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1. INTRODUCTION.

In this paper we show the relation between extremal processes and their
"inverses.'" Suppose that Y( ) 1is a real-valued, non-decreasing, right-
continuous function defined on (a,b), (- ® < a < b < »)., By the inverse

of Y( ) we mean the function Z( ) defined by

Z(u) = sup(t | Y(t) < u)

Thus, Z( ) 1is also a real-valued, non-decreasing, right-continuous function.
It isnot hard to see that the inverse of Z( ) 1is the original Y. We will
show that the inverses of extremal processes are certain additive processes,

that is processes with independent (but not stationary) increments.

2. DISCRETE TIME CASE,.

We first consider the case of successive maxima of a sequence of inde-
pendent and identically distributed random variables. This case serves as
a motivation for the limiting case of extremal processes (see Sec. 2 of [1])
and also has some real interest of its own. Let Xl’ XZ’ ... be a sequence
of independent and identically distributed random variables with c.d.f.

F( ). Define
Mn = max (X ey X))

and

M(t) = M forn-1<t<n, n-=1,2,..
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Thus the random function M( ) 1is with probability one a non-decreasing,

right-continuous function. The structure of M( ) is completely determined
by the sequence Ml’MZ"" which is a Markov chain with non-stationary

transitions. The evolution of M( ) 1is as follows:

(a) If M(n) = x then M( ) remains equal to x for a geometrically
distributed period of time whose parameter depends on x. Specifically, if

W(n,x) 1is the amount of time that the process remains equal to x, we have,
_ _ k-1
PW(n,x) = k) = [Fx)] "[1 - F(x)], k=1, 2,

(b) The process then jumps to a new height whose c.d.f. is given by

Notice that both the waiting time distributions in a state and the amount of
the jump depend on x, the height of the process, but not on n, the time
from which the evolution is being considered. Thus we can consider the
inverse process Z( ) evolving as follows:

(a') Let [A,B] be the smallest interval containing the total mass

of the c.d.f. . That is

lim F(x) - lim F(x) =1
x+B xHA

and if [A',B'] 1is strictly contained in [A,B] then the above limit,
with A',B' replacing A, B, is less than one. (It may be that A = - © or B

We define the inverse process Z( ) by

®.)
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Z(u) = sup(t | M(t) < u), A< u<B (2.1)

Thus, the values of Z( ) are non-negative integers.
(') 1If Z@) = n, then Z( ) remains equal to n for an additional
amount of time R(u,n) whose distribution depends on u, but not on n.

Specifically,

1 - F(s)

P(R(u) > 8) = T

(2.2)

This follows from (b) 1in the description of M( ) above since

FRG 1 Ee)
-F @ 1-Fu

P(Z(v) =n, u<v<s | Z(u) =n) =

which does not depend on x whenever x < u < s,
(c') Given that Z() =n and Z( ) remains equal to n until time s
according to the distribution described in (b'), then Z( ) jumps to a new

height n + k with probability
k-1
[F)] {1 -Fwl, k=1, 2, ... (2.3)

It follows from the above description that Z( ) 1is a Markov process. In

the next section we give a different description of this process.

3. L. F. PROCESSES.

Consider the probability generating function

1 - F(s) _ ”

6(s,8) = Togr(ey - 3[9F<s>1k [1 - F(s)]



Zor s in (A,B). We have that

1 - F(t) 1 - QF(s)

H(s,t,0)= 1 - F(s) 1 - OF(t)

= G(s,9)/G(t,9) (3.1)

is a probability generating function whenever A < s < t < B since it is

easy to verify that

H(s,t,®8) = a+ (1 - a)G(t,9)

which displays H as a convex combination of two probability generating

functions with

_ 1 - F(t) F(s)
T 1 - F(s) F(t)

The distribution described by H has been called a linear fractional distribu-

tion. We now describe an additive process which we call a linear fractional

~

(L.F.) process, Z{( ) as follows:

1) T1f A< t1 <ty < ... < tk < B then the joint distribution of

2(t)), 2(ty) - Z(t), ... E(tk) - 2t )

is that of k independent, non-negative, integer-valued random variables whose

probability generating functions are
G(t),0),H(t ,ty,0), ..y H(t, 5t ,0)

respectively.

2) Since for s < t < u we have that

H(s,t,0)H(t,u,08) = H(s,u,0)
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it follows that a process with independent increments can be defined on
(A,B) in accordance with the consistency requirements of Kolmogorov. The
details are standard and are omitted. Notice that for any t in (A,B),;(t)
has the generating function G(t,8).

3) We suppose, as we can, that we have a version of ;( ) which is
right-continuous.,

Theorem 3.1 The process ;( ) defined in this section and the process

Z( ) defined in Section 2 agree. This means that Z(t) and Z(t) have the

same distribution for any t in (A,B) and the increments
Z(t2) - Z(tl)""’z(tk) - Z(tk—l) and Z(t2) - Z(tl)""’z(tk) - Z(tk-l)
have the same joint distributions for

A< t1< t2< ...<tk<B

~

Proof We see from the definition of Z( ) that
P(Z(t) = k) = [F(t)]k[l - F(t)], k = 0,1, ... . Let us check the distribution

of Z(u). From the definition of Z{ ) as the inverse of M( ) we have that

P(Z(t) 0) P(X1 > t) =1 - F(t)

P(Z(t) = k) = P(X; < € -0y X, < €, X t)

K K+l ~

[F()] N1 - F(6)], k = 1,2,

Thus, the first requirement that Z(t) and Z(t) have the same distributionms,
is satisfied. Next we check the second requirement that the increments of Z( )
and of Z( ) have the same joint distributions. There are several different

ways of doing this and it might be interesting to point out these different

approaches,
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Method 1 A straightforward calculation shows that

coefficient of 90 in H(u,s,0)

P(E(v) =n, u<v<s \ E(u) = n)

1 - F(s)
1 - F(u)

~

Thus the holding time distributions of Z( ) and Z( ) coincide. Another

straightforward computation shows that

lim PEu+¢) =k | Z(u+ ¢) > Z(w)= [F@I1 1 - Fw)l,k = 1,2,
e,0

Hence the jump distributions for Z( ) and Z( ) coincide and the proof

is complete.

~

Method 2 It is not too hard to show that the increments of Z( ) have the

same joint distributions as do the increments of Z( ) by direct computation.

For typographical ease we illustrate the necessary computation in a special

case, leaving the general case to the reader. Suppose that A < t1 <t, < B.

Let Z(tl} = Zl,Z(tz) - Z(tl) =2, and let r and k be positive integers. Then
P(z1 =r, Z2 = k)

it

P(Xy< by X <ty 6K X o< £),X t

1 1 8 X< SUPSSR ORI STESR SO ST

= [F(e)TIF(e)) - FEDTFENT TN - Fe,)]

Hence, since we have determined the distribution of Zl from the first part of

the proof we have that

1 - F(tz)

P(Z,= k | 2, = 1) = 7——=F1F(t,))]

k-l[
1 1 - F(tl)

F(t,) - F(t))] (3.2)

A similar computation shows that the same conditional probability applies when
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r = 0. Hence zl and 22 are independent. The quantity on the right side

k
of (3.2) 1is the coefficient of 8 in H(tl’tZ’Q)'

4, ANOTHER REPRESENTATION FOR Z{ ).

Let - « < C <D< ®, We want to describe a process on (C,D) which is
a generalization of compound Poisson trocesses. Let U( ) be a Poisson
process with stationary, independent increments over the time interval (C,D)
and parameter A. That is, if C < ty <ty <ty < D, then U(t2) - U(tl) and
U(t3) - U(t2) are independent random variables which are Poisson distributed
with parameters x(tz-tl) and k(t3-t2) respectively. Let K(O,t) be a
characteristic function of a probability distribution which depends on t and

is well-defined for every t in (C,D). That is

fas)
)

K({9,t) =

(expi@x)dHt(x)

o
where H 1is a c.d.f. for every t in (C,D). Now define a process Y( ) as

follows:

If t 1is a jump point of U( ) then Y( ) Jjumps by an amount which

has the c.d.f. Ht' That is, given that Tl < T2 < ... are the jump points of
U ) let Jl’JZ’ ... be a sequence of random variables which are independent
and have c.d.f.'s HTl, HTZ, ... respectively. Now define Y( ) as follows:

0, C<t<T1’

Y(t) = Iy’ sty

I+ 3y, T, <t < T,
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If there are no jumps of U( ) in (C,D) then Y(t) = 0 for all t 1in

(C,D). 1If there are only a finite number N of jumps in (C,D) then

Y(t) = Jg + ...+ J for t in (TN,D).

Lemma 4.1 Y( ) 1is a process with independent increments and

t t
K(8,s)ds = exp - A(] (1-K(8,s))ds (4.1)
C

E(expifY(t)) = exp - A(t-C) - A
Proof That Y( ) has independent increments is evident from th=
fact that U( ) has independent increments. To evaluate the characteristic
function of Y(t) we use the fact that given that there are n jump points
in (C,t), their locations are distributed the same as that of n points

indep:ndently selected at random in that interval. Hence

E(expifY(t)) =
© K(G,ul) . K(B,u )du,...du
7 ot f cen f (T L n] [A(t-0)1" e-x(t_c)/ n.
n=0
C < Uy < ...u_ < t
n

(The integral is understood to be 1 for m = 0.) We use the fact that

n
n! I ...<r K(G,ul) ce K(G,un)dul...dun = [ gtK(Q,u)du]

C<u<...<u< t
1 n

Hence the assertion about the characteristic function of Y(t) follows
immediately.
If the jumps happen to be non-negative integer-valued random variables

we will find it more convenient to deal with the probability generating function



of  Y(t). In this case if we understand K(B,u) to

(t)

be the probability generating function of a jump at time u then EGY
equals the right side of (4.1) with no further changes, (lei < 1).
Similarly, if the jumps are positive it will be convenien® for K(6,t) to
be the Laplace transform of a jump at time wu.

We point out that if K(8,s) = K(8) does not depend on s then

Y( ) 1is a conventional compound Poisson process. We shall refer to Y( )

in general as an integrated compound Poisson (ICP process).

We now will show that under certain. circumstances there exists a
function D( ) on (0,) such that Z(D(u)) 1is a process of the type
described in Lemma 4.1, namely an ICP process.

Suppose that F is continuous in (A,B). Then there exists a monotone

non-decreasing function R on (0,1) such that
F(R@)) = u, u in (0,1).

If F 1is strictly increasing in (A,B) then R = F-l, the inverse function
of F. If F 1is continuous but not strictly increasing then R 1is not
uniquely determined but we suppose we choose one particular version of R

once and for all. We now define a function D by

u
1+u

D(u) = R( ), uin (0,=).

Theorem 4.1  Suppose that F 1is continous. Then Z(D(@)) for u in

(0,») defines an ICP process with jump distribution determined by
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(s + (1-s)8)/(1 + s - Bs)

K(9,s) = EQ°

s ® sk_1 k
= .2 T x ®
k=1 (1+s)

and A = 1.

Proof We know that Z( ) 1is a process w7ith independent increments so the

same is true of Z(M( )). We have that

Z( W) _ _1-FO@) _ 1
E6 =60, = T Grmay) - I+ u - 6u

Let us now compute EGY(U) for the ICP process with * = 1 and the above

indicated K. An easy computation sliows that

t
[ K(s,0)ds = t - log(l + t(1-6)°
0

Hence, for all positive u,

Y(u) _ 1
EQ T 1+ u - 8u

This completes the proof.

We are now able to show that the number of times that M, rises to new heights

between height a and height b 1is Poisson distributed with parameter

log{ (1 - F(a))/(1 - F(b))]. Let us describe this more carefully. We say

that a record is set at time n and at height x if

X = Mn > max(Xl,...,Xn_l), n>1

We agree that a record is automatically set at time n = 1 at height Xl'
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Theorem 4.2 Let V(t) equal the number of records set with heights no
greater than t. If F 1is continuous then V( ) 1is a process with
independent increments which are Poisson distributed. Specifically, if

A<a<b<<B then V(b) - V(a) 1is Poisson distributed with parameter

log [ (1 - F(a))/(1 - F(b))T.

Proof By Theorem 4.1, the process Z(D( )) is an ICP process. The
process U( ) which counts the jumps of this ICP process is a Poisson process.
Hence V( ), the process which counts the jumps of Z( ) also has
independent increments which are Poisson distributed. It remains to determine

the parameters of these Poisson distributions. We have that

P(V(D) - V(a) = 0) = H(a,b,0) = {2 = exp-log [ (1-F(a))/ (1-F(b))]

which completes the proof. (For a direct proof, see Theorem 2.2 of [ 1 ].)

5. EXTREMAL PROCESS.

We now consider the counterpart of the above results for extremal
processes. (See [ 1], [ 2 1 for the definition and a discussion of these
processes.) These processes are defined in terms of a monotone, non-increasing,
non-negative function Q whose total variation is concentrated on [a,b]
where -~ ® < a < b < ». A representation of an extremal process Y(t),0 < t< =
is given in terms of Q in Section 4 of [ 2 1 as follows: Under the
condition that Y(t) = x, (x in (a,b)), Y( ) remains equal to x for a
random amount of time wl/Q(x). The process then jumps to a height Zl

greater than x where Zl has the c.d.f. RX defined by
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0, u<y,
RX(u)

L -Qu)/Q(x), u>y

The process then remains at height Z1 a random amount of time WZ/Q(Zl),

and so forth. The random variables wl’w2’ are independent, exponential

(parameter 1), independent of all other random variables under consideratiom.

We now define the inverse Z( ) to the extremal process Y( ), where
Z(u) = sup(t | Y(t) < u), u in (a,b), (c.f. (2.1) (5.1)

In accordance with the above representation of Y( ) we can give the

following representation for Z( ): If Z(u) = z then Z( ) remains

equal to z for an additional amount of time R(u,z) where
P(R(u,z) > s ) = Q(u)/Q(s) (5.2)

Given that Z(u) =z and Z( ) remains equal to =z wuntil time s according

to the distribution described by (5.2), then Z( ) jumps to a new height

z + J where J 1is exponentially distributed with parameter Q(z). That is

P(J > v) = exp - vQ(z), v>0 (5.3)

Notice the formal similarity between (5.13(5.2),(5.3) and (2.1),(2.2),

(2.3). We refer to the fact that for t > O,
P(Y(t) < u) = exp - tQu) (see [ 2 1)

Hence,
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P(Z@) > t) = P(Y(E) < u) = exp - tQ(u)

and we have the Laplace transform,

u)

Qu) + 0 2 in (@b, 6>0 G4

E exp - 8Z(u) =

In a manner which is wholly analogous to that of Section 3, we can now

construct an additive process Z( ) with the following properties:

(a) Z(u) 1is exponentially distributed with Laplace transform giwven

by (5.4).
(b) If a< ty <ty L < tk < b then the increments
Z(tl)’ Z(t2) - Z(tl),...,Z(tk) - Z(tk—l) are mutually independent

and Z(t;) - Z(t;,,) has Laplace transform

Q(t,) [Q(tl) + 9]
Q(t) | Q(t,) + 0
(This transform is analogous to the generating function (3.1).)

The following theorem is comparable to Theorem 3.1.

Theorem 5.1 The processes Z( ) and Z( ) agree, in the sense that
Z(tl), Z(t2) - Z(tl),...,Z(tk) - Z(tk-l) and Z(tl), Z(t2) - Z(tl),...,Z(tk) - Z(tk-l)

have the same joint distributions.

Proof A proof can be modelled after the proofs of Theorem 3.1 and we
leave the details in that direction to the reader. For another proof we

offer the following: According to Theorem 9.2 of [ 2 ] it is evident that
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that 2( ) has independent increments, as does Z( ). Hence to prove
the theorem it need only be shown that for any t in (a,b) E(t) and Z(t)
are identically distributed. But this is true from the definition of

~

Z( ) and from (5.4).

We now prove a counterpart of Theorem 4.1. TFirst we point out that if

Q 1is continuous on (a,b) then there exists a function R such that
Q(R(u)) = u, uin (0,=).

We now define a function D by

D(w) = R( —7 )

Note that D 1is a monotone non-decreasing function of wu,

Theorem 5.2 Suppose that Q is continuous in (a,b). Then the

process Z(D( )) 1is distributed like Y, + Y( ) where Y( ) 1is an

0

ICP process on the time interval (0,») with jump distribution whose Laplace

transform is

_ _ 14+ 6u .
K(8,s) = Eexp-0J —1—1—52511) , 8 and u in (0,®»)

and A =1, and Y is an exponential (parameter 1) random variable independent

0

of the process Y( ).

Proof Since Z( ) has independent increments the same is true of

Z(MO( )). We have that
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1
Q (R( )) 1
N utl -
Eexp-0Z (D (u)) = 1 14 (utl) ®

Q(R(—7))+6

Let us now compute Eexp-0Y(u) for the ICP process Y( ) with X =1 and

the above K.

,gu(l - K(9,s))ds = log : 2 g+1
Hence
Eexp-0Y(u) = T—%"ETSIT)
and
1

Eexp-6(Y, + Y(u)) = T+ 0(utl)

Since Z(M( )) and YO + Y( ) are both processes with independent increments,

this completes the proof.

From Theorem 5.2 one can easily prove the counterpart of Theorem 4.2,
Since this appears in [ 2 ] as Theorem 5.1, (b), (¢) we leave the details

to the reader.



