e Ca’ B e cb} contzing the complete indifference point

az an interior point. Notice that Cy and cb are determined by the

1ifts of a Condarcet twe tuplé. The following lemma geweralizes this to

higher dimensions.

Lemra 4, If B is & given ordering of (W-1) alternatives, let

b -
SB e the correspondine 1ift, Let G‘N-I g PH-I’ and let 51 ba the
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gorrespending Condorcet {8¥-1) tuple. Then the set

=] il
C={(-1) { z ) |g ¢es5}
pes, © PP

has a non-empty interior which contains the complete indiffereunt point

apd which mests the interior of sach get in PH'

Proof. First we claim that S = ) sE iz the disjoint union of (N-1)
Bes
Condorcet N-tuples; namely the Condofcet WN-tuples generated by the
N entries in the 1ift of qw 1 Iet o be an element of thiz Iift.
g

It is easy to see that the Copndorcet NW-tuple generated by o liez in

ﬂgs SB. This is because if the permutition correspending to o 1is

fifsé rotated and then projected, we obtain a rotation of QH-I' Thus

the Condorcet Netuples generated by elements in the lift of sl is
contained in 3.

Next, we claim thet any two Condorecet MN-tuples are either disjoint

or they are the same., To show this, we use the Interpretativn that a
Condorcet N-tuple can be viewed as an orbit under the rotation group
action; {gkﬁz) 1k==1,2,...,N, o generates the rotation group of an
equilateral HN-gon }. But It is well-known that such orbits have the

sbove stated property. [If 4 and 52 are two Condorcet N-tuples which

share B, then any element v in 5. and z2ny element ' in 52 can

i

o

be obtained through a rotatiom of B ; e.g., v = QE.; ¥ o= D'E . In
particular, if y' is the generater of the Condorcet HN-tupls, then

v = ;E = pe (p'}-ly'. But since 4, {g'}-l iz a rotatiom, v 1 in
the Condorcet N-tuple generated by y'. Thus 51 = A gardinality

argument shows that both sets must agree.]
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In the 1ifr of gy the N elezents are obtained by the
“7-
¥ posoible ways the missing alternzatives, say ags can be placed within
.
the ordering Y1 Only the orderings in a lift where Ay iz the most
a= . A

preferred and where it 1s the least preferred altermative are related through
a rotzricon. Thus the N ealements in the 1ifr of By provide generators
for N-1 distinct Condorcet N-tuples. The unicn of these N-tuples gives
rize te (¥-1) ¥ distinct orderings contained ia 8. But since this jis

the cardinality of S5, 5 consists of the digjolnt union of the Condorcet
H-tuples gonerated by elements iIn the lift of a1t This is the proof

of the claim in the first sentence.

We now show that set C has a non-empty interler., For § £ 51,§B== Eﬂhigi
i=1

where 1 ranges over the W cla2sses in SB, where Ei is the corresponding

walght wector in SB and where the A's are the convex scalar weights,

f= (:x'i,...,xg) ¢ P(N). Set ¢ 1s given by the sum = (H-l}'lé'
S P ey LB : . S
= hi(N-l} w.i. Thiz last sum can be viewad as iinear
Bes; i=l t

g

m2pping g(l):{PGH))H'1-+ P(¥). Since it i1s linear, it is an open wmapping
should ite Jacobian have maximal rank. But the {(N-1){N) rows of its
Jacobian are given by the weight vectors Eﬁ- Since 5 contains §N-1
Condorcet N-tuples, among these rows are the weight vectors corresponding to
2 Condorcet N-tuple. But the main point of the proof of Lemma 2 was to
ghow that these weight vecters are linearly independent; thus Dg has paximal
Tank.

The proof of the lem=a is completed once it 1s demonstrated that there
iz an interior point of {P(H)}H-l which gets wapped via g to the

indifference point. But for any Condorcet ¥-tuple in 3§, ﬂ-l times
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the sum of the corregsponding weight vecteors is the complete indifference

point (Lerma 2). Therefere, summing over the (N-1) Condorcet N-tuples

in § aod miriplying by the gcalar (H-l]-l again yields the complete

indifference point. This sum is equivalent to letting hﬁ = H-l for 211
B anmd all i, Since this iz an interier point in the domain of g,

this completes the proof of the lemea.

We now can prove the theorem. Let T l,uw be the specified
- I

orderings of NW-1 and XN alternatives and let BH be the specified

~1°Py
voting procedures, Let S1 be the Condorcet (M-1}-tuple generated by

Ggorr FOT X = (rpseeer¥yy) € B0 let £(3,0):PO-1) x (a1 Paw

H-1 ¥ .k _k
be 2 v. (2 W
=1 kk 121 i =1

I
wectors In the 1ift of (“w-l)’ E=1,2,...,%-1.

L - .
Y whare L i=1,...,5 are the § BH welght

The same drgument we used to show that Dg has maximal rank (Proof
of Lesma 4) ghows that Df has maxiwal rank., Indeed, g iz f restricted

= - -l
toe x = ((N=1) 1,.,.,{H-1} Y. Thus, according to Lem=a &, there exists

point p in the interior of the Pﬁ class corresponding to g and
* . N-1 % ¥
A  in the interior of (P(N)) such that £{y ,A )} = p.
According to Lemma 2, if If corresponds to the comvex scalar weiphts
for the Bw-l weilght vectors of the Condorcet {N-l)-tuple generated by

“H;l' then the ocutcome is the P(N-1) complete indifference point. Also

according to Lemma 2, a y € P(H-1) can be selected so that the convex

sure of these EH-I weight wvectors lies in the {nterior of the P class

H-1

corresponding to g1~ Indeed, since the complete indifference point

lies on the boundary of this P.,q_1

of the convex sum and from the continuity of £ that y can be selacted so

class, it follows frow the continmity
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# % %
that both £{y,A ) and f£{y ,A ) 1lie in the interior of the same

L

Py clase. Singe the rationzls are dense within the reals, it follows

from continuity that y and 5* can be asgumed to heve rational
couponents .

Now, it iz 2 simple arithmetic exercise to find an appropriate
rational equivalent for y and 3* = {El,ﬁz,...,ﬁﬁ'l} so that

i) YereraYyy have 2 common denominator

and

i1} the oumerator of Y, ¥erves as the common denominater for

the components of ik = (RT,...,hﬁ}.

Then, the comuon dencmipator for YI""’YW 1 iz the total number of
N~

voters. The numerator for Yy is the mumber of wvoters with Pﬁ-l ordering

pk(ﬁw_l}. The numerator of hk is the number of voters im the jth

b
clasgs of the 1ift of pk{ﬁN_l}. By construction, with this number of
wotars in the designated classes. the BN-l outcome 1s %1 while

the @, outecome is S This cozpletes the proof .
¥
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4, COMMENTS AND EXTENSIONS

The statement of the theorem requires the preselected
orderings e and ey O be striet orderings -- indifference is
not admltted. If we had allowed the preselected orderings to contain
an indifference relation, the proof would have been the same up to the
point where f(x,i*) lies in the appropriate claess of 'PH. However,
the inverse image of a class admitting an indifference relation does not
contain an open set., Therefore, the crucial next step of aszuming
that y and i* have rational components m2y wnot hold, especially
1f the weights are rationally indeperdent. Thunz, the extension is
restricted by a number theoretic reasom which, for practical problems,
would most likely not cceur. The next theorem should cover most

practical voting wmethods.

Corollary 2. Let By and BN-l be svmmetrical Borda methodsz

wnere the weirht vectors are all rational numbers, Then the coneclusion

of Theorem 1 holds with g € EH and a1 € By_q-

The proof of the theorem did not depend upon the diresct correlation
between larger weiphts being assigned to more favored alternatives, but
rather upon the continulty o¢f £ and the topological properties of the

baryeentric division of P{N).

Definition 5, Lat GN and GH be zeometrie divisions of P(W)

defined, respectivelw, by_the geometric representations of PN and PH .

A weighted susmation voting system is said to be symeetric if the following

hold for the weight wectors,




w2la

i} ERach clasz of P_ is assigned in & one-to-one fashlon to a
1

1q
¢lass in Gy - The welght veetor correspeonding to ap ordering in
P, must Iie in the clogure of the assigned clasz of &

X N

i) The welight wectors differ ooly by a permutation of indices.

=

iii) The weilght wvectors are not all the sams.

The group ocutcome iz the EH ¢lasg assnciated with the GH
elass coataining the (normalized} sup of the selected vectora. Borda
symmetrvical systems are symnetrical. A non-Borda system which is symmetrical
iz one where sm3ller weights indicate higher preferences, BRecauss there
is no assumption of monotonicity on the mapping froo EH to E{“, this

definition includes systems which are a mizture of the sbove two typas.

Indeed, the classes in F_. <an be assigned even in & random fashion to the
&

N

-

clagses of Cy+ For example, the following system was determined by
using a random number table -- a normalization of the weight vectors yields

a systen satisfying the definition.

Preferences Weight Vectors
a>b>c £3,2,1)
ax>es>b (2,1,
b>a>c {1,2,3)
b>ec>a (3,1,2)
e >a>nh {1,3,2)

e>b>a (2,3, 1)
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Theorem 2, ILet Bq’ﬂq 1 be symeetriec weighted summarion
! =

voting svstems for N altermarives and (N-~1) alternatives respectively.

Then the conclusion of Theorem ] holds for these voting systems. 1If all

the weicht vectors for both systems have rationzl cosponents, then the

conclugion of Corcllary 2 holds.
This theorem permits a mixture of voting systems; e.g., if P
assigns larger weights for more preferred alternatives while |3,q 1
H

reverses this procedure,

Corollary 3. Let ﬁﬂ be the Borda Count on ¥ alternatives where

(9 - 1+1) points are assigned for the ith place alternative and let

be a system on (M -1) alternatives which aszigng i points for

By-1
the ith place alternative. Let Coy € PH' Discard some one alternative

and for the remaining set of alternatives let Uy € Pﬁ_1¢ Then, thers .

gxist profiles of voters such that when they use the EH voting system the

outeeme 15 Uy but when they congider the subset of (N -1) alternatives

and use & BH-I count, the cutcose i3 e *

Thiz theorem asserts that even nomsensiecal voting systems pay yileld

"regzonabla™ results.

Corollary 4. Let Bg be the voting system defined just prior to the

statepent of Theorem 2 and let B, Dbe msjority voting on the two alterpacives

a,b, There exist profiles of voters sueh that their B3 cutcone is

a>b>»¢ while thelir Bz putcome 45 a > b.
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Proof of Theoresm 2., A summation voting system BN is characterized
. by the zssignment of vote vectors to the ordinal preference classes
such 23 specified in Definitions 2 and 35, For & Borda methed the

following dlagran commites whera [ iz the natural projection,

i
o ﬂ .
By N
i i
i, | i
|:-
YV e >
. B
N-1 .
-1 Cy-1

In general, this diagram will not commute unless BH’ EH-I have the
same monotonlcity characteristics. For exawple, the diagram does not
commmite for the systems defined in Corollaries 3 and 4.

So, the proof ¢of Theorem 2 involves modifying that of Theorem 1 in
a fashion which overcomez this obstructien. 1In Theorem 1 the Condorcet
W-tuple wasg used because it formed 3 sparse gystem where the convex hull
of its weight vectors 1ncluded the cowmplete indifference point iz its
interior. According to Lemma 3, larger colleetions of preferences could
have been sdmitted with the conclusion remaining the same. Thus, if we
define £ owver all classes of Eﬂ-l’ the relevant properties of f will

ramain the same.

fet £: BC-1') w (PO T, 200 be defined as
E(H-l}'yk{ Eﬁ hg w? ) where %k serves asz an index for the (N-1)!
- . ot 8
k=1 i=1 e Kk

clasges of Gﬁf-l} znd where ¥ o i=1,...,8, =are the
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9] BN weights in the N G,, classes corresponding 1ift of the kth

]
claszsz in G(H-l)' Notice, this lift iz the inverse image of the

projection fo. et y = (((-DHTL,...,(@-D! ¢ 2D,

LS
Then, by Lexma 3 and the argurents of Theorem 1, there exists X

{w-13!

% -
in the interior of (E({N)) such thet f(y ,A ) =¥ 1(1,...,1}.

- r
Furthermore, there exists A in the interior of {P(H}}(N 1) such

* .y
that £{y ,») 1is In the interior of the G, clsss assigned to mﬂ.

N

An argument similar to the one used in Theorem 1 shows that a y
#
can be selected close te y so that (1) £(y,%) is in the interior

of the zame Eﬁ elasa and (1i) the convex combination of all the

By-1 welght vectors lies in the interlor of the G“_ wlass corresponding

1

to &y 1. Also, the vectors ) and y can be selected to have rational
components.

The normalization of the vectors A and y differs from that of
Thecrem 1. Find a ratlional equivalent of » and y so that the
following are satisfied.

(i) Tl""’?{ﬂ-ljl have 2 comoon dencminetor

(1i) TLet Y corrTespond to the kth class of GN' Let «alk) be

the preference ordering in 7P, 1 corresponding to this class, and let
N-

(%) be the 1ifr (with raespeect to HP) to I’,q of a(k). Corresponding
4

to the W clasges ion S are N classes in G and N components
alk} W

of x . The nuwerator of Y, serves as the common denominator for all

Sa

N of these E.i*s.
The number of veters in the example is given by the common denominater
of the yk’s. The numerater of each Yie corresponds to the number of

vaters with the kth Pﬁ-l . preference vating. The nuaerater of the

hi's given by the above construction corresponds to the number of voters
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in sach .;H class, By construction, the ceoneclusion of the theorem
helds.

The proofs of the preceding theorem used subsets of preferences large
enough so that the conclusions can be obtained. Larger subsets of weight
vectors lead to the zame conclusion. 8o, ancther immediate extenszlion would
be to extend the weight wactors from ;H to PH and to allow the number
of weight vectors in each eclass to increase. This would then include most

systems commonly used a3 approval voting, cummlative veoting, cardinal

preference voting ete,

S —

Theorem 23, ot BH’ Bﬁnl be suzmation weighed voting svyatems

where the weight vectors include subsets satiasfyins Definition 5. Then

for these voting systems the conclusions of Theorem 2 hold .

It turns out that even Definition 7 can be extended to allow classes

oy

to be assigned to clesszes of GN’ where P, need not be mapped

in 7 g

[
to GN' However, this extension doesn't seem to shed any nwew light

abput the structure nor does it seem to include voting systems of amy
practical interest, so it is not discussed here.

The symuetry imposed upon the cowponents of rhe weight vecters
igzn't required, but it does simplify the exposition. All that is
required for mapping £ deflned in the proof of Theorem 2 is that (i)
there iz & I% in the interior of P((H-1}!} such thart if its

coefficlents are the scalar coovex weights for the BN-I

weight wectors then the outceme is the Pﬁ-l indifference

*
point, and (ii) £y ,A) is an open set in GH which



.

includes the complete indlfference point as an interior point.. The
symuetry of the weight vectors and the rotational properties of the
Condorcet W-tuples simplified the demonstrarion that f has these
properties, However, if weight vectors are assigned to the interior of
sets of Eﬂ, even with no a2ssumption of syzmetry, it can be shown that similar
conclusjons always hold except now the missing zltermative may
need to be gpecifled. See Figure 3 to see why the geomatry forces this Iin PF(3).
To avoid f having the above propertiez, the comvex hull of the lifes
must ba lines perpendicular to the base limes; but it is izpossible
to choose welghts for this to be trus with respect to all three bases
of the simplex P(3),

in the context of this paper, Black's single-peakedness condition [3]
can ba viewed za a restriciion of the preferences to classes of
vreferred orderings so that, with thesze classes, a 1* caunot be Found
with the above property. Clearly, thiz restrietion must not include any
Condotrcet N-tuple, An obvicus extension of this is to allow wvoters to
saglect any preference ovrderings but to restriet the percentage of
woters in certain classes. This chepges the dopain of £ from
pe@-1D) x AN T to 5 2 closed subset of it. The actusl
restrictions are imposed so that f will not hawve the above properties
of f(T*,h} zeetipg the complete Indifference point. Thiz iz a
linear programming problem. For purposes of asserting the result is a
linear ordering, these restrictions need to be imposed with respect to
all bimary classes,

Finally, a natural question is te determine bourds on the number of

voters required for various examples to occur, or for thew not to ccour [2Z].
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Paradoxes camnnot be avoided. To ensure that the {a,b)

outcome is always conaistent with the P, outcone, the P3
weight wvectors (heavy dot3) must be selected 30 that the convex
hulls of the <{a,b) lifts are lines parallel to the indifference
line =2 = k. But then the convex hulls of the (b,¢) Ilifts
define open sets (the two triangles determined by the dotted
lines); consequently the (b,c} cutcome need not correspond

to the P3 ocutcome,



i
Por an example to occur is to require £(y.») to lie in 2 specified
set of &

z Tkﬁiﬂ-l) lies in a specified set of Gg.p- This is & linear

q’ which is described by linear comstraints, while
programming problem where the minimum number of voters is determined
by the swallest common denominator for y In the feasible set after
the pormalization process.’ This same argurent heolds for determining
restrictions which ensure that the group ordering is a2 linear
ordering. Alsmo, the probability thet these examples will oecur

for large numbers of wvoters, ¥, can he computed in the same way. It
is clear that when claszses of PN - ;H are excluded then the con-

¢ lusions of Theorem 1 and of Theorem 3 occur with positive probability as

M- w, This iz because the feasible set for these examplesz iz en open

set and the examples correspond to zll rationmal points in this set [2].
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