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AN INTRODUCTION TO INFORMATION STRUCTURES

I. Introduction

This paper discusses information structures, which can be viewed as
mechanisms through which an agent may learn about his environment. Consequently,
they may also be useful in modeling the beliefs of agents. We are interested
in the comparisons of such structures.

The purposes herein are several. First, as an introduction to this
topic, this paper gathers from various articles results on information structures
and their comparisons. 1In part II we examine the original work by Blackwell.

In a statistical setting he gives necessary and sufficient conditions for

one information structure to be as ''good" as another, in an appropriate sense.
We work through these papers, citing Blackwell for proofs of the theorems
stated. Economists will recognize in Blackwell's criterion of "informativeness"
the antecedent of Rothschild-Stiglitz ''riskiness."

Secondly, in part III we develop these comparisons in an economic setting
as presented by Marschak and Miyasawa. They introduce two additional relations
between information structures, viz. fineness and garbling. We show that
while these comparisons are not generally the same, in the special case of
noiseless signals they are equivalent.

In situations involving more than two signals or more than two agents
the particular relation between signals becomes important and characterizations
sharper than informativeness are desirable. This is also discussed in section
I1I. However, general results in this direction will be hard to come by.

We show this in part IV through an example in which a '"better'" signal may

or may not be preferred.
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Lastly, we conclude in section V with speculation about questions for

future research.

II. The Blackwell Papers

Introduction, Informativeness, and the Standard Experiment

If a statistician wishes to infer from experiment which of n states
(or hypotheses) is the true state of the world, what experimental procedure
should he use? Blackwell (1951,1953) has responded to this question by char-
acterizing those procedures which are dominated regardless of the experimenter's

prior over states. Formally, an n-tuple, o = (q ,...,qn), of probability

1
measures on a Borel field B of subsets of a bounded outcome space X is an
experiment; x ¢ X is distributed according to 44 if the ith state obtains.

Upon observing an outcome x ¢ X the statistician chooses an action d from

a specified set D, incurring loss L(i,d) if q is the true distribution.

Thus with each d ¢ D is associated a loss vector w(d) = (L(l,d),...,L(n,d)).
Denote by A the range of w, A = w(D) R®. We will assume D to have been
restricted so as to yield compact, convex A.1 We may now view the statistician
as choosing an action a ¢ A , a = (al,...,an), where ai is the loss incurred

if x is distributed according to q,- (o,A) will denote this decision problem.
Before observing an outcome of his experiment the statistician cecunstructs

a decision function f, a B-measurable function from X to A, which specifies

the action a to be taken when x is observed. With every decision procedure

f(x) (al(x),,,,,an(x)) is associated a conditional risk vector

v(£) (ral(x)dql,---,ran(x)dqn) where rai(x)dqi is the risk with procedure
f, conditional on q; being the distribution of x. R(x,A) will denote the

range of v as f varies over decision procedures in the problem (x,A). Given our

assumptions on A, R(x,A) is a compact, convex subset of R". R(w,A) is the
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set of conditional risk vectors which may be attained in the decision
problem (a,A).
Since we naturally expect ''better" information should be more "useful,"

we are led to the following definition.

Definition 1: Let o, B be two experiments. We say o is as informative as B,

denoted o o B, if for every A it is true that R(a,A) > R(B,A).

Thus, o is as informative as B if every conditional risk vector attainable

in (B,A) is attainable in (x,A).

Theorem 2:2 The following are equivalent to a 5 B.
1) For every A and every v ¢ R(B,A), there is a v¥ ¢ R(x,A) with
v¥ < v, for all i.
i=-= 1

(ii) For every A and every choice of CfZ 0, = c; = 1,

min Zes v, < min 32 c, v, -
v ¢ R(x,A) v ¢ R(B,A)
(i1i) For every A, min z v, < min z vi .
ve R(x,A) v ¢ R(B,A)
(iv) TFor every A, min (max vi) < min (max v.,).
v ¢ R(a,A) 1 ve R(B,A) 1

(iv) says that an agent playing a minimax strategy in a game against
nature can do at least as well by basing his strategy on o rather than on B,
irrespective of the set of actions available to him. (ii) states that regardless
of the statistician®'s prior over the n states or hypotheses, his Bayes risk

( min 3 c; Vv, ) is no greater with o than with B. It is through consideration
V ¢ R(m,A

of (iii), the case in which a uniform prior is held over hypotheses, that
we reduce o to Blackwell's standard experiment,

Before he has collected any data, an experimenter might think all hypotheses

equally likely to be true. TFor any o we can construct a8 new measure
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nq0 = q1 +...+ q- q0 is the statistician's prior over X when he has a
univorm prior over states. It follows from the Radon-Nikodym Theorem that
there exists an essentially unique non-negative B-measurable function pi(x),

i=1,...,n, such that for any S ¢ B, qi(S) = rnpi(x)dqo. Further, for any
S

S ¢ B, qo(S) = % % qi(S) = [z pi(x)dq0 , which implies I pi =1 a.s.,
S

and we may redefine p; so this latter condition holds identically. Let

P={ (Pl”"’Pn) ! p;>0,i=1,...,n, and 7 p; =11 and define, for any

Borel subset A of P, M,(4) =gq, {x ¢ X | p(x) ¢ A}, where p(x) = (py (&)s.-.sp (%)),
Since p(x) tells us as much about i as does x, we should expect experiment

o to be equivalent to o* = (Ml""’Mn)' This is the import of
3
Theorem 3:  For every A, R(a,A) = R(a*,A).

a* is the standard experiment associated with a. With an =M +,..+ M,
n

1
we have Mi(S) = nf pidM0 and since 1 = Mi(P) = nr pide, it follows that
S P

E(p) = (1/n,...,1/n); on the other hand, every probability measure Mo on P
having mean (1/n,,..,1/n) defined a standard experiment. Hence, '"the class

of standard experiments is essenti:lly equivalent to the class of probability

. 4 .
measures over P with mean (1/n,...,1/n)," and so informativeness provides

a partial ordering of this class. The measure M0 is called the standard
measure of a; if M, m are standard measures of experiments o, B, respectively,
we will write M D m to mean a 5 B.

Since the outcome spaces of two experiments need bear no similarity
to one another, the reduction to the standard experiment highlights the fact
that an experiment is useful only as it allows a statistician to update his

prior--and this only involves the conditional distributions Ml,...,Mn.
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Employing the concepts developed above, Blackwell proves5

Theorem 4: For two standard measures M,m, MD m if and only if for every
continuous, convex g(p), [g(p)dM > fg(p)dm.

' ¥ y
Theorem 5: Ifn =2, M> m if and only if,r FM(t)dt > Fm(t)dt
for all y, where FM(t) = M{pfg t1 and Fm(t)c= m{p1 < t}o
Sufficiency

The concept of sufficiency provides another tool for the comparison of

experiments. "If B, C are Borel fields of subsets ¢f X, Y respectively,

a stochastic transformation T is a function Q(X,E) defined for all x ¢ X

and E ¢ C which for fixed E is a B-measurable function of x and for fixed
x is a probability measure on C. For any probability measure m on B, the
function M(E) = [Q(x,E)dm(x) is a probability measure on C, denoted by Tm.”6

Further, T is called mean-preserving if [ydQ(x,y) = x.

Definition 6: o = (Ml""’Mﬁ) is said to be sufficient for B = (ml,...,mn),

denoted o = B, if there exists a stochastic transformation T such that

m; = TMi’ i=1,...,n, where T is independent of i.

Grossman EE;EL; have suggested the following interpretation of sufficiency.7
A statistician who observes an outcome of experiment oo is able to generate

an experiment which is as informative as B; if x is observed in experiment

o the statistician 'draws' an observation x' from an urn in which x' is
distributed according to the density Q(x,x'). Since someone who observes the
drawn x' will not have known which x had been observed, integration is over
X with respect to Mi‘ Further, if Q depended on i, the statistician would
not know from which urn to draw x'; therefore we require Q to be independent

of 1i.
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This interpretation of sufficiency makes it clear that information
will be "lost" through the stochastic transformation; an optimal decision
based on B is not likely to be as good as that based on a. Consequently,
we expect that o » P implies o > P. The more remarkable result is that if
o= B, then o B. Blackwell initially (1951) shows the equivalence of
sufficiency and informativeness when n = 2, later (1953) extending the
result for any positive integer. 1In terms of standard measures, sufficiency

admits the following representation.

8
Theorem 7:° M » m if and only if there is a mean-preserving stochastic

transformation T with M = Tm.

if a = (Ml""’Mﬁ) is an experiment with outcome space X; B = (ml,...,mh]

is an experiment with outcome space Y; X and Y have N and N' elements

respectively; and o » B, then the stochastic transformation takes the form
N N

mi(yj) = é bkj Mi(xk) where bkj >0 and.Z b
k=1 j=1

j=1l,...,N'. This establishes the following:

K =1; 1 =1,...,n

9 .
Theorem 8:° Let P = (Mi(xk))’ i=1,...,n, k=1,...,Nand Q = ( mi(yj)),
i=1,...,n, j=1,...,N' be the ng N and ny N' Markov matrices associated
with experiments o and B respectively. Then a 3 B if and only if there

exists a Ny N' Markov matrix T such that Q = PT.

We have given two characterizations of sufficiency which are seemingly
contradictory in appearance. If « =(M1,...,Mh) and B = (ml,...,mn) and M
and m are their respective standard measures, then a » B
(i) if and only if there exists a stochastic transformation T such that
m; = Tbii , i=1,...,n:
(ii) if and only if there exists a mean-preserving stochastic transformation

* such that M = T¥m.
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In (i) we condition on state i being 'true" and so would like the dispersion
of observations from this distribution to be small. 1In the extreme case the
mass for x would be concentrated at a single point according to Mi’ though
we could still have a non-degenerate distribution w, for x'. Alternatively,
when we take i to be the true state, we want our observation to accept or
reject this hypothesis as confidently as possible; hence we want the ''variance"
of this distribution to be 1ow.10

On the other hand, in (ii) the statistician assigns a uniform prior to
states. Now the less preferred experiment is the one that yields a smaller
"variety" of observations; here in the extreme case m could be a point mass
and M still a non-degenerate distribution. The standard experiment with
lower dispersion is less able to allow one to distinguish confidently
between states.

Because of the equivalence of » and -5 , Theorem 8 furnishes a useful
representation of informativeness when X and Y are finite; the more general
stochastic transformation is useful when X and Y are infinite. Grossman
et al. use this latter characterization of informativeness in analyzing the
demand for a drug which has an uncertain effect on health. Specifically,

they show that if one's level of health in period t, z_, is represented as

t
z

a random variable, &

=q + Byt + 2% , where Y. is the drug dosage in period
t, {8;} is a series of serially uncorrelated standard normal random variables,

o and Ve are known ex ante, then larger drug doses make the observation of
an individual's health a more informative signal of the drug's effectiveness,
B. It is shown that if 0 < y' < y, then the conditional density of 2!

can be written as h(z'\ a + By'") :‘F v*(z"z)h(z]a + By)dz, where v¥*(z'|z)
is the density of z' given z. v*(;wi) is a stochastic transformation.

Since a Bayesian updates his beliefs in accord with his experience, information
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gathered now influences future decisions. 1In order to take advantage of this
"learning by doing," a Bayesian consequently chooses a larger drug dosage
than a non-Bayesian holding the same prior over the drug's effectiveness.

Combined Experiments

The last topic we shall consider in Blackwell's papers is the combination
of experiments, We shall only state here a definition and two results, returning
to this issue when we consider information structures from an economic perspective.
Let us suppose n, X, and Y are finite and P and Q are experiments as in
Theorem 8. Further, suppose Mi’ m, are the marginal distributions of m?.
Then the combined experiment, denoted (P,Q), is represented by the n xNN'

matrix R with (i, (N-1)j + k) entry mZ(xj,yk). For example, if

M) M ()
. 1% M12}a]nd o -

M) My (xy) imy G ™y,

MmO )

'

then % % * % \
my (X5¥0) M LYy) My (X,¥9) my(%,7,5)0

1_m;(x1,y1) My (X1,75) Ty (kys¥p) T (x,53,)

We have the following intuitive results.

Theorem 9: If P and Q are nyN and nxN' experiments and R is an n x N"

experiment which is independent of both, then P> Q implies (P,R) o (Q,R).
Theorem 10: 1f P(l) 9 Q(l) and P(z) ) Q(z), P(l) and P

and Q(l) and Q(2) 1 @)

2
@) are independent

D (@)

are independent, thea (P ) o @

One implication of Theorem 10 is that if one of two experiments available to
a statistician is more informative than the other, then the statistician
should take all (independent) observations from the more informative experiment,

regardless of how beliefs change as he gathers information.
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The statistical literature discussed above has an immediate economic
interpretation, which we shall now develop.12

Let (/,S,r) be a probability space; s ¢ S represents a state of nature,
S is the Borel g-field of subsets of , and 7 is a probability measure on
(/,S). Throughout, 7 will denote a generic probability measure, its domain
being indicated by its arguments. A partition § of » is a collection of
mutually disjoint sets, {w} < S, such that yy = . A signal y is a measurable
mapping from » to a measurable space (;,Z). X—l induces a partition X of
J; thus, for any x ¢ X, s and s' ¢ x, it is true that-x(s) = X(s‘). The
partition X together with the induced conditional probability measure n(“E):
E ¢ S, on X will be termed an information structure generated by x+ In
this way X represents those subsets of _y within which an agent observing X
cannot distinguish states, while  establishes the relationship between states
and the observed signal. It should be noted that we are no longer concerned
explicitly with the outcome space of a signal, as we were in section IT;
while these approaches are equivalent for comparisons by informativeness,
the use of partitions will allow a more natural definition of "fineness,"
to be given below.

Each economic agent maximizes his expected value of a real-valued
measurable state-dependent payoff function which is defined on _xA, where
A is the class of decisions available to the agent. Letting vy = {ui}ieN
be a collection of payoff functions, we call ﬁW a payoff-adequate
partition of  with respect to y if for every y ¢ QW’ s and s' ¢ @, u e v,

and d ¢ A (d is a constant decision), it is true that u(s,d) = u(s',d);
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partition of s with respect to y. This céptures the notion that a group of
agents might view with indifference the distinctions between some states.
For example, in consumer theory indifference curves represent a payoff-relevant
partition of commodity space for an individual. It is clear that in decision
problems involving agents represented by v it is suggicient to consider
QW instead of ¢, Characterization of each agent is complete when we associate
with each agent a‘probability measure  which represents his beliefs over
states.

For simplicity we shall take X and ) to be finite.13 An agent for whom
n is payoff-adequate initially faces the following problem:

(1) max % u(y,d) nlw) .
d e A pe

(Allowing ¢, as an argument of u is a convenient but harmless abuse of notation.)
However, the agent who observes a signal y (p) will use this information in

forming a decision function §(x) to

(2a) max 2 ulw,8C ))) mlw)
§ed  Q

or equivalently,

(2b) max ¥ up,5(x)) nlwlx), ¥ x ¢ X.
LETAN!

We define the value in (22a) as V(X;u,nq), which needs be as great as the
value in (1).

The analogy with part II is clear, Each y ¢ () represents a hypothesis.
After observing a signal (experiment) a decision-maker revises his beliefs
about the state of the world and chooses an action which is optimal relative
to these new beliefs., Now we ask, '"When will one information structure be
as valuable as another, regardless of an agent's prior over states?"

Yalue is the analogue of risk.
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Definition 11: With respect to (u,n), the signal represented by X is

as valuable as that represented by X' if and only if V(X;u,n) > V(X';u,q).

Definition 12: X is as_fine as X', denoted X o X', if and only if ¥ x ¢ X,

3 x' ¢ X' such that x < x'.

If X is as fine as X', then X is obviously as valuable as X' for any (u,n),

since by observing the signal 4 one knows exactly the outcome of X" Furthermore,
if we do not fix the class y with respect to which we are comparing two signals,
then the (partial) ordering of information structures by fineness is equivalent

to the ordering by value.

14
Theorem 13: For any two informatiocn structures X and X', X is as valuable

as X' for all (u,y) if and only if X ¢ X'.

While sufficiency is clear, necessity is less obvious. If X and X' are not
ordered by fineness, each will distinguish states in . which the other does
not. We can then construct payoff functions for which these distinctions are
crucial., Consequently, a different information structure will be preferred
with each payoff function.

Refinement provides only a relatively rough comparison of information
structures. Henceforth we shall take () as fixed and consider only those
signals y for which ﬂ(’\w) on X is the same for all priors on (. Such

. . e . . 15 .
signals are said to provide statistical information; comparisons sharper

than refinement can be made in this restricted class. We have seen in section II

that Blackwell has provided necessary and sufficient conditions for one
(statistical) information structure to be as valuable as another for any
(u,rr) for which () is payoff-adequate.

If we require agreement not only on n(x|y) and ;(x'|py) but also on

n(x,x"|p), then a further comparison is available.
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Definition 14: X' is a garbling of X if and only if one of the following
equivalent conditions holds:16

(1) ﬁ(x'\x:w) = ﬁ(x"x):

(11)  rlp]xx') = mlo]x),

(111) %' e) = n&' %) p]e).

Thus, when X' garbles X we see x is a sufficient statistic for (x,x'); further,
since it is always the case that n(x'|w) = 2 n(x']x,@) n(x\w), (iii) shows

X
the stochastic transformation relating TT(x'T}-() and TT(x1~) has a special form.
When X o X', the stochastic transformation involved is arbitrary. Therefore,
we should expect fewer signals to be ordered by the criterion of garbling
than that of informativeness, though in return we get a stronger and possibly
more useful characterization of the relation between two so ordered signals.

Our criteria for comparing information structures are related as follows

(a proof is given in Appendix A).

Lemma 15: (@) X ¢ X' =» X' is a garbling of X.

(b) X' is a garbling of X = X > X'.

The foregoing discussion suggests the converse of Lemma 15 is false. We

establish this with two examples.

Example 1
ﬁ(Y:X"wl) n(Y:x'\wz)
IS S R S
x l 10/45 12/45 x] . 5/45 24/45
i 3
1 : H
*2 i 20/45 3/45 xy ¢ 10/45 6/45
Example 2
ﬁ(Y)x"lu)l) ‘ ‘n’(Y)x"‘wz)
¥y ¥, ¥4 ¥,
*1 | 50/225 41/225 x' | 15/225  62/225
i
x| 100/225 34/225 xy | 60/225  88/225
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In both examples,

3\
A

) {’n<y1\w1> 7yl ) l;’z/s /3|
o = \ntyluy)  wl,lwy)) \v3 273
while in Example 1
L, = {n(xi]wl) n(xé]wl)i ] é722/45 23/451
(meloy) G ley), | 29745 16/45;
and in Example 2 |
L = !/ﬂ(xf1wl) n(xglwl)} ) 591/225 134/225% |
Kﬂ(xflwz) n(XElwz)j K77/225 148/225 ;
In Example 2
L, =L - {33/75 40/75? )
\21/75  54/75 ] )

and hence L, D L,; further it is easy to check that X" is not a garbling

of Y. In Example 1, L. garbles Lo, with

1
TT(xi]yl) = 1/3 TT(xz'lyl)

mx1]y,) =415 m(xly,) = 1/5 ;

2/3

clearly Y is not finer than X'. Lemma 15 and the Examples establish the
following, which is written with obvious notation.

Theorem 16: fineness;;:Lw“ garbling g informativeness
7 7

For a single decision~-maker who is able to choose one of several signals,
all of which are ordered by informativeness, the above distinctions will
be irrelevant, for the most valuable signal is the most informative. However,
in other situations the particular relation between information structures
is important. For example, it has been shown17 that in a Vickery auction
for an object of unknown quality, if two bidders have the same private wvaluation

of the object when quality is known, if they hold the same priors over the
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quality, and if each is allowed to observe a private signal (about the quality)
before submitting his bid, then if the second bidder's information is a
garbling of the first, the second cannot expect a positive payoff from the
auction. In this case the second bidder will prefer to observe an even less
informative signal, but one which is conditionally independent of the first

bidder's. (It is not hard to show that the distributions for such signals

exist.)

In another context, agents may pool their information or they might
be allowed to choose to observe two or more of several signals ordered by
informativeness. In addition to Theorems 9 and 10, the following is useful

with respect to such combined experiments.

Theorem 17:

(a) if X ¢ X', then and only then X ¢ (X,X').

(b) if X' garbles X, then and only then does (X,X') garble X.

(¢) if X > X', then (X,X') o X, where the ordering may or may not be strict.

(d) if X P X' and X' D X, then (X,X') D X and X', where the ordering is strict.

Proof: (a) is clear. (b) and (d) are shown in Appendix B. From (b) it
follows that if X' garbles X, then X o (X,X') and the ordering in (c¢) is

weak. To finish the proof of (¢) we have from Example 2 above

// TT(Y]_)X']:\(D]_) ‘IT(Y]_)X'Zl‘(Dl) ﬂ(Yz:xlﬂwl) ﬁ(YZ:x'z"(Dl)\

R =
&\ ﬁ(ylyx']:](i)z) TT(Y]_:X'ZI\(DZ) TT(YZ’X']Il(DZ) TT(YZJX'Zl‘(DZ)/
/"/ N\
_  {50/225 100/225 41/225 34/225)
\15/225 60/225 62/225 88/225:
N /"
and : \

'2/3 1/3)
o~ \1/3 2/3;

/

as before,
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By refinement, R > Lo' In order to see R is strictly more informative than

Lo we solve for the 2x4 matrix M such that R = LOPI:

| 85/225 140/225 20/225 -20/225
M = { ]

| -20/225  20/225 83/225 142/225

5
since M is unique but not Markov, Loti R.

(b) and (d) give us sufficient conditions for one to know whether it is worth-
while to pool information. Furthermore, in Examples 1 ahd 2, Yo X' X"

and X' is a garbling of Y, while X' is not ( though it is dependent on Y).
Consequently, we have constructed another example where a less informative
signal may be preferred. Furthermore, we conjecture that a necessary and
sufficient condition for the combination of two signals to be stricitly more
informative than either alone is that neither be a garbling of the other.

Noiseless Information

Definition 18: X is noiseless with respect to O if and only 1if ¢ X.18

Noiseless signals are those which tell us with certainty in which subset

of 0 lies the "true'" state. However, since by coarsening its partition of
o every signal can be made noiseless--and hence by refinement the original
partition is more informative than the noiseless one--noiselessness is not

an optimality property. On the other hand, since 0 p Q, there always exists

an undominated noiseless partition of (). We shall show, nonetheless, when
attention is restricted to noiseless signals, fineness, garbling, and infor-
mativeness provide equivalent comparisons, With this in mind, one is assured
of a matrix representation of fineness (cf. Theorem 8); we show this takes

a special form.



-16-

Lemma 19: Suppose X is noiseless with respect to Q; P = G”(Xj\wi))

and Q = (”(x£‘¢i))’ i=1,...5n, j=1,...,N, k=1,...,N' are the nyN and
ny N'matrices representing X and X' respectively. Then X ¢ X' if and only
if there exists a Ny N'Markov matrix B = (Bkj) such that Bkj =Q0orl,

k=1,...,8, j=1,...,N' and Q = PB.

Proof:

=) X X' implies ¥ x ¢ X, ®' ¢ X' we have (x'|x) = 0 or 1. Further
N\ )

% a,x"\w) = 2 n(x'|x) n(x|w) since fineness implies garbling.
xeX xXeX

n(x'\w)

Let Bkj = n(xé\xk), which is either 0 or 1. Then Q = PB, and B is Markov.
(In fact this part of the proof does not use noiselessness of X and so furnishes
a characterization of refinement in general.)

) TFix x' X' and y ¢ ; we have ﬁ(x'\w) = 3 Bxx' n(X\w) , where
XgX !

Bxx' = 0 or 1. Since X is noiseless, 3! x* ¢ X such that y, — x*. Consequently,
ﬂ(xllw) = Bx*xl = ﬂ(xr‘x*)w)) and so Bx*x| m(®x%,0) = w@*,x',0).

Summing over Q, r(x%) Bx*x' = q(x%,x') and hence

-~
T\'(X*) ifBJ I=1
n(x*,x') = % xE
0 if Bx*x' =0,
implying either x* ¢ x' or x* N x' = #. (Actually, we only have

TT(x'\x*) =0 or 1. Only null sets would cause difficulty with the inclusion
relations; in this case we could find another partition which is equally as
informative as X' for which the inclusions hold. Alternatively, n(x'|x*) = 0 or
¥V x' ¢ X', x* ¢ X could be taken as the definition of réefinement.) To complete
the proof we must show for arbitrary % ¢ X and x' ¢ X' that either % c x'

or x' n x = B.But since X is noiseless, J g ¢ () such that g c X. Repeating

the above procedure for x' and & finishes the proof.
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Theorem 20: In the consideration of noiseless information structures

fineness === garbling &> informativeness,

Proof: Given Theorem 16 it suffices to show informativeness = fineness.

Suppose X 5 X'; then there is a Markov matrix B such that Q = PB, where

Q and P are as in Lemma 19. This can be rewritten as

& ) = 2 B! n®lw), ¥ x' ¢ X', 4y e 0. Now fix x' ¢ X', y ¢ Q. Since

X and X' are noiseless, ﬂ(X'1W) =0 or 1, and 2 x* ¢ X such that ﬂ(x*\w) = 1.
1

Therefore, By 1 = n(x"lw) = 0 or 1. Since this holds for any x' ¢ X',

w ¢ Q, B consists only of zeros and ones, which with Lemma 19 implies X o X'.

Theorem 20 stands in marked contrast with Theorem 16. For noiseless
information structures X and X' to be more valuable in combination than
either alone it is necessary and sufficient that neither be a refinement
of the other. Also, the criterion of refinement is easier to check than
informativeness, as it only involves an inclusion relation rather than a

matrix condition.
IV. Limitations on Comparisons: an example

As noted earlier, when a single agent chooses to observe one among
several signals, he is only interested in relative informativeness. However,
when combined experiments are considered, a sharper characterization of signals
is useful. This is also the case in the bidding example. Thus, it appears
that in situations involving two or more information structures the additional
characterization of garbling and finess may be useful and interesting.

This section shows comparisons in these larger situations will be difficult.

We consider the following non-cooperative game between two agents.

There are two states of the world, (w1’wz)’ and there corresponds to each

state a different payoff matrix.
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0.)1: ‘”2:
t1 t, t1 t2
-y "“"! :"" I S S T e
s1 1/2 0 0 1/2 | s i 0 3/4 Ai 3/4 0
B L L
i t |
S 0ttt oo 2 (o j ot

The top player is allowed pure strategies (tl’tZ); the side player, (sl,sz).

The state of the world is unknown before the players take an action. However,
each is allowed to observe a private signal and may base his strategy on that
signal. The side player observes the signal Y while the top player is allowed
a choice between X and X' (here we associate partitions with signals as before).
His choice will be known to the side player. Further, we assume initially

each player believes ﬁ(wl) = 1/2. The information structures are represented

by the following distributions.

ﬁ(Y:X]wl) n(Y;x‘wz)
¥, ¥, v, Y,
_i‘ = - - -
X, g 10/45 12/45 %, ] 5/45 24 /45
%, § 20/45 3/45 X, }10/45 6/45
ﬁ(Y)x"wl) ﬂ(Y:X"wz)
Y1 Y9 Y1 Yy
1 i
*1 182/675 91/675 x i 77/675 1547675
x, 268/675 134/675 xy | 148/675  296/675
i

It can be shown that Y is strictly more informative than X, which is strictly
more informative than X'. Further X is a garbling of Y but X' is not.

We now seek the expected payoff to the top player as he observes X or X'.
There is an equilibrium in mixed strategies. Let G(yi) denote the probability
with which the side player plays s given he has observed vy i=1,2, and
the top player observes signal X (though the realization is not revealed

to the side player); analogously define 3(yi) when the top player observes X',
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We find that a(yy) 4/5 o(yy) = 1/2

8(yy) = 16/21 5(y,)

10/21.
Further in equilibrium, the expected payoff to the top player is 3/8 if
he observes X, 8/21 if he observes X'. Hence in this case, the less informative
(but ungarbled) of two signals is preferred.

To see that this is not a general result in this context we have the
following example. Let the signals and priors be as before; consider the

following payoif matrices:

wy* R
B i S T
| | “ | L
i T N N sp o0t oy
s, L0110 | s, L 1olo
We now find g(y1)=1/4 g(yz) = 1
8(yy) = 1/6 8(y,) = 2/3,

and the top player's expected payoff when he observes X is 5/8; when he observes

X', 7/12. Now the garbled, but more informative signal is preferred.

V. Conclusion

Information structures present one mode by which beliefs or the production
of information might be modeled. For comparisons of such structures in the
context of a single agent choosing a single signal we have the theorems of

Blackwell. Further areas for research include the comparisons of combined
signals as suggested earlier, and also the consequences of differential information

among several agents. Information structures seem a fruitful way to model
such differentials. By examining the game implicit in the bidding model,
to isolate the difficulties raised in part IV, general results on comparisons

of information in multi-person settings might be obtained. Interesting
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results might also arise by considering information in the context of repeated
games. Lastly, another avenue for research would be to uncover situations
in which different actions generated different information structures, as

in the example of Grossman et al.
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Notes

1Convexity would have followed from consideration of randomized decisions;
compactness is assumed for simplicity. Initially, Blackwell (1951) only
assumes A to be bounded, though later (1953) he assumes compactness and

convexity.

2Blackwell (1951), Theorem 2.

3Ib]’.d ., Theorem 3.

#1bid., p. 95.

SIbid., Theorem 4 and Theorem 5.

Pty

6Blackwell (1953), p. 266.

7Grossman et al., pp. 538-9.

8p1ackwell (1951), p. 97.

9B1ackwell (1953), Theorem 5.

10This and the following paragraph are meant only to make plausible

the claim that informativeness implies sufficiency. For example, dispersion
would be irrelevant if the supports of the n different distributions were
disjoint, for then the outcome of an experiment immediately identifies the
state. This point will become clearer in section III. The remarks in the
text are best interpreted, bearing in mind the example in which Mi’ m, are
normal distributions Also, we have the caveat that the relations between
relative informativeness and variance are not the same. For an example,

see Rothschild-Stiglitz.
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11Blackwell and Girschick, Theorems 12.3.1 and 12.3.2,

12Also see Marschak and Miyasawa, Marschak and Radner.

13We shall now drop the subscript on QY’ understanding () to be payoff-
relevant for the problem at hand.

14Marschak and Radner, pp. 55-7.

15Milgrom and Stokey.

16 1 1 1y
ﬂ(x ‘x;(,l)) T\'((Dlx:x ) m(x,x \(J,))
A& pln) ) n& %)

These identities hold since each ratio equals (w,X,x') (%)

ﬁ(w:x) n(x,x")

Garbling requires these ratios equal 1. See Marszhak and Miyasawa, p. 149.)

17Milgrom.

18An alternative definition of noiselessness is to say X is noiseless

with respect to 0 if n(p|x) = 0 or 1 for any 4 ¢ 0, X ¢ X. But here X is
"virtually" perfect information since () is payoff adequate for each agent,
and so seems to offer fewer interesting possibilities (cf. Marschak and

Miyasawa, footnote 8).
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Appendix A

Proof of Lemma 15:

(a) Since X ¢ X', ¥ x ¢ X, x' ¢ X' either

(A1) x < x' so n(X;X"w) = n(x|w)
or
(Aii) xNx'=9§ so n(x,x"|y) = 0.

Iin (Ai) TT(x"x) =1, in (Aii) n(x"x) = 0. Hence, condition (iii) in the
definition of garbling is met.

(b) Rewrite Theorem 8 as follows: X o X' if and only if ¥ x' ¢ X',

X ¢ X, 9 e O, 3 non-negative numbers y__, such that 2 y , =1,V x
XX 1 1 XX
X QX
and n(x'lp) = 2 A m(x|w). Since X' garbles X, n(x,x'|y) = n(xlw) n(x'|x).
XeX
Therefore, n(x'|w) = Z n@,x'|lw) = 2 n(x'|x) n|w)

XeX X €X
Let Yy, 1 = TT(x'\x); application of our rewritten theorem completes the proof.

This proof of (b) is found in Marschak and Radner, pp. 65-6.
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Appendix B

Proof of Theorem 17:

(b) Suppose X' garbles X. Then V¥ xj, X ¢ X, x' ¢ X', and y ¢ Q

k
/0= n(xj’x'lxk) itk

!

n(xj,x']xk;w) = {

I
L)

{\‘ TT(X' ‘Xk)w) = 'TT(X' 1Xk) = 'ﬂ'(xk)xl \Xk) j =
So our first condition for garbling is satisfied.

Now suppose (X,X') garbles X. ThenV Xy Xy o€ X, x' ¢ X' and o ¢ Q)

k
n(Xj;X'\Xk;w) = n(Xj)X"Xk)- Summing over j we get n(X']Xk:m) = n(X']Xk):
so X' garbles X, finishing the proof of (b).

(d) We have (X,X') o X' by refinement. Now suppose X 5 (X,X'). Then
X > (X,X') o X', which contradicts the assumption that X 4 X'.Hence

(X,X') D X and the comparison is strong. Likewise, (XX') is strictly more

informative than X'.
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