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ABSTRACT

HMost rational expectations narket equilibrium models are not
unodels of price formatioen, and naive mechanisms leading to such
equilibria c¢an be severely oanipulable. In this paper, a hidding
wodel is developed whiech has the market-like features that
bidders act as price takeys and that prices coonvey information.
Higher eguilibrium prices convey more favorable informatienm about
the quality of the objects belng sold than de lower prices.
Bidders c¢an benefit from tvading only if they have a transactions
motive or If they have access to inside information. Apart from
exceptional cases, prices ars not fully revealing. 4 two stage
model is developed in which bidders may acquire informationm at a
cost bhefore bidding and for which the equilibrium price is fully
revealing, resolving a well-known paradox.




1. Intrcduction

Since the introduction in the early 1950's of the Arrow-Debreu
theory of general equilibrium under conditiens of certainty, a large
Iiterature has evolved seeking to extend that theory ro accozmedate
production and trade under uncertainty. A central feature of the
Arrow-Debreu theory iz that commodities are identified by thelr actri-
butes, including both their physical characteristics aand such factors
as the time and place at which the commodity becomes available. To
accommodate uncertainty, Debreu (1939} suggested viewing the contin—
gencies (or "states of the world™) in which a commodity i3 delivarable
as an attribute, and Arrow (1964) showed how rhis contingent-commodity
perspective leads to a theory of securities as iostruments for distrib-
uting risk. Radner (1968) added an ezplicit formulation of the informa-
tion available to traders in the Arrow-Debreu oodel.

When each trader is endowed with his own private source of
information, or when traders can acguire infarmﬁtian at a cost, the
traders' strategic options may be drastically different than in the
case where all information is public, It may be possible, for example,
for a trader to infer information from the terms of trade he is offeréd
ar, acre generzlly, from any cbservations he makes concerning the be-
navior of other traders, Sﬁme rational expectations equilibrium (REE) wodels
attempt to capture this process of inference., I argue below chat the
existing REE models are defective in important ways, and T offer a
partial alterpative which escapes these defects,

For the purposes of thisz discussion, a state of information is




a list X whose ith entry Ki describes the private information of trader

i. & racional expectations equilibrium is 2 pair of functions mapping

states of informaticn inte a price vector and an allecation, respective-
1y, with the properties that: (1) esach trader maximizes his expected
utiliry, subject to his budget constraint, (2} the net trades sum o
zers, and (3) each rrader’s expectations properly reflect both his
private informarion and any information which can be inferred from the
vectotr of pfices. Traders in these models are assumed to act as price
takers in a new and expanded sense; they believe that their actions
will affect neither the terms of trade nor the informational content
of prices.

A recurrent idea in REE models is the idez that prices are

fully revealiny, i.e., that the price vector iz a sufficient statistic

for all of the information obgerved by all of the traders. Let
di{Xi,p) be the net trade demanded by trader i in some fully rewvealing
EEE when he obzerves Xi and prices are p. 5Since prices are fully re-
vealing, the trader can ignore his private information in forming his

demands, so that d; does not actually vary with X {An example of

5
this kind has been given by Grossman [1976] and this point iz elaborated
by Beja [1976].) Let i be the equilibrium functicn mapping states of
information into price vectors. Then, for every state of informarion X,
markets clear: Edi(xi,f[X]J z 0N, Let p* be the equilibrium orice
vector corresponding to some state of information X*: p* = f(K#}. Then
Edi{xz, p*] = 0. But net demands do not depend on the traders’ private
information, so for every X, édi{xi, p*J =}, Ia other words, any

price in the range of f clears the mackets in every state of information

g1



The problem here arises from the expanded definition of price
taking behavieor. Traders ignore their informaticn because they see it
reflected in the prices. But how does private information come to be
reflected in prices 1f no trader uses his informarion?

In the coantext of the Arrow-Debreu model, Roberts and Poscle-
waite {1976) have justified the standayd price taking behavior assump-
tion for large exchange economies by showing that the Incentive to
deviate froo price taking behavior is small and that individual traders
can have little effect on prices. Tn the context of a fully revealing
REE, even this standard price taking assunmprion is hard to justify.
Following Roberts' and Postlewaite's approsch, suppose that there are
n traders and cthat the first n-1 traders adopt their equilibrium be-
havior, as described by the net deamand functions [di}. Suppese trader
n adovts a demand function d: thar agrees with dn only at p = p*. As
argued ahbove, p* is then a parket ¢ledring price, but one can say oore:
ir is the unique market clearing'price. Indeed, at any other price,
n=1 a

£d.(X,,p) +d (X,p) # £ d,(X.,p) = 0. Thus, by the appropriate
i=1 i1 n'n =1 ivi

choice of d;, trader n can achieve any net trade in the range of dnf
Crossman and Stiglitz (1973) have called attention to another
difficultry in the REE paradigm. If inforpation is costly and prices
are fully revealing, and if the traders believe that they canmnot affecr
the ipnfermationmal content of prieces, then at equilibrium no trader pays
to gather infornation because all of nis information is already freely

available to him in the prices. Rut if no trader gathers information,

then the prices can convey no information. Finally, if information is



sufficlfently cheap and prices convey ne information, then scme trader
will want fo gather iaformation. In short, the system may have no
equilibrium. Grosswan and Stiglitz conclude that fully rewvealing
equilibriun prices are logically impossible, though the root cause of
their paradox iz probably the peculiar definition of price taking be-
havier. XNoke that each Crossman-Stiglitz trader can clearly see his

own privare information-—-ioformation which is available to nobody else—-
reflected in the prices, yet he believes that he can have no effect on
the prices.

To address seriously such questions as: (1) How do prices
come Lo reflect infeormation? (2) Are there incentives to deviate from
price-taking behavior? and {3) How do information gathering decisions
affect prices?, one needs a theory describing how prices are formed.

I have argued aboeve Fhat the REE peradigm (which is not 2 theory of
price formation) does not provide ready answers to these questions.

One class of price formatiom mechanisms which is of great empi-
rical significance and which has recently been the subject of intensive
theorecical studies is the class of competitive auctions and bidding
processes. Many of the papers in this area study models where the ob-
jects being traded are of known quality; only the preferences of oppos-
ing bidders are unknown. In a few medels, however, the objects traded
have unknown attributes and the gseveral bidders have unaqual aceess to
information. The equilibria of these models have much the same flaver
a3 rational expectations equilibriz. For example, Wilsen (1977) and
Milgrom (1%7Y) have studied codels of a sealed-bid tender ausction for

a single indivisible object, with each bidder having enly sample



infermation about the object’s value. As the number of bidders grows
large, thé winnipng bid wmay converge to the true value of the object, even
though no bidder wnows thét value when the bids are tendered. Thus,

the price {(i.e., the winning bid) aggregates information from many
bidders, aud the bidders' equilibrium strategles zre deeply influenced

by this fact.

In this paper, I attempt to strengthen the link between the bid=-
ding and rational expectarions lireratures. I study a model in which
k identical objects are offered for sale to m bidders (m > k 2 1).
Sealed bids are rendered, and the k highest hidders each recelve one
cbject for a price equal to the k + 1st highest bid., This is the "high-
est rejected bid mecharism," which was introduced by Vickrey (1961).

Focysing attention on a single bidder i, let wi te the ktk highast
bid among the other bidders. Ope nay think of Wi as the price faced
by bidder i. If he tenders a bid higher than his price, he acquires
one object for that price. TIf he tenders a lower bid, he acguires
nothing.

With this interpretation, each bidder is a "price taker™; he
cannot individually affeet his price. Altheugh different‘bidders may
face different prices, all trades take place at a single price.

Since the bids are submirted simmltaneonsly, bidders aust make
their bids iw ignorance of the prices. This feature distinguishes the
bidding wmodel from REE models, However, I ghall prove thar if a bidder
were informed of his price and extracted all of the informavion which
his price conveys, he could never gain by revising his bid. Thus, the

bidders are not only price takers; they also compute their "demands"



as if they had full access to price Information.

In the context of this model, one can study a bidder's incentives
for gathering private information. I shall show that a bidder without
special private informacion and without a transactlions motive for bid-
ding cap never earn a positive expected payoff. The best course for
guch 4 bidder 1z to withdraw from the auctien, i.e., rto bid zero.

Te emphasize this zero-payoff result, an example is given iIn
which prices are fully revealiog, i.e., Wi is a sufficient statistic
for the information of the bidders other than i. The zero-payeff theorem
implies that each bidder has an incentive to gather information, despite
these fully revealing prices. Like the traders of Grossman and Stig-
litz, the bidders in my wodel assume they caonot affect prices. How-
ever, unlike the traders' assumptions, the bidders' assumptions are
fully justified. Thus, there iz no tension in my model between the in-
centive to gather information and the infnrnatiopal efficiency of
prices.

A desirable property of the biddinz model is that it captures
some of the details of real securities mackets. In 2 typical zmall
securities transaction for a listed security, the buyer places a limit
order, i.e., he instructs his broker to obtain the most favorable pos—~
#ible terms, but not to pay more than some specified limit price, (This
limit price corresponds to a bid in the wodel.) He expects Lo success-
fully acguire the security whenever his linit price is highner than the
prevailing price In the market, and he expects that the limit price he
names will not affect the price that he must vay., All of these ex-

pectations are justified within the bidding medel,



This paper is arranged in seven sections, including the present
one. In section 2, I introduce the ideas of news and good news as tools
in modeling information. Sectien 3 is devoted to stating the asswmp-
tions, developing the notation, ard presenting the equilibrium, Vari-
cus properties of the equilibrivm, including the zero-payoff result,
are presented in sectionm 4, A twe stage gawe In which traders must
chooge whether or not to gather costly iloformation before bidding iz
analysed in secrion 3, Then, in section 6, I study some variations
of the basic medel. The conclusion expresses my views concerning what

can be learned froo the analysiz and what rewmajins to be doue,

2., Wews and Good Hews

Let Z dencote the unknown quality of the objects being seld at
auction. I take Z to be a real-valued random variable, with larger
values of Z corresponding té better quality. For example, 1f the ob-
jects being sold are mineral rightslnn adjacent trac£s of land, Z wmay
dencote the market walue of the recoverable vesources, If a single
work of art is being sold, Z = 1 may indicare that the work is an
original while Z = ¢ may Indicate a copy.

Deperding on the particular application, informaticn about Z
can cone in various forms, ranging from tables of staristical data to
sate]llite photographs to consultants’ reports. In general, one can
represent bidder i's informacion by a random variable Ki taking wvalues

in some abstract measure space. The variable Ki will convey information

as lomg as it is neot independent of Z. Let ui{- Z) denote the condi-
tiomal distribution of X, given Z,

Whatever form information may take, I shall want to make



comparisons between relatively good news and relatively bad news., In-

formzlly, a gignal {or report, or piece of news) x is more favorable than
¥ 1f for every non-degenerate prior distribution G on Z the posterioxr
G{*|{x} dominates G{*|¥) in the sense of striet first order stochastic dom-

inance; apd % is equivalent to y if 6(+|x) and G(-]y) ara elways Identical.

The variable_xi has the signal ordering property if fer every pair of non-
equivaleut signals x and y in the range of X, either x is more favorable

than ¥ or v is more favorable than .

There is a standard property of statistical distcributions that
iz cleosely related te the signal orderimg property. For simplicity,
let ¥ be a real-valued randem variable whose condlcicnzl density given
some valua z of Z is f{-iz). For this case of variables with densities,
the monotone likelihood ratic property can be found iv standard refer-
ences {a.g., Ferguson, 1967}.
Defipition

Y has the (striet) monotone likelihood ratlo property if the

likelihood ratio function f(y[z}!f(ylz'} iz non-increasing {(decreasing}
in y (¢on its domain of definition) whenever z' > z and non-decreasing
(increasing) whenever z' < z.

The general definitions of the MLRP and of the sigpal ordering
property require that attention be given to "Qarsions" of densirizs, a
measure-theoretic detail. {Throughout this paper, I shall always neglect
such details.} A rigorous treatment of these properties has been given
by Milgroa (1979a) and the following results have been proven,

Theorem 2.1

Y has the (strict) MLRP if and only if for EVerj non-degenerate

prior distribution G on Z and every y and y' in the range of Y with



¥y >y, G(-|Y=y) dominates G{-[Y=3'] in the sense of (strict) firstg
order stochastic dominance.
Theorem 2.2

X has the signal ordering property {f and only if there exists
3 real-valued function h oa the range of X such that h{X} is a suffi-
cient statistic for X and has the strict MLRP.

In view of Theorea 2.2, I shall hencefeorth simply assume that
gach bidder's signal variahle Xi is a real-valued random variable with
the striet MLRP. Thus, higher numerically valued sigpals will represent
relatively better mews than lower sigpals. Theorea 2.1 and the follow-
ing two results will play imporfant roles In rhe subseguent analysis.
Theorem 2.3

Let X have the MLRP and ler h:IR + IR be increasing. Then h{X)
has the MLRP,

Progf: Simply apply Theorem 2.1 to X aud h{X). Q.E.D.
Theoren 2.4

Let X

l,,..,xn be random wariables which, conditiomal on Z, are

independent and identically distributed. Suppose that each Ki has the
MLRP and let Y be the kth order statistic among the xi's (1 £k zn).
Then ¥ has the MIRP,

Proof: 1 shall rreat only the case where the comwon distrivutien

functions F{+|z) have given densities f{+]z). Then the density for the

kth order statistic at = is;

n!

(k—l}!in—k}l

(2.1) Fn_k(xiz)f{xiz){kF(x]z)}k_l-

Fix z" and 2z with z" > z. The likeliheod ratio is then
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2.2) Fn-k{gjz} g{xlg} {l-F{x]z}}k_l
PRz TR (o2t

The middle ratio of {(2.2) is non-inereasing by the MLRP assumption, so
the entire expression is non-increasing if both F{x]z)/F{x{z’) and
(i-F(x]|2))/(1-F(x|z")) are noun-increasing. Computing a derivative,

4 F(z|a) _ f{x|z)F(x|2") - £(x|z")F(x|z)
dx F@le) (x| 2)

(2.3}

which is non-pogitive if F{x!z}IF{sz') > f(x]z}ff{xiz'}. By the MLRP,

-

F f ' 1
(2.4) %’i—} J’ EE:IZ) £(a[z' }ds/F(x|2")

> J' f x z onyfis|z’ Jds/E (x| 2"}

= f{x|z}/f(x|2")
This proves that F{x!z}fF(xiz'J is non-inereasing. The proof for the

other term is sjimilar. 0.E.D.

3. The Model and Its Eguilibrium

4s indicated in the first two sections, I shall suppose that
there sre n bidders and k identical objects {n > k * 1) and that each
bidder observes 3 real-valued randem variable %; whose conditional
distributions have densities E(+|z) with the strict MLRP.* & bidder who
receives no object is assumed to earn a payeff of zero. 4 bidder who

pays b to receive one object earns u{z,xi,b}.

Earlier studies have focuced on two special cases.
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First, when uizsxiib) - Ki-b, this wmodel specializes to the ome snalyzed
by Vickrey. The signal Ki then represents bidder 1's persomal valua-
tion of the objects being sold. For this case, Vickrey showed that i's
dominant strategy is to tender a bid equal to this valuation Xi.

The zecond specizl case arises when u(z,xi,b) = Z-b, The inter-
pretation here is that each bidder would value the object at 2, 1f only
he knew Z. Wilzon (1967, 1977) used such a2 model to analyse auctions
conducted by the U.3. Department of the Interior for oil drilling rights.
Similar models have been used by Rothkopf (1969), Reece {1978), Engel-
brecht-Wiggans, Milgrom and Weber {(1979), Milgrom (1979) and others.

For this analysis, I shall make the following assumptions.

Al, Symmetry: Each player has identical prior beliefs represented
by a distribution G on Z and cornditicnal densities f£(+|z) for X..
The payeff functions u are identical across players.

A2. Conditional Independence: Conditional Z, the signal variables__
31,...,xh are independent.

A3. Monotonicity: The payoff funmction w(Z,X,,h) 1s continuous and

1
decreasing in b, nondecreasing in Z and Xi’ and strietly iocreas-
iag io either Z or Xi.

A4, Valuable objects:. For all z and x, u(z,x,0} > 0.

A5, Valuable money: For all z and x, there is gsome b such that

u{z,%,b) < 0.

AB. Finite expectations: For all b, E[u(Z,Ki,b}l exists and is finite.

Aszumption A$ guarantees that all the expectations and condi-
ticnal expectaticns used in this paper are finite, Although assumption

A3 is maintaioed through the formal developments, I shall confine
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interpretive comments to the ¢ase where u is strictly increasing in 2.

The assumptions stated above are generzl ones by the standards
of bidding models: bidders are allowed to be risk-averse or even risk-
loving and preferences ars pot required to be additively separable in
woney., In gection 6, I furcher generalize the medel by showing that
assumption A? can be weakened to allow carrelated information withouc
weakening the substantive coaclusions obtained from the medel.

The situation described above can be regarded as a Bayesian

game, as formalized by Harsanyi (1967-68). A pure stratepy for bidder

i is a functlon p;:R ~ R, taking signals inte bids. Thus when bidder
i cbserves X, he tenders the bid pi{Ki).

The bidders' payoffs in the game are determined as follows.
Let Wi be the kth highest bid among the opponents of bidder i. The bid
b wins for 1 if b > W;. If b =W;, the k highest bidders are not u-
niquely detarmined, and I assume that any ties are broken at randoa.
Thus, if b = W, b may or may not win. If b wins {(denoted W, < b)Y, bid-
der i acquires one object for a price of W., 80 his payoeff is
u(Z,Ki,Wi}, If he submits a losing bid, his payoff is zero.

Holding the strategies P (i # i) fixed, bidder i may regard

W; as a random variable. His strategy P is called an optimal response

to the opposing strategles if

(3.1 pi(x} £ arg mix E[u[Z,Ki,Wi} l{wi : b}lxi = x]

for all x in the range of X, - (The notation "arg max" denctes the set
of maxioizers of rhe given expression.) An n-tuple of strategies

(pl,...,pn} is an equilibrium if each strategy is an optimal response
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te the others,

The analysis of equilibrium in symaetric bidding medels is
usually puided by the "educated guess" that there will be a gymmetric
pure strategy equilibriuva, that is, one for which Py = -+ TP, = p,
and that the equilibrium strategy will be increasing, With this guess
in the background, defins Yi to be the kth order statistiec ameong the
variables {lej # i}. If the guess made above is correct, then
Wi = p(Yi).

Define the reservation price function g by:

(3.2} g(x,y) = 3up{b!E[u(Z,Xi,b}l'Xi =x, ¥, =yl >0}

fIn view of Al and A3-46, this definifion is weanineful.) If bidder i
were able to obsearve Ki 2 3 and Yi = v and if no other information were
available, then he would be willing teo pay any price less than g(x,y)
to acquire one gbject, but ke would be unwilling to pay any higher
price,
3

Theorea 3.1

The bidding game has a symeetric equilibrium and the equilibrium

strategy is given by the increasing function:
{3.3) plx) = g{x,x}

Proof of Theorem 3.1 is postponed te the next section so that a rela-
tively transparent graphical analysgis can be used,

In the special case where u{Z,Ki,b} = Ki-b, it is easy to check
that g{x,x) = x. This is the equilibriua discovered by Vickrey for
his model. Vickrey's equilibrium is actuwally a dominamnt strategy

equilibrium; a bidder can do no better than to use his equilibrium
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strategy regardless of the strategies adopted by the other bidders,
The second special case arises when u{Z,Xi,b} = Z - b. Then
one can check thar the reservation price function takes the following

simple form:
{3.4) glx,y) = E[2|X, = x, ¥; = y].

In section 5, an ezample is given for which the equilibrium
strategy is explicitly computed. The computation derives from the
following expression, which in turn derives frem (3.4) and Bayes
Theorem.

-1 Fn-k—l

s Flx[s)E(y]s) (1-Fly|s)) (yls) dc(s)

S f(x|s)t(yls){1-F(y]s))

(3.5) g{x,y) =
“1 Ny s dets)
Before proceeding to study the properties of the equilibrium,
let us establish some propertiaes of the random variable Yi and the
functions g and p.
Theoram 3.2
(i) Yi has the MLREP.
{ii} g(x,y) is increasing io x and non~decreasing in v.
{iii} 9 is inereasing.
Proof: That Yi has the MLRP follows directly from Theorem 2.4. Since
Xy also bas the MLRP and since X and Yi are condirionally independent,

an application ¢f Theorem 2.1 and assumption 43 establishes that the

conditional expectation

(3.6) Efu(Z,X,0) X, = x, X, = y]
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iz ipcreasing in ¥, now-decreasing in y, and decreasing and continuous
in b. Then, from (3.2), it is routine to cheeck that g has the proper—
ties claimed. Since p{x} = pg{x,x}, (iii}) follows directly from (ii}.

Q.E.D,

4. TProperties of the Equilibrium

The analysis begins with a study of bidder i's problenm when
zll opposing bidders adopt the strategy p. As shown below, i's price
variable W then has the interesting and plausible property that higher
prices convey zore favorable news about Z than do lower prices, in the
gense explained in section 2.
Thecrem 4.1

The variable Wi has the MLREE.

Proof: By Theoarem 3.2, p is increasing, =so

(&.1) W, o= p(Yi}.
Apply Theorem 2.3. 0.E.D.
Theorex 4.1 raises a spectre that I have argued is a problem in
rational expectations models. If bidder 1 could observe the price
variable Wi before submiteing his bid, his estimare of the value of the
gbjects being sold would rise with Wi. This leaves open the possibilitcy
that i's value estimate would actually rise as fast or faster than
prices do. To see how the bildding model aveoids this difficuley, let
us analyse the relationship between the price and i's waluation of the
object piven both his private information and the price informatiom.
{This wvaluation, of coursze, i3 a hypothetical one, since i does not

actually observe price information before tendering hisz bid.} Define

a function § on the product of the ranges of X; and p by:
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(4.2) glx,w) = sup{blﬁ[u{z,xi,b)]xi =x, W, =w] 2 0)

The functicns g, £ and p are related as follews:
(4.3) glx,y} = E{x,p{y¥)).
Theorem 4.2

The function §{x,w) 1s increaging in x and non-decreasing in w.

Moreover, the feollowing relationships hold.

W

{4.4) B(=,w)

™
=W as (=) = W.

Proof: The nenotonicity properties of § follow from those of g via
{4.3}. TFor {(4.4), suppose p{x} > w. Then by (4.1) there i3z s¢me ¥ < x
such that p{y) = w. Hence, using (4.3), E{x,w) = g(x,p{y)) = glx,y)
> glv,¥) = ply} = w. The cases for p{z) < w and p{x) = w are sinilar.
Q.E.D.

Given a realization x of i's private signal X, the relation
between the price Wi and i's conditional valuation of the objects is
desceribed by the function E{x,-) as illustrared in Figure 1. The
cenotonicity of £(x,+) is displayed in the figure and the relatiomship
{(4.4) is represented graphically by the relative heignts of the func-
tion and the 43° line. For pictorial convenience, the ramge of W, has
been represented zs a convex set and the fupnction has been shown ro be
eoittinuous and strictly increasing. These extra propetrties are not
used in the arguments given below.

Suppuse, hyporhetically, that bidder i is given the opportunity
ko cbserve his price Wi before submitting hig bid. Suppose that I, = x
and that the price is W, = w < p(x). Them it is apparent from Figure 1

that 1 will be well pleased with his bid p{x), because the price w is
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FIGURE 1

g{x,")
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less than his estimated valuation of the objects g(z,w), and his bid
causes him to win an object at that price. If the price wers
Wi = w' » p{x}, bidder i would still be pleased with his bid. In
this cage, the price w' exceeds his eétimated valuation g{z,w"), and
the bid p{x} results in no purchase at thisz priceﬁl The same global
analysis applies to each possible realization x of Ki; zo the follow-
ing reszult has been proved.
Thecren 4.3

Suppose that each of i's competitors adopts the strategy p

defined by (3.3). Thep for every possible realization x of Xi and w

of W

i
p{x) € arg max E[u(z’xi’wijl{w_ N h}lxi =%, W, = w].
b i
Theoram 3.1 can now be proven as a simple corollary of Theorenm
4.3,

Proof of Theorem 3.1: By Theorem 4.3, p is the optimal response to

the opposing strategies among 211 functions of Xi and Hi. Hence, it

iz optimal among all functions of Xi alone. G.E.D.

NYothing has yet been said which gurarantees that the slope of
E{x,*) is less than one. It is quite possible that i's valuation of
the object d?es rise as fast or faster than the prices in some regions
of the gréph, as depicted in Figure 1. Theoren 4.3, however, guarantees
that i's underlying "demand curve" iz downward sloping, that ig, he
would demand one object at any price below p(x) and no objects at

higher prices,

Let us specialize, for the soment, to the case kK = 1. Consider
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the problem faced by an ntlst trader whose information is garbled com-
pared to that of trader 1. Formally, this peans that the conditiomal
joint distribucien of (Z,X ,...,Xn} given X, and Xn+l deoes not depend

on the value of 2, b} denote ntl's payeff when he

1"

acquires an object for price b. 4s with the other bidders, ntl's pay-

Let v{z,xn+

off iz zero when he acquires nothing. I shall assume that o+l has no

transactions wmotive for trading with bidder 1, that is,

.]} =

It
s

(4.5) P{uf2,X,,*) 2 V(&K 41>

For example, in the sperial case u(Z,xl,h) = w(2,X b) = Z-b, condirion

n+l?
(4.5) is satisfied: bidder 1 assigns as greac a dollar value to the

object ag doas ntl for every possible gquality level Z, and he iz not
mere risk averse than ntl.

Suppose the n hidders adept the stratepy p while bidder ntl
ohserves Xn+ and then tenders a bid of b, This bid wins Iin two io-

1

portant cases: the case p(Kl) < W, <b and the case W

1 1 <P b

{The events {Wl = b} and {wl = p(xl}} are null so the corresponding
cases can be ipaored.) TFigure Z shows that im each case, bldder n+l
will be unhappy with hisz bid.

Suppose, hypothetically, that bidder nt+l iz informed of X

i

and W, in addirion to Kn+ . Then by (4.5) and the garbling assumption,

1 i
n+l's reservation price will be bounded above by gtxl,wl}. The case
Wl < p(Kl} 2 b is represented on the figure by Wl = ¥ and Kl ==z, In
this case, the price facing bidder uhl is p{xl), which iz larger than

E{x ,¥), which iu turn bounds n+l's reservation price. Consequently,

bidder ntl will regret his winning bid of b in this case., Similarly,
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the case p(Kl] % ﬁi < b is represented on the figure by Hi = w and

Kl = X, Once again, the price faced by o+l {(in this case, w') exceeds
the bourd g(z ,«") on his reservation price, So o+l always regrets
oaking 2 winoming bid when he is told Kl and wl.

The foregoing arpgument can be generalized to the case of k

objects under the following conditions.

{4.6) For 1 £ i £ &, the conditional joint distributiom of

z,xl,...,xn given X, and Xn+ does not depend on the

1

value of Kn+1.

{(4.7) For 1 £ 1 £ k and for all b, P{u(z,xi,b} ;;v(z,xh+1,b)} =1,

Conditicn {4.6) iz the "garbling" condition and (4.7) is the "no trans-
aetions motive™ condition.

Let 1" denote the least aptimistic individual among bidders 1
through k: X% = min{Xl,...,Kk]. Bidder ntl can win one of the k
objects only by bidding wore than the betrer informed bidder 1%, and

hence paying wmore than i* would be willing to pay. I show in the

Apperndix that if utl were told the walues of Kn

Lk
17 Ki*, 1" and Hi*, he

gould still do no better than te bid zero and guarantee a payeff of
zery, The conclusions reached above can be summarized as follows.
Theorem 4.4

Let W denote the kth hipghest bid among bhidders 1,...,u and

assume that (4.6} and (4.7) hold. Then for all possible values x of

n+l’

sup Elw(Z,X x] = 0.

W) 1
. o+l {

W& b}lxn+1 -
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The Vickrey auction studied here has the same sort of limiting
properties for large n as was deronstrated for the "first-price" aue-
tion by Wilson and Milgrom. Let W' be the kHlst highest bid in the

auction with n bidders. Define the value V' of the wbjects by

(4.8) VHZ,X) = sup(sup{blu(z,X,,b) 2 01) .
izn

The inner supremum represents bidder i's reservation price on the
assumption that he has perfect information about Z. Thus, 7 is thﬁ
most that any bidder would be willing to pay undar perfeer information.
Theorem 4.5

Let rhe number of objects k be fixed. Then f?n - Wn] CONVerges
to zero in probability as n -+ ® if and only if for each two possible

values z" and z of Z with &' » =z,

. fix|z)
(4.1 i;z ETE+ETT = 0,

Theorem 4.5 can be proved by a variation of the argument given
in Milgrom (1979). The theorem indicates thar prices may give a good

approximation of value when n is large.
5. A Revealing Example

The price formed by the Vickrey auction is not, in general, a
fully revealing price. To see this, one need only recognize that the
price is simply an order statistic from a certain set of random vari-
ables, and order statistics can be sufficient only under very restric-
tive distributienal assumptions. Hevertheless, to emphasize that the

Grossoan-5tiglitz information acquisition paradox arises from their
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price~taking behavior assumption rather than from the fully revealing
prices, it iz useful to study a special example of the Wickrey auction
model for which the price is "fully revealing."

Suppose that there 1s only one object being sold, that is, k=1,
Latc u{Z,Xi,b} = Z2-b, so that the object beilnpg so0ld is worth Z to each
and every bidder, However, no bidder konows the value of Z. Suprose
that the conditional distribution of each Xi given Z 15 uniform on
[0,Z].

1/z for 0 £ x < 2

{5.1) f(xlz) =
Q otherwisa,

Finally, suppose that the prior G for Z is unifora on [0,X].

H for s X O
{5.2) &{s} = sfM for 0 £ s < M
i for # £ s.

Using (3.3) and (3.5), the symetric equiiibrium vidding strat-

egy pn for an n bidder auction can be computed.

f La(rix) .
‘T'Tl if n =2
x =M
(5.3) p(x) = W -
(-6
1-nn  1-u n i
{(n=-2){z" ¥ )

.,

4s always, the equilibrium strategy is an inereasing funcrion, How-—

ever in this case, the wvariable Yi is a sufficient statistic for the

variables {Xj[j ¢ i}, so the price variable Wi = pn{YiJ is also a
sufficient statistic. Thus, the price Wi reveals all of the information

held by i's competiters. Unlike the fully revealing prices in previcus
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rational expectations models, Ei does nﬁt also revegl i's private
information.

Using (5.1) - (5.3}, one can compute the expected profic w{n)
of an individual bidder in an n bidder avetion (n > 2).

Now instead of assuming thac each bidder freely obsgerves his
owm private information before taking any discreticnary actiom, let us
suppose that the gane proceeds in two $tages. At the first stage, each
bidder must choose whether or not to observe his private signal. There
iz a cost c associated with marking the observation. Then each bidder
is told the nuaber of bidders m who have made an observation. At the
second stage, each informed bidder i wakes a bid which may depend on
m ard Ki and each uninformed bildder makes a bid which may depend only
on f.

& strategy for each bidder consists of a firse stage decision
ard a second stage decision rule, TIf the bidder choogses to remain
uninformed, the second stage rule specifies a bid as a functiom of =,
If the bidder chooses to become informed, the rule specifies a bid as
a function of both m and the bidder's private signal.

Let us begin the analysis of this game by studying the case:
#{n} » ¢. Then there iz g symmetric equilibrium in which each bidder
chooses to become informed and adeopts the second stage decision rule

described in the following table.



25

Second Stage Equilibrium Bids

thanber
Iz i informed? Signal informed Bid
Ho. N/A 0 E[Z]
¥o. N/A a2l 0
Yes. x 1 E[Z]Xi=x]
Yes. = m > 2 - pm{x)

To verify that the specified strategies forn an equilibrium
consider first the problem faced by a bidder at the second stage,
after the number of informed bidders m has been determined.

The coptimality of the zeyo bid by uninformed bidders

when @ > 2 is guaranteed by Theorem 4.4. It is straightforward to
check that the remaining specificatiomns are best responses for all o,
so these strategies leave the second stage sub-game im equilibrium.
Notice that when m = 1 the informed bidder's expected payoff is E[Z].
Lot us therefore define w(l) = E[Z].

At the first stage, a bidder who remains uninformed can antic-
ipate z payoff of zero., If he becomes informed, his expected payoff
i m(n) - ¢ > 0. Therefore, all bidders will choose to become in-
formed. The following has been proven.

Thecorem 3.1

1f #{n) > ¢, then there iz a symmetric equilibrivm in which each
bidder chooses to become informed and adopts the second stage decision
rule given in the table, ({The same strategies are in equilibrium when

T{n) = ¢.)
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When w{n) < ¢ < 7{}}, twe sorts of equilibria suggest them-
gelves, In the first, let n* be the largest integer not Excéeding n
for which T(n™) 2 c- Then there is an asymaetric equilibrium in whick
bidders 1 threough n® choose to become informed while the other bidders
remain uninformed. For the second stage of this equilibrivm, all
bidders adoprt the rule given in the tabla,

There is alse a symmetric equilibrium in which each bidder
randonly decides whether or not to become inforaed. To see this, lat
us defige £:{0,1] = IR as follows.

(5.4) i(q) = nfl [“;1] ¥ (1) T w4y,

=0
The number £{g) iz the expected second stage payoff to an informed hid-
der when each of his competitors chooges to become informed with
probability 4. Since £ iz continuous and since
£€O) = mw{l) > ¢ > w{n) = £(1), there is soﬁe q* (0 < q* < 1) for which
f(q*) = ¢, When gach bidder chooses to become informed with probabil-
ity q*, the expected payoff from both stages combined is zero to every
bidder.
Theorem 5.2

If 7(lYy » ¢ > m{n), then there is a symmetrip equilibrium in
wiich each bidder becomes informed at the first stape with probability
q* and adopts the second stage decisionm rule givem in the table,

The proof of Theorem 5.2 is straightforward. For completeness,
note that when ¢ > m(l), there is a syrmetric equilibriom in which no

bidder becomes informed and sach adopts the second stage strategy given
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in the table. Thus, unlike the Grosswan-Stigiitz model, there is no
level of ¢ which is inconsistent with equilibrium, despite the fully

revealing prices.

6. Variaticons of the Basic Model
This section addresses three gquestions which arise naturally
in studying the basic model.
{1} In real auctions, the seller commonly szets a minimum price.
Can a oinimum price be easily introduced into rhis model?

{2} Can the assumprion that bidders observe condirionally
independeatr signals be weakened without destreying the
gqualitative results?

{3} Does rhe model have other equilibria, in addition to the

aymuetric equilibrium?

It is, in fact, fairly easy to introduce a seller reservation
price into the model, and the process of doing so gives addirional
Insights ipto the nature of the equilibrium. Iet r be the ainimum
price set by the seller {(r > 0). If the k+ith highest bid is less
than r, then all bids exceeding r are declared to be winning bids, and
egch winner acquires one object at the price r. Obvicwsly, if
pi{x} > © for all possible x, then the minimum price has no effect on
the equilibriym,

Theorem 6.1
Suppose there is some x such that p{x) < r. Then the bidding

gane has a sympetric eaquilibrium strategy p given by
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pl{x) if x g=x*
(6.1 p*(x} =
0 otherwise
where x is defined by
(6.2) x" = suplx|E[a(z,X,0)|X, =%, ¥, < x] <0} .

Just as Theorem 3.1 was proved as a corollary of a "no regret"
theoren {Theorem 4.3), the foregeoing result is alse the corellary to

x
a "no regret" theorem. Define i's price variable W, by
6.3 W = )
{h. } i~ J.'.EK{T.',p (Yi}}'

Thecorem 6.2
%
Suppese that i's competitors adopt the strategy p . Then for

*
every x in the range of Ki and every w in the range of W,

* +* *
£6.4} » (%) ¢ arg m:x E[u(z,zi,wi};{ﬁi . |xi = x,wi = w] .

Proof: Replacing Wi by w: in expression (4.2), one can define a

funetion E{x,w} which is analogous to Z(x,w). Figure 3 chen illustrates

i's optimization problem for che twe possible cases: when he observes

a signal x < x* and when he observes a signal x' > x*. (The case

Ki = % is both trivial and null.) In each case, it iz apparent from

the kinds of reasoning used before that g*{x} and p*(x'} are indeed

optimal even 1f the value of w: is knotm. Q.E.D.
The zero profit result (Theorem 4.4) can alse be proved for

this more general model. The proof follows the lines developed in

gection 4,
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Let us turn next to the issue of dependent Information systens,
The independence assumption A2 was used directly to prove Theorems 2.4
and 3.2, Both of these theorems can be proved under a varlety of

. 8
assumptions, of which the follewing is perhaps the simplest.

Azf Exchangeabiliry. Conditional cn Z, the randowm vari-
able 2* has the MERP. C(onditiopal on Z*, the variables
Z,Xl,...,xn are independent. Alseo, conditional on Z*,
the variablas Kl,...,ﬁh are identically distributed
and have the MLAP,
As an example of variables satisfying AE*, let @re ey be
independent normally discributed random wariables, Let el,...,en ke

identically distributed, and assume that the ei‘s are independent of 2,

a0 that they represent "'pure noise." TFinally, let

{(6.5) Ki =Z+ %5 + e -

Then., coaditiopal on 2, the Xi's are depandent due to the common errotr

*
tern g Howaever, taking £ = Z + o, thess Xi's satisfy assumption

0’
a2’

Thers are two ways to show that assumption ﬁz* is gufficient
for this ncdel. One way is to trace the proofs through from the
begioning. Mathematrically, however, a simpler way iz to define a new
game which is atrategically eguivalent to the old game under AE*. The
new game will satisfy all of the assupptions Al - AD, so0 all the thecrems
will continue to hold. The trick runs as follows.
4

&
Let Z play the role of Z in the new gane. Conditiomal en 2 ,

the slgnals are Iindependent, so they zatisfy AZ. Replace the utility
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Euncrion u of the old game by
~ *
{6.6) G(z,%,b) = E[u(Z,x,b}|2 = z] .

It is then routine to check thar A3 - A6 are satisfied, so the entire
development goes through.

The third and final question to be addressed in this section
is the question of other equilibria. Unfortunately, Vickrey auctions
generally have a plethora of equilibria, many of which are quite
pathological. TFor example, suppose that n = 2, k = 1, u(z,xi,b) =
Xi - b, and Ki is distribtuted on [0,1). Then the equilibrium of
Theorea 3.1 is pi(x} = x, and this is indeed Vickrev's dominant strategy
equilibrimm. another equilibrium arises when bidder 1 always bids 3,
regardless of x, and bidder 2 always bids 0. The wumber of faplausible
equilibris of this sort is gquite large. None of these equilibria,
however, is perfect, as defined by Selten (1975), that is, these equil-
ibria crumble if ecach player assipns sooe small probability to the
event that his competitor may make a mistake. For exaople, in the
eguilibrium citred abéve, bidder 1 aust fear that 2 will use hig domi-
nant strategy p{x} = x, while 2 has left himsalf n¢ hope of earning
any positive payoff, even If 1 errs.

Now suppose that the ueility functions are u{Z,Ki,b} =Z - h,
50 that there may be ne dominanﬁ stratepy equilibrium. Let n = 2 and
k =1, let £ have some non-degenerate prior distributien, and le: the

Ki's be normally distributed with mean Z and variance one.

Theorem 6.3

Let h:IR -+ TR be any increasing, surjective function. Comsider



32
the strategies given by
{6.7a) p,(z) = E[z}xl =x, X, = h{x)] and
(6.7b) py(x) = BI2|X, = hTh0), X, = x] .
Then for avery possible value x of X and w of Wyo
(6.8) py (%) € arg m:x E[{Z - ‘Ji)l{Wi z b}]xi =x, W, = w)
In parcicular, (pl,pz} is an equilibrium pair.
Proof: Simply observe that plix} = pz(h(x}} and apply the standard
graphical argument. Q.E.D.

The eguilibria of Theorem 6.3 are all perfect eguilibria, yet

some resemble rather closely the patholegical equilibriz discussed
above, TFor example, let h{x) = x + a. Then as a grows large, 1's bid
will converge to the upper bound of the distribution of Z while 2's
bid will converge to the lower kound, irrespective of thelr signals.

S5till, I can find no coppletely convincing way to rule out chese

strange equilibria.

7. Conclusien
This paper has developed a bidding model with explicit rational
expectations features. The medel has several desirable properties
which are gissing In mzoy rational expectationg models. These are;
(1) The bidders act as price takers because they cannol, in
fact, influence their prices. I argued in the intreduction
tnar REE traders can often dramatically influence the

prices they face.
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{2} The prices vary directly with vaoderlying qualities.
Higher prices indicate better quality.

{3} There is no tension between the informaticonal efficiency
cf prices, the incentive to gather informatiom, and the
posaibility of reaching an equilibrium.

(4) The process by which prices are formed is made expliedir.

{5) For most model specifications, the price at which trading
takes place 1s nmot fully rTevealing.

(6} 411 profits earned by the bidders arise either as gains
from trade or as a result of speculation based om good
private information. Peorly informed speculators can only
loze,

The biddiung oedel alse has two primcipal shortcomings relative
to REE medels. First, it is a one-sided market nodel; the sellers
play a purely passive role. Second, the buyers have very limited op-
tionz: each can acquire only ocne of the objects being sold. Each of
these weaknesses needs to be addressed by further research.

The Vickrey zuction wodel vrovides a convenieont device for
relating bidding theory to REE theory, becauge ithe model shares many
features {such as price taking behavior) with the latter theory. How-
ever, qualitatively similar features do emerge from other kinds of
‘bidding models. In models of the diseriminatery auction, for example,
where each winner pays a price equal te his own bid, thase prices may
agpregate information. Still, there is no tension between informatiom
gathering and informationally efficient prices. For éhese nodels,

even though the bidder's srivate information is reflected in the price
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he pays, the tensiom is brokem by the absence of any price taking
behavior assumption.

Variows other bidding models merit study. The eoral auction,
for example, iz one which has not been studied when the chjects being
traded are of uncertain qualiry., When the gquality of the objecrs is
known, Vickrey argugd that the oral auction is strategically eguivalent
to the highest rejected bid sealed-tender auvction, However, this
equivalence breaks down when quality is uncertain, because bidders in
the oral auctiom may be able to learn about qualicy from the bidding
behavior of their competitors.

In studying these and other processes of price formarien, it
is important thart researchers admit the possibility thait the cutcome
of trading may depend critically on the nature of the rrading process,
and that the variety of pessible cutcomes may not be repressntable

by any single model.



APPENDIX: TProof of Theorem 4.4

*
lemma 1: The conditlonal disctribution of Z given (1, Xi*, Wi*, x

n+l}

doas not depend on the value of Xn+1.

*® =
Proof: Since i and Hi are deterministic functions of xl""’xn’ it

follows from the garbling condition that the joint distribution of

*
{Z, i, Wi*} glvan (Ki, Kh+l

*
Hence, the conditional distribution of Z given (i, Ki’ W

} dees not depend om L) (for 1 < 1 = ¥).
i*s Xn+1)
does not depend on Kn+1 {by Rayes' Theorem). In particular, in the
* *
event {i = i}, the conditional distritution of 2 given (i = i, X%,

* b
W, F, Kn+l} does not depend on X But the events {i = ij as i

i n+l”

varies are exhaustive and mutually exclusive, Q.E.D.

*
How let us define a funetion g by

@.1) g G,y) = sup {b|E(a(Z,x,b) X% = x, Y% = y] 2 0},
Also, define (analogously to (4.2)}

i
{4.2) g (x,w) = sup {b;E[u(z,x,b)ixi* = x, W*=w] >0} .

Then the funetions are relataed by
* &
(4.3) g (x5} = & {x,p(y)).

The conditional joint density of {Ii*, Yi*} given 2 evaluated

at {:};,}T,Z) is
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k-1 Fn-k-l

k{n-k)f (x|2) £(y|2) (I-F(x|2) (v|2

for y £ x

(a.4) f(x,y|z) =

n=k-1

k(n-k) £ (x| 2 (v |2) A-F(y [+ 5 Ly l2)

for ¥y 2 x

Holding x fixed, this density {viewed as a function of ¥ given z) has
the MLRP. Similarly, holding y fixed, the density of x has the MLEP.
Thus, by an extended wversion of Thecream 2.1, posterior beliefs are

menotonically increasing in Ki* and Yi*' This leads to the follewing

result.

*
lemma 2: The function g (x,y} is increasing in x and non-decreasing in
V.

The joint density of X and Yi {note that cthe stars have been

dropped} is.

(A.5)

- 1
£,y12) = o et fEIR LG (1F )

k-1_n-k-1
Tt {y|z>

=
Observe that £ (x,xz|z) = £{x,x|2)k!{n-k)1/(n-1)! It follows the condi-
tiopnal distribufion of Z given Ki# = ® and Tix =X is idewtical te the
conditional distribution given Ki = x and Yi = x. ({To prove this,

simply apply Bayes Theorea.} This leads to the next lemma.
* <
lemma 3: g (x,%) £ glx,x)

In view of lemmas 2 and 3, the proof of Theorem 4.2 can be

mimicked to establish the following result.
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*
leoma 4: The funertion § {x,w) is increasing in x and non-decreasing
in w. Moreover, the following relationships hold.

W >
g (x,w) =W  as pix)

Ay
%

With these four lemmas In hand, Theerem 4.4 1s proved as follows.
Let b be any arbitrary non-negative number, The computation of ntl's

expected pavoff when he bids b goes as follows.

{A.6)

2 E[u(Z,X, »,W1 I

V(K Wi, 2 by Fag] 2 @ ¢ 3%

g

LR
E[E{u{Z,Ki*,W}|Kn+1,1 SN A0 E P h}|Xn+l}

L

E[E[u{Z,Ei*,W}|1 ,Kik,ﬁiﬁ]l{w N b}lxn+l]

(=9

EIE[u(Z,X w0 [R5 W o (K Ly

N]

E[E[u{zrxl*jwi*} !Kl*JH *II{P{Ki“} < 'I'.q'i* & b}'KrH-l]

b
+ E[u{u(z,xi*,p{xi*}in*,wiﬁll{ﬁi* < plXx) % b}lxn+1]

[ i
=

Step g follows from (4.7), the "no transactions motive" coadi-
tion. Step b is justified by the properties of conditicnal expectations.
Steps ¢ and d apply the garbling hypothesis (4.6) and the symmetry as—
sumpcion Al, rTespectively. Step e splits consideration into rwo cases:
the case W.x > p{Ki*} {for which W = Wi*} and the case W.x < p(Xi*}

{for which W = p{Xi*}). The chird case (Wiﬁ = p{Ki*}] iz null and so



can be safely cmitted {se¢ note 4}, By lemma 4 z2nd the definition
*
{4.2) of g , the integrand in e iz everywhere nonpositive. This fact

justifiesz step f.

Hence, it is proved that oo bid for player o+l earms a positive

expected paycff. GSince getting b = O earns a non-pegative expected

payoff (by {(44)),, Thecrem 4.4 iz proved.



END NOTES

lThis critique is most cogent for models like Grossman's {(1978)
in which no trader can narrow the range of possible prices by referring
ta his private informatien. For such oodels, the gquilibrium excess
demand functions {di(xi,p}} may not depend on p. At the opposite ex-
treme, there are REE models, such as these of Green (1973) and Radner
{1978), in which for each trader 1 the range of the equilibrium price
funcrion for a given realization = of xi {i.e., f[x\xi}} iz disjoint
from the range given any other realizatien ¥y For such models the
trader's equilibriue excess demand functiens are not uniquely specified
and wmay be chosen to depend on the private signals. This, however,
meraly buries the question one layveyr deeper. What ig the trader to
think if the announced price is inconsistent with his private informa-
tion? The out—gf-equilibrium process is simply not specified for these

oodels.

2Fu:rr the reascns cited in more 1, this argument applies with

more force to mwodels like Grosspan's than ro those 1ike Green's or
Radner's., These latter models make it harder to specify sensible cut-
of-equilibrium behavior, and therefore harder to criticize on grounds

of stability and manipulability.

3Kubayashi {1979) has devised a price formation process in

which traders, acting as price takers, grow progressively more
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sophisticared. A rationzl expectations equilibrium emerpges after a

finite number of iterarions in his model.

&The continuity of F{-]z) and the strictness of the MILRP work
together to ensure that the preobability of ties is zero in the equilib-
rium giveo in this section. Note 7 inodicates how to compute and evaluate
the equilibrium when one assumes omnly that signals have the MLRP, with-
out assuming the strict MIRY¥ or continuity of the signal distributioms.
This extensicn is an Interesting one because it z2llows one to apply
the model to examples whera the signal distributiens (given Z=z) are

Poisson (with mean z), geometric (with meaun z), or uniform {oun [0,z]).

5Equation {3.3) can be informally derived as the first order
condition of a bidder's waximization problem if one guesses that there
is a symmetric equilibriuvm with an increasing equilibrium bid fuaction
p. The first order comndition then agserts that a2 bidder should be in- .

different about whether he is selected as a winner when he is fiuvolved

in a tie. Thiz derdvation appears in an earlier version of Matthews (1979),

EjIn case of ties {(i.e., Wi = p(x)), the analysis is much more
subtle, Suppose, for example, that k = 1, that n 2 3, and that the
numbar of bidders with whom i has tied is m (m 2 1}. Large wvaluas of
m indicate that more competirors have received favorable news than do
small values of m. TIndeed, conditional on wi = p{x), the random vari-
able m has the MLEP! Wotice, however, that i's chance of winning the
tiebreaker 13 1/(1L + @), so his chance of winning is highest when the
news is least favorable! (Xreps [1977] has pointed our a similar prob-

lea in REE models when traders, who compute excess demand correspondences,
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fail to account for the information conveyed by the anctioneers' choice

of a point inm their demand sats.) My assumptions sidestep this problem .

by ensuring that for all x: Plm > 1|‘n’i = p(X;) = x} = 0.

?Theﬂrem 4.3 and, indeed, all the gqualitative results of sections
3-6 can aasily be generalized to cover discraete, contilnuous, and mixed
distributions {F(+|z}} with the (not necessarily strict) MLRP by means

of a simple device. Let Ki = {Ki,ﬂi} where 1] U“ are randonizing

a7
wvariables, Independent of everrvthing, and uniformly distributed on
{0,1]. Define the lexicographic order on IR2 by {x,u} > (x",u') if
either x > x' or x = x" and v > u'. Let fi be cthe kith order statistic
in {ijlj # 4} using the lexicographic order. Let y be an atom of Y, -
A remarkable fact is this: if u > u' then {%i = (y,u)} is strictly more
favorable than {ii = {(y,u"}}, despire the fact that the Uj's COnVEY
no information abour Z!

To ses why this is so, define three random variables U—i’ ml,

2

@, = #{ijlxj = Y;.3#i,0, > U

and @, by: Y, = (Y;,U ), w = #{xj[xj = Yi,j%i,Uj < U_;} and

-i}' For any fixed realization of X,

1 and smaller values of T, rafiect relatively

good news, because rhey indicate that many losers {ml} have observed

and Yi, larger wvaluses of m

the best possible news that losers can observe and that few winuners
[EE} have observed the worst possible news for wimners. It is straight-
forward to check that U_s has the MLRP as a2 signal about "y and as a
signal about -3 S0, for fixed Yi, large values of U—i represent rela-
tively good news about Z.

Replacing each of the Xi‘s, Yi's, x's and ¥'s in sections 3-6

By ii’ ¢ X and §, respectively, all the reaults go through (except

i?
that some strict inequalities become weak ones). Tha effeet of the Uj's
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is té cause bidders to randowmize in exactly thuse cases where ties
would otherwise be a problem, and to acccunt for and eliminate the
"winner's curse"” effect described in uote 6.

This device of uzing an auxiliary randomizing variable and the
lexicographic order to give a unified treatment of discrete, continuous,
and mixed distributions appears t¢ be widely applicable in bidding
theory and related areas. For another application, see Engelbrecht-—

Wlggans, Milgrom and Weber (1980).

SIf the conditiomal joint density fuceticn f(xl,...,xn,z] is

twice continuously differentiable and symmetric in {(x ..,xﬁ}, then

another condition which includes A3X and which leads to the same

theorems 15

ézlu £

| w

Bz Bx,
i

3°1n £ > 0 for 17 1.

axi axj
The first differential coudition is equivalent to the MLRP assumption.
The second directly generalizes the condirfonal independence agsucption.

For details, see Milgrom {1979) and Milgrom and Weber (1930).
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