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1. Introducticon

In analyzing conpetitive decisicon-making situations, tws approaches
may be taken: game-~theoretic and a Bayesian decision-theoretic. The
game=-theoretic approach is static in its nature, assunes that the com-
petitors do not assign probabilities to each other's choice of an action,
allows for nmixed strategies as an optimal solution, and enphasizes the
existence and stability of compebitive eguilibriun. The Bayesian decision-—
theorstic approach is dynamic in its nature by allowing the deacision maker
to assign nrobabilities to the opponent's choices of actions and to revise
them in light of new information. It prescribes the selection of pure
strategles as an copotimal behavior, and ¢onsiders the optimality of the
behavior of one competitor.
In this paper we study the dyvnamic behavior of the competitors {players),
generated froo Bayesian decision-theoretic consideratioans. In particular,
we are interested here in the following gquestions:
fa) ean any special patterns of behavior ke observed across competitive
situwations? (b} over time? (¢} do the behaviors under these schemes
converyge in the long-run to the eguilibriun strategies prescribed by
game-theory? {d] what is the direction and the rate of the convergence?
and {e) what iz the effect of the players’™ attitudes toward risk apon
their dynamic behaviors?
four aim is to provide answers to all of these gquestions, for two-hy-two,
two-person, non-zero-sum, repeated noncooperative games with incomplete information.
Games with incomplete information are games in which the plavers do not Know the

complete description of the game; for instance, they do not know the other



2. The Competitive Situation and the Bayesian Model

The competitive situation studied hers 15 the case in which there
are two competitors (players) T and II, with two actions available to sach
competitor, and where the decisions are made simultanecusly by the two
players, Both players kneow this, and in addition, each player Xnows only
hig own possible payoeffs. In the terminology of game theory, we are dealing
with a two-Derson, non-zZero-sum and non-cocperative game with incemplete
information, represented in normal form by a 2 X 2 matrix. This same couge-
titive situation is repeated many times and allows the competitors to learn
about each other's past decisions which are observaple. 0OFf course, future
decisions of the opponent are not knowm to the player and can be just
inferred from his past behavier,

Altheugh competitive sitvations depicted as 2 X 2 games are the simplest
two-Dperson games, bhey have attracted attention of researchers from many
dizcinlines. Rapoport, Guyer and Gordon [1976] sumrarize and interpret what
has been learned in the last fifteen years, through expericentation, about
sogial interaction and behavier using this paradigm. Classifications for
all 2 ¥ 2 games have been suggested by Rapoport and Guyer [1966] and Rarris
{1969, 1972] +o aid in corbining together games with similar game-theoretic
and kehavioral aspects. Iterated Priscners' Dilemma games have keon also
studied extensively [Grofman and Pool, 1975; Rapoport and Chammah, 1965].
Segquential games arise also in econtexts such as economics [Shubik, 19260],
gaming {Shubik, 1973], and stechastic processzes [Sanghvi, 1978; Sanghvi and
Sohal, 1977].

The Bayvesian decision-theoretic model developed here assumes that the
competitors regard each other's behavier as a stochastic decision process.

Thiz assunption iz implieit in the "fictitious play”™ literature [Brown, l13951:



= £
E{PIKIHJ = o [2.1]
and
vig|r.n) = -;—[Eﬂ (2.2)
n (n+l)

The shape of fE{p1r,n} depends on r and n, and can acconmodate large number

of probability assessers. If the prior parameters at Lime t are r, and n, ,

and the sample resulis are ¢ “successes” in n trials, the posterior para“t
meters at time t+l, rt+1 and nt+1, can be easily comecuted from:

Teer = Pp T 0 £2.3)
and

Toil - Tt + r. (2.4}

In our context, of course, n=l whereas r+=1 or 0, depending on whether or not
the gpponent selected his first action. We note therefore that n, and rt
L

- 1, tounts the nunber of simaltancous

can be viewed as counters such that nt a

decisions that have heen made and r, = I, Counts the number of tices the
opponent has used his first action. We also note that within the Bayesian
decision-theoretic framework, the simaltanecus decisions amounts to the zelec-
tion of an action which does not influence the subjective probability of the
random events [states) associated with this action. This case which is
aszuned throughout this paper is called the act -~ uneenditional states
case. An alterpative Bayesian decision-zaXing medel, act - conditional states
[Schoner and Mann, 1973} allows for the poszsibility that the selection of an
alternative may iafiuence the subjective probability. More formally, if
fI{qlal} and fI{q|az} denote player I's subjective p-d-f over the ewvent that

player II is choosing his first action with probability g, given that he



3. Analysis of Competitive Situations

Let Matrix (i} represent a 2 X 2 game with the following gayoffs to

the two players:

il

By b,

al RI{alJ, RII{Jl] RI{azlr RII{UEJ

RI{63J, RII{U3} RI{ﬂql, B {o )

II "4

—

Matrix (i)

where o, = Ealbl}, g, = {albgl, g, o= {azbi}, and o

1 P = {azsz are the four

4

pogsible outeomes (states) of the game and R_ (-], R {«] are the payoffs

I IT

te player I and 11, respectively. BAssuning that the payoffs are defined on

an ordinal scale, let:

513
i

RI{ad} - RI{ﬁzl

)
]

RI{DEJ - RI{Dl}
21IE04) - RII{sBJ

IIEcl}

o
3

=
u

RII{UE} - R

denote the differences in the pavoffs. As nobted before, in this section
we assume that the players' utility functions are linear and we shall alse
assume strict preference ordering of the outcones. It has kesn noted by
Fapoport and Guyer (1986] that cases of indifference between two outcomes
can be considered as limiting cases of sirict preference.

We classify all 2 X 2 games according to the following relationships:



Current
State

B = P

sequential game as a discrete tire Semi-Markov process with & discrete ztate
space and which possesses transition probabilities sgqual to zeros and ones.

The state of the process is determined by the play's outéome (Ul, Goe Tgr 641

and we shall characterize the dynamic hehavior of the process (game) using

terminology from the theory of stochastic orocesses.

Proposition 1

Siven the state of the process at time t and the ordinal property of
the payoffs of the game, the next different state wisited by the process 1S

. : . 5 .
given by the entries of Table 1. More formally, if PG o denotes the pro-
ity
Bability that given that the state of the process at time t is h {i=1,2.3,4}),
the first ansition inmocj {j#1) will occur at time £ + s, then for some games,

. . . 3 W
there exist integers s and w such that Pd o =1l and P =] for any 1 < w < 35,
- x
i

174
for other games there does not exist such an s, and for additional classes of

gares, this information is insufficient to determine the existence of s,

Taple 1

Current and Next-Visitsed State for each Class of Games

Class of Gazes

{1} (ii} {111} {iv) (v}

ﬁl n/fa* noTIE kR not anigue d2 63
02 n/a* not unigue none®* 64 ﬁl
o ¥ oo not unigue i o =}

3 n/a r 04 T TROTRE i 4

4 none®k | none ** oot unigue a, T,

*not applicahble

Tvunenever the game is in this state, it remains there on all future plays.



_11_

State o4 and Class (iii)

Congider now the following game:

b M2
a, &,e c,n
a2 d,q b, £
Again, given state o, implies: EVI{a 1 < EUI{a J and EvII{b ) o< EVIIEh i
r 4 £ =" t 1 -t Y2t

After one revision of the prior bete distributions we obtain:

- nEEVI{a T+e nIEvI{a T +b
BV (a,] = —= L1 and EvI (2.] = SR
t+]l 1 I t+l1" 2 I
n +1 - no+i
T L
a et n ) +g n vt n yae
EvII (b.) = t t 1 and EvII b} = t t 2 .
t+1'71 I3 t$l T2 II
nt +1 nt +1

It can ke readily seen that the ordinal property of the payoffs and the
current state of the game are not sufficient to determine uniguely the state
of the process even at t+1, since we need also to know the difference in the

expected payoefifs relatively to the difference in the respective payoffs. Q.E.D.

State ¢, and Class (iv)

Consider now the following game:

21 2,
ay a,yg B:h
a2 C,e d,£

. I I II II .
where Lvt{al} E_E7£{az} and Evt {bl} E_E?t {b,}. It can he readily shown

that after one revision the expected payoffs are:
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Proof:
traightforward from Table 1.

Corollary 1.1 helps us foous on the types of games ko be studied further.
Attention will be restricted to games in Class {(iv) {similar results can be
snocwn for Class (vwl). Furthermore, we shall specifically examine
Game 75 in the taxonomy proposed by Rapoport and Guyer which is a pure

conflict game and can be ropresented by Hatrix [ii):

2 Py
ay a,g b.h
a2 c,e d,f

Matrix (i1}

whera dra>crb and hrerg>f. This game captures oD neon-zero-sum and zero-
sum conditions,
For non-zZero-$um games, the prescription provided hy game-theory is

given in terms of the following equilibrium mixed strategies:

pr = Pr{I plays al} = {e-f)/{h+e-g-£} (3.1}
and g* = PI{II plays bl} = (d-b) /{¢+a~c-b). {3.2)

Lero-sum gares can be obtained from Matrix (ii) when h=-b, e=—¢, g=-a, f{=-d,

and then {(%.1) and (3.2} bocome the minimax strategies for the two players.
Since the game vroceeds by coycles (Corollary 1.1}, it makes no difference

whan we, atart observing it when studying its long-run behavior. We shalbl

therefore assume that at t=0 the process is in state 7, {the next states

d

will e g, > G, + &

3 1 We denote by Eé{qj and Eélip} the expected

2}'

values, at t=0, of the prior beta distributions of player T and IX,

regpectively, over the probability that the owponent will



gw‘II + ein MIII
Ix o (0] I
EVEI (bl} = 11 and
Ty
at eyt 3 4o
e lip,) = ——9 1
0 2 iI
g,

Por any oycle t=1,2,3,.-. it is pasy to verify {based on the order of the

realiged states) that:

II II _I II 1 1
+ 2
s EVg (g} * (43, gYe = (k. +2, )y
it+jt-l+kt—l+}'t-l = FII+iI+" +kl +il
VR ST 7% A L |
II II _I [] 1 [} .
+ +3 z +1 bt
I, ., Ny BVg (By) + H 43, I8+ (X g #E )00
and E'v".:..' . {b } = e 1 i L
lt'jt—l+‘t~l+it—l 2 pIILi +3 +k L +2
WOTe Th=l -l Te-l
Hence, E??¥+.' +k' +L' Ebl} > Ev§¥+.' +k1 +i’ EbE} {i.=., the process enters
P11 e t -1 1 e
stateca};ifan only if (3.3) holds. Similar argusents prove (3.4}, {3.5) and {3.6). Q.E.D.

L L} r

Seories for i, :r kK

and lt can now be formed recursively from (3.3} -

£ Jer Sy
: L] T .‘|' _ ) .. .l [ ] L N
(3.6} since RD = kD =3y = 0. 1In genecral, for any t;: P ktr and it will
d-b g-f & £ & €
- r F y B d e
e heg’ e=f' a-¢’ h-g’ " @b
Let &k ¥, et = T, ~§L-= M and —— = W, and suppose that K, L,® and ¥
a-c h-g e-t -
are any ceal numbers, thens
i = £ {t,K.L,»M M (3.7
t i
jt = fj{t,K,L,H,N,} {3.8)
kt = fk{t;KrL.M,N} {3.9)
I = (LM, 3,10
I.t fE{t,K L M) { ]



Progposition 3

~l7-

For the gare represzented in Matrix (ii) for L = 1: ¥,Nx0 and integers:

K >N+ 2 and integer, and under the Bayesian model, if at t=0 Eé{q} 2 g%

11
and E
79 5y

Eemark:

.2
|

Ir

-

|
\

2
£t + Mt

¥t + (HK +

RS

Ktz + I:”EC +

N
Kt2 + (H.K +

‘t‘.2 + [M+l)t

{p) > p*; then the following eqguations hold-

for £=1,2.3,... (3.13)
K~1 K=-3 -
-E—-t - 35 + M for t=1,3,5,...
{3.14)
Eéi)t for £=2,4,6,...
F21 -3 -
*E:)t - 5T 1] for £=1,2,3,...
{3.15}
E%i} for ©=2,4,8,...
Fa
for t=1,2,3,... (3.16)

althougn we require in the proposition that K » N + 3, proofs for

2 < K<N+ 2 are similar but have to ke considered separately. They are

emitted
Proaf -
By
4
I1
k
1
i'l
and 1
or .E.l

to conserve spaca.

mathematical induction. For t=1, glven Proposition 2 we obitain:

>

W

R

P

M‘—"-‘b'ilEM'!-l.

(M+1)K & Y = j‘1 = {(M+LIX + 1 + N,

(H+llz + 1 + 5

eI + 2 + W

+ M+ 1 - = kl = [M+1]%¥ 4+ 2 + W,

L M+ELIE + 1 + W _ L) - E

H+3
L 4+ —=
M+l

.

K !t

2, =M+ 2 for K> N+ 3,

which verifies the proposition for z=1.

We assune npow that for some t even, eguations {(3.13) -~ {3.16) hold, and

we show that they alse hold for t+1. That is, given (3.13) - (3.18) and somg
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Finally, the proof of (2.20) is based on (3.8, {3.17), {3.18) and

(3.19}:
E;+1 3_[K{t+112 + {JK + E%Eg{tﬁlj - (5559 4N+ K2 4 {HK + 5%39{t+1}
-3 . B /x - (e - Hee - §
or 3;+1 z (4132 4 M(k+1) £ e+ 1 - 1 4 5%1.
Hence, l;+1 = {t+l]I2 + M1y {t+1)  for ¥ > W+ 3, which establishes {¥.20}

and cempletes the proof of Froposition 3. Q.E.D.
From efuatioas (3.13) - {3.18) we can also derived the nurber of times

. . . th .
each state is visited during the t+]l— cycle (i.e., the cycle that beginsg

at time ¢ ard ends at time t+1) which we deonote by i k., 2., for states

£ gt Ny t

, and o

3* 930 9 2*

respectively:

i o= 3 -1 = Zt :.1 £ =1,2,3,... 3.21
ip=d, i 2t Mo i or t { )

L2kt + K{M+2) - 2 - N for t=1,3,5,...
’ 1 B
Jp = Jpey T Jt=“- {3.22)
2Kt 4+ KM+ 41 + W for t=2,4.6,...
2Kt + K(M+2) - 1 - W for t=1,3,5,...
[] T H
Kp = Keyp - ﬂt-_-.{ {3.23)
CZEE 4 K(M+1) + 2 + W for t=2,4,6,...
| ' .
= - = i = .l'rl LR 3‘241
L T Epe1 T R 20+ Mo+ 2 tor +=1,2,3 {

The asyopototic dypamic behavior of the fayesian competitive decision-
making model can now be compared with the game-theoretic eguilibriun strategies
£{3.1} and (3.2}} by compuiing the limit of the empirical relative
freguencies. Corallary 3.1 shows that the empirical distributions converge

to the game-theoretic eguilibrium strategies.
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The proportions of time that al and bl have been selected during the

th
t+l— cycle, for some t edd, are given by:

; +
4 Lt

op. {a.) = t o 20K+l e + MiR+L) 4 2K - W O+ 1 (3.31)
PRelag) =T V3 Tk v 2 A(K+1IL + ZM{K*1) + 4K - 2N
t t t t
1, + k -
and  po. (b,) = t t _ 4Kt + ZK(M+2) - 28 ~ 3 (3.32)
SR . ) = A - : " .
R PR + s',t 4 (K+11t + 2M{E+1l) + 4K - 29

and clearly, lim ppt(al} = l-and lim pp, (k) which completes

- B
s 2 I 1 K+l

the proof of the corollary. Q.E.D.

This interesting result, that the enpivical cumulative distributions
converge to the egquilibriun strategies, has been conjectured by Brown [1931]
and proved by Robinson [1951] for finite two-person zero-sum games, Corol-
lary 3.1 howewer, generxalizes this result to neon-zero-sum games, and shows
that the result alsc heolds, in the long-run, during the t+1£h cyocle of
visited states, as defined here {(a well known result for regenerative
stochastic processes).,

From {(3.27), (3.2B), (3.31) and {3.32) we can obtain an inzight as to
the directions and the rates of the convergence to the sgquilibrium strategies.
Clearly, pp;{al} and ppt{al} approach their limit monotonically from above.

As for ppt[bll, the convergence is from above 1if K < 2H + 3, and from helow

rya K
if ¥ > 28 + 3. In the special case where X = 28 + 3; ppt{bl} = X3 9* for any

¢

! 4
t. It skould be noted, howsver, that when X # 29 + 3, ppt{bl} iy for any t
evean, hence, in this caze unlike ppt{al}, the convergence is not monotonie,
1

r
Howaver, ppt[hl} converges more rapidly than ppt{all. Finally, the convergence

of ppt(bll ig pseillating arcund the equilibriwn strategy for successive cyeles.
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imakers (characterized by their attitude toward risk) may start the process
in different states, for a given pair of expectations: Eé[q} and EéI(P}.
This claim is based on the changes of p* and g*f ag 8 changes. The investi-
gation of thesze functions has been reported elsewhere by Eliashberg and
Wirkler [1%78] and just one case will be considered graphically here, for
illustrative purposes.

Suppose that player I is a risk-taker and playexr IT is a risk-avpider.
and that thelr monetary payeffs are such that atorbh+d and h+frgt+e. In this
case p* iz monotonic increasing in @ whereas g* decreascs initially until
it reaches 2 minisum and then is monotonic inereasing in 9 and like p*,
approaching 1 as g+« {(see Zliashherg and Wirkler [1978] for the proof of
this claim). Figure 1 demanstrates how, for a given pair of expectations,

it iz possible to start the progess in different states.

- 4 e i s -

Firr D'E‘E < 9§ Eé[q} £ g* and Eéltp} > p*, and hence the first visited state

lJ
is 0y Howewver, for 51 < B < 62,

. s . LI
as the initial state. Finally, for 82 < 8, nG{q} < ¢* and E

Eé{q} * g* and EEIEPJ < p*, resulting in o

11

0 {p) < p¥,

implying that the first wvisited state is Tq-
To study the effect of riskx attitudes upon the length of the cycle and

compare it with the results obtained in Sectlon 3 for risk-neutrals, we zhall

v ey - vt
assume now that player Il's vayoffs are such that: L{9) = T T =1
1 Uy - U g
for some strictly pasitive €, hence, pr{g) = E'EDI this 6, and that

EII{p} » 1

0 > We shall slac assume that g*(f} is monotonic increasing in §

(thiz is true when player I is a risk-taker and his payoeffs are such that
a+c<h+d} and that g*(g} > Eé[q} for all O < 8 < =. In this case the initial

vigsited state is 4 and thus we can use the results from Proposition 3, to
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study the effect of rizk attitude uoon the length ¢f the eycle at some given
time t. Although the order of the states visited by the process will remain
the same as before (since the utility funetions are monotonic incrsasing in
their payoffs), the number of cumulative times that each state is visited
during the first t cycles may change as 8 changes. Eguations (3.13}, (3.14},

T T 1 1

{3.15), (3.16) indicate that it' jt' kt and it may change now in 8 through K,

M and ¥. Denoting the players' initial expectedutilities by EUD{ 1 we note

that:
vt - @
x(8) = 5 2 .
U {a) - 4 (c) 1 = qg=(8)
II ‘r“UII{b y - '-‘UII 5 ;J _
Ny [BYy ()~ BUy Iy 1% [, II -
#{9) = — = = ag' e Tp) - 11,
G e} - UTT{E) - -
and .
I I i
R, EU.{a.]) EU {a }Z' - -
_ P ®Yp'e2 o' *11) _ x1i. 1 I
H(B) = : - —nahl By (@) IR(8) - Ej(a@)]

and £, are not changed compared with the risk-peutrals

i1t «an seen the both it £

gaze {8+0) since M{9) is not dependent on 8. However, since K and ¥ are
both monptonic increasing in 8 (recall that we are assuning now that g*{8) is mono-
r L]
tonic increasing in &) both 3 " and kt are also monotonic increasing in 8, implying that the

cyelas becoms longer in this case.
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Several possibilities exist for future work in the same spirit as the
work reported hers. Cbvicus generalirzations invelve changes in the details
aof the game. ¢One possikle dirgetion ix the relaxation of assumption that
each player knows his own possibile zayoffs., The relaxation of such assump-
tion leads into guestions concerning the revision of probabilitices and the
value of various parcels of information, Finally, the results reported
here can be used for generating hypotheses regarding actwal dynamic behavior
in competitive situaticons. These hypotheses can then be tested in experi-
mental gaming setting and may provide stepping stones to developing hehavioral

theery in the direction of greater ralevance to "real life.”
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