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Abztract

Consider a tree T = (¥,E) with "supply" and "demand" regions
¥ and 4, each composed of a finice pumber of disjeint, closed and
connected subregions of T, some of which oay possibly congist of
just one peint. Given an integer p, we seek a collection of p "cen~

ters' Kisewes® € L , which minizize the expression max min d(y,xi].
P yed di=1,...,p

We present a polynomial algorithm for this problem. Its running time
is bounded by D(nlogzn) if either & or I iz discrete, and by

Ofa min{plogzn, nlogpl} if both sets contain at least one full edge.



1. Intreduction

In this paper we present an eificient algorithm for a gensral version of the
p ceanter problem on an undirected tree network.

Te formulate our problem precisely, we asszume that an undirected tree T=T(X,E}
iz embadded in the Euelidean plane, so that edges are lins segments whose endpoints
are the nodes and edges intersect one another only at aodes. Meoreover, each edge
of T has & positive length. This embedding emables us to talk about péints, not
necessarily nodes, on the edges. We denote by A the (infinite) set of points of
T. PFor any two poiats 2,y £ &, let d{x,¥) denvte the distance between = and ¥,
neasured along the edges of T. The general p-center problem can be forrulated as

follows:

{P) Given
(i) A set of points & & A {The "supply” set)
(i1} 4 set of points A <€ A (The "demand" set)

{iii} & positive integer b,
Find a2 collection of p voints, xl,...,xp £ T which minimizes the expression

(1) sup min diy,x.)

yehi=l...p B
We refer to the particular version of (P} defined on T by a specific choice of
L., b, and p as & /4fp. We use r* to denote the optimal value of (1).

Following Hakimi [7 ], different versions of minimax Iocation problems om
networks have been studled ciuite extensively, with emphasis given to the .
algorithmic aspects, . The main results in this respact appear in [2, 3, &,

5, 6, 7, B, 8]. Te date, polypomially bounded algorithms exist for the four - -
versions of (P} obtained by choosing the pair %, &4 as the different cambinétions

of the sets W and A [3, &, &, 9]. In addition, a polynomial algoritham is given in



[ 3] for the case where each of these sets is composed of a finite nuwber of
points lecated anywhere onm T. The best worst case time bounds for the above gpecial

cases are given ia Tahble 1,

Table T

moxle L running tize raference
N/%ip ﬁ(ﬂlogzn} g
NiAfp D{nlogzn} 8
Afnfp G{hlogzn} g
alafp ﬂfn'minfplngzn, nlogpl) o
s/D/p

where 5,0 are fiaite Ofm-n + macclog (komd) 3

sets of discrete points

with Jo] = m,.i3 =k

In this paver we consider the case of zore coaplicated, yet zore realistiec sets
L&A, We allow cach of these sets to consist of a finite number of disjoint, closed
and connected regions, zome of which may possibly consist of just onme pedint. Such seis
L and 4 arise In practice from & variety of reasons. For instance, several re-
gions of T can often be gxeluoded from consideration as potaniial facility lecation
tites due ro the inexistgnce of appropriate amzenities, restrictive zening laws,
prohibitively high price of property, the desire to maintain a2 certain distance
between facilitjies and major populacion centers, ate,

The algorithm presented in this paper can handle such problems quite efficiently.
Let n dencte the number of nodes of T, including all the tips of the different supply

and demand regions. The running time of ocur algorithm is U[nlogzn} if A C ¥ or



LC¥, and O(n minfplogzn, nlogpl) if both I and & contain at least one full edge.
It cza be viewed as 2 generalization of the algorithms of [9] in the sease that
its restrietion to each of the four basic versions of {P) yields back the algorithn

[9] for the relevant wversion.

The orzanization of the paper is as follows., Ia sectien II we introduce some
gefinitions and preliminaries. Ia section ITI we zive an overview of exdsting
algorithms for the different versions of (P) and briefly discuss the broad out-
lines of the algorithm presented here. In sectiom IV we present a set of real num-
bers, B, which is known to contain the optimal solutden value for (B), r#*, and which
¢lays a crucial role in our algeorithm. Section V describes the feasibility test
which determines whether a given element r € R satisfies r < v* or v > 1%, This
test forms a basis for a binary sedarch for r* opn B, Finally, in section VI we

sum our algorithm up and discuss its conputational complexity.

11. Defiwnitiony and Prelicdnaries

Let IEi],i € I, and {gj} j € J be two finite colleetions of nonempty, closed and
connected subsets of T, and zssume that &, N Zk = & (ﬁiﬁ n£= # for all i, k E I,
i
ifdk (§J, 2 &3, 14#4&). Let, also L = |} %, and & = U aj.
i€1 FET

x & Ei {x & gj} is extreme in that set if x is a tip of T, or if it is a boundary

We say that a point

point of T\Ei {T\QJ}. We denote the set of extreme points of g, (aj) by &, (Dj}
1
with § =1 5,, D =D D,. We use the convention N3 SU D or else we enlarge the
; i ] =
i€1 j€J
set N accordingly. (This ma2y require $ubdividing some edges into smaller seg-
ments. ).
The convention N2 D ) § allows one to partition the open edges of T and
its nodes into Four types, depending on their intersection with the zetsz & and A.

Au edge is of the supply only (demand only) type if it is inecluded in % but not ia



- & -
4 {in & but not in Zy. It is of the supply and demand type, if it ig included in
% M4 and it is neuatral if &1 A does tot ianclude 1t. 4 similar clazgificatiou

iz used for the nodes of the tree,

We note that under the above assumptions on T and &, the supremum in (1) can
be replaced by mawximam, Furthermore, noting that the maximuz in (1) is zere if
and only if A € £ and [a] < p, we will assume without loss of gemerality that

that maximum is positive,

ITI. Overview of algorithas for (B)

The algorithms for the different versions of (P} mentiened in the introduction
are based on the same principle. First, we identify a firite set, B, of real oumbers
which iz known to contain the optimal ebjective function value, ¥ext, we search R
for the minimum value which is feasible in the following semse. A valuer > 0 is
called feasible if there exists a set of 7 polints xl,...,xP of T, such that the
distance between any demand podint v and its nearest B iz not greater than rt.
Efficient algorithms are known for deciding whether a given r is feasible, aad
hence the location problem can be solved by 2 binary search of R, using such a2
feasibility test. For the four models mentioned earlier, thisz test runs in Oin)
time, The sat B of relevaat wzlues for these four different models is given in

Table 2 (see [ 4, 8 1.

Table 2
Medel The set B
N/x/p fatii]; ey
afn/p /2 d(i,j}ii,jE}t
N/Afp [601,3), 1/2 40,0}, ey

1
afalp T d(irﬂ]i,jt—:m, k=1,...,p



™

_..D.—.
Thus, e¢ach one of these problems can be solved by computing the set R, and then

searching R by repeatedly using linear-time median-fiadiang [l]. This amounts to

o¢|r] + alog [ tine where {R| is the dominant term. In order to improve this upper-
bound, one has to bypass the computation of the Set R and still. be a}le tor gearch in
that set. This approach is ta%en in [o 1. It is shown there how the kth longest inter-
nodal distance iz a tree can be found in an effort which is bounded by O{nlﬂgzn). This
enables one to find the k-th elezeac in the set E, which in all four cases is

closely related to the set of internodal distances on the tree, in time which is

less than linear in the cardinality of R. This observacion is the basis for the

efficient algorithms for the various models of [F) achieved in [ 9 ].

The zlgorithm below uses the same general strategy. First, the set R is

derived for the general model considered in this paper. Although this set is

slightly more complicated than those applieable for the four simpler medels, it

still preserves encugh resemblence to the set of internodal distances on T to

2llow one to use the construction of [ 9] in order to identify the k-th elerent

in this set in sublinear time. We then show how the feasibility tests of [4]), [81,

can be generalized to deal with the problem treated here, while ztill running in

linzar time.

IV. The Set R
For any two points x and y on T, let P(x,y} dencte the set of points

on the path connecting % and y. 4 chain X iz a finite sequence of distinct points

of T (but mot necessarily of ¥) X = {x,,...x_ ), 2> 2, which form a simple path on
i m -

T, i.e., such that for every I < i < j < k< m, % € F (xi,xk}. 4 chain X is

called regular if for some r d{xi,x Y=r i=1,...,2-1. It follows from the

i+l
‘s : dix, ,x ) . :
definition thar if X is regular, r = 1" m . A chain X iz called alternating
m~-1

if the points xl,...,xm are drawn alternatingly from the sets £ and A. I *; £
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ZMNA for all i = 1,..m, there may be two possible alternating assignments of the
points of X to the sets £ and A. We will use the term alternating chain with the
understanding that a unique assignment has been specified.

Let X = (xl,.,.,xm] be an alternating chain. We say that the peint * is

a limit point in X if one of the following two conditions is satisfied:

{i} Xy iz chosen from & and any "gmall" movezent from ® in the directiom of

% takes one out of the set Z, i.e., for any ¢ > 0 there exists a point
m

u = ufg} on I{xl,xm} with d(xl,u} <z and uwg Z.

(ii) % is chosen from & and any sfmall movement from x in any direction away

frowm X tzkes one oot of the set &4, i.e., there exists ¢ > 0 such that for

all points u § P{xl,xm}, d(x1,u} < o= u E A,

By svumetry, this definition is applied to xm as well., A point ;s 1 <i< nm

is an internal point of X 4f it is neither & limit point of the chain {xl,...,xi}
nor of the chain (xi,xi+l,...,xm}.

Froposition 1

Let v® > 0 be the optimel szelution for (1). Then there exists a regular

alternating chain X= [xl,...,xm) such that
1. m< Zptl

2, % = d{xl’xm}

m-1
3. %4 and X are limit points of X

4. For all 1 < i < m, %, is an internal point of X,

Proof.

Let-f = {xl,...,xm}, L ¢ L, i=1,...,¢ be an oprtimal sclution far (P}

with

max min d(xi,y} = & > 0,
wih i=l,...,p
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Let also )
¥ =4{yeg Al oin d(xi,y] = %}
i=l,....p
and
¥=ixz x| min dfx,¥) ==
vyey
Hete that for xE X min dix,v) z_rﬁ.

ye X

Obviously, ¥ # 8, E 4 @ .. If there exist more than ong optimal solution for
- "
(P), let ¥ be one which minimizes the cardinality of X,
Mewr let Z = {zi...zm} be 2 maximal repular alternating chaio such that its

T glements are chosen from E, its & elewents are chosen from ¥, and d(zi,zi+1] = ¥,

iy
i=l...m-1. Such a chain obviously exists since X and Y are nonempty. Further,

n,
the £ elements of 2 are all members of ¥ .

First we show that both z) and z_ are limit points of Z. Assume, on the
contrary that one of 2 and £ is mot a limit peint, and without loss of generality

let that point be z . We distinguish between two cases.

13 ﬁ_repre&ents z

This situation i3 depicted in Figure l, i.e., there exists v # 2 » v E ?{zl,zm}

and Pizl,v} < I,

-3
¢

L]

Figure 1
Since Z = (2 ,...,Zm} is maximal, every demand point u © A to the "left" of zl{i.e.,

neE &, u%zi and zﬂ.a P(u,zm]}, is either served by a supply center which is not

a member of the chain 2, i.e. d(u,xi} < t* for some xie-i-and %5 ¢ 2, or else
d(u,zl} < ¢*, Thus, we can move the supply center, currently at zq5 by a small
distance to the right (i.e. along P{zl,v}}without changing the objective value.
But:, then, such a movement induces a sclution to (P) with 2 smaller value for

A, " . . —_
[K; - contrary to the minimality of the original set ﬁ.

23 Z, Tepresents A




this sitwation is depicted in Figure 2, i.e., there exists v # 2 3 P{v,z_)

“1
and P(v,zl} = 4.

Figure 2

Also there exists Zy in Z, such that zs represents T and d{z1,22)= r¥. Sinee z,
is the clesest supply center serving Z)5 DO demand point uE:P(v,zlj, u¥.zl, is

served by points on P{zl,zm}, 1.e. dfu,x) » r# for all = & P( b, weg X.

=£:l.’ztl:u
Let X, be the closest facility to Zq » AMONE 2ll the facilities serving

iz the c¢losest to =z, we cannot have

points on P(v,z,) \le}. Since x 1

d{xk,zlj > ¥, Also, d{xy,z7)} = r¥ would contradict the maxizality of 2, since

that would imply 2 3 P(x, .2z } and one could add %, to the chaln. Hence,

d(xk,zl} < p¥, which in tfurn contradicts the assumption that z. belongs to Y.

1
We have thus shown the existence of a chain satisfying all but condition

(&) of the propesiticn.
I !
Let z' = le,...,zq} be a minimal c¢hain satisfving conditions (1), (2}, (3}
of the proposition, Suppose that Z' does not satisfy condition {4), ard assume

that for some 1 < i < q,z£ is a limit point of at least one of the two proper
subchains {z£,...,zf}, (z',....2%)., In either case, we have a contradiction
i i q

to the minimality of 27,

Proposition 1 forms a bagis for generating a suitable set E for (P). The
following simple proposition can be used to bound the cardinality of this
set by asgertiong that the end points of 2ach of the chaings referred to In

proposition 1 are actually extreme poiats of £ or 4 of a special type.
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Froposition 2. Let X = (xl,...,xnj e an altermating chain in T and let ®q be

a limit point of X. Then:

(1) If %) vepresents L, we have
x, € 8" = {xe S| there exists at least ome edge (x,v),
incident to x, such that {(z,v} ¢ I}
(2} If %, Tepresents A wa have
%, € D7 = {x ¢ Djthere exists at most one edge (x,v),

incident to %, such that (x,v) £ A}

The proof of Propeosition 2 is immedlate from the dafinition of 2 limit point.

Hote, that by symmetry, an analogous claim can be made with respect to xj.
H

It iz interesting to compare the sets R menticned earlier with respect to
the four basic meodels of (P}, with the set R ¢f Propositiom I. As all four
nodels are special cases of the wmodel discussed here, we get that the four cor-
responding sets can be cobtained as special cases of Propesition 1. Ve now turn

to examine each of those four cases.

In the paragraphs below, we refer to the set of tips of T by W' (§' € N}.

IR here we have

z

Ir

8 =57 =X
A=D=Dp"=N
and there are no points of & or 4 which can serve as iantermal peints. Thus, for

¢ach chain, we have m = 2 and R = {d{i,j)}i,j e N

AfN/p I=4, §=N g =g
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and zoy point of E\S, ard wo point of ¢, can serve 2s an internal point.

Thus, we have m = 3, and R = {1/2 d{i,j}}i,4 ¢ ¥ .

%falp T=8=8"=x
& =4, 0D=D"=1x"

Any point of AN\P, but ac point of I, can serve as internal point. Thus, we

hav hai w1 = ialdi = fd(i,5} ;L.
ave chains with @ = 2,3 vielding the set K 4(i,j 1eW, jef’ U {2 d(i’j}i,jaﬂ .
AfAlD Z=A, 83=Rg',8"=¢

& =4 D=D"=xn
any polnt of ING and ﬁ\@lcan serve as an internal point. Since the two end-
points of each chain represent £ we have m = 2k + 1, with exactly & points
Tepresenting L. Hence, we must have that k < p. Therefore,

= ¢ 1 i . =
R—{i-k— d{lrj}li EN;,jEN‘k_li'.',p-

¥
We now return to the set R for the general case. As centioned sarlier,
one can use the set implied by Proposition 1. However, this set may be quite
complex and its determination rather time consuming. Thus, froa an algorithmie
point of view, it is sometives more convenient to work with a different set R,

which may be larger than the set of Proposition 1 yet is more readily available.

The algorithm proposed ian this papar Is based ou the set

R = {éi?izl} x, ye R, jed=1_1,...a}

whare

2 1f either ¥ = W or 4cN
2p if at least one of the pair I,4 contains a full edge.

. . . o 2
Thus, the carvdinality of the set R is D(nz) in the first ecase, 0{n"p) in the
second. To search over this set, we need a routins which can decide for a given
v £ R, whether or not v is feasible. ¥ext, we describe such a test, of computa-

~2awmnTl e lavity n[’ﬂ]-
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V. The Feasibility Test

Like the tests of [4, 8], the test proposed here scans the tree from tips
inwards, examining each edge eéxactly ouce. However, in contrast with the rela-
tively simple cazes treated in those references, one iz faced here with a ouch
mere complex set of possible combinations of types of edges. Luckily, it EFurns
put that the scheme required to handle the situation is rather simple. However,
the arpuments needed to support the wvalidity of the test ave quite invoelved and
consist of numeérous zpecial cases. We give below the esseatials of the test pro-—
cedure., Elahorate proois and some of the missing details are left for the ap-
pendix.

As the test procedurs progresses, edges of T are elinipated and the supply

= (¥, E)

w1

and demand regioms are zwodified comtinuously. At a given stage, let

be the current tree under coasideration. Similarly, define the sets N’,-E,-f and 4.
Ke start by rooting the original tree 2t a2 given onode. The algorithm works

by guccessively eliminating clusters of T, 3v a cluster, we mean here a paximal

set of edges of the forn 1{x,i): 1 & N', where x is fixed, and there is no

j ¢ W'U{x} such that x is on the (unique) path compecting j with the root. The

above x 15 then called the base of the cluster. A cluster whose base is x is

denoted by C(x). If the cluster GC{x} deeg not exhaust the tree T'(i.e., Cix) # f},

there exists a unique edge (x,t) such that t ¢ ¥'. We call this edge the stem

of C{x)}. A cluster, its base x and its stexr [x,t} are depicted in Figure 3.
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- Toor

basa

JETﬂfﬂ_ﬂf__..::luste1:

Figure 3 - A rooted tree, with a cluster, base and stem

The process of elinminating a cluster can be devided inte three phases. Ve
now briefly describe the operations performed in each.

Phaze I -~ Labeling the Spokes of a Cluster

Lat C{x) be a cluster of che current tree. The essense of this phase lies in reali:
ing how the supply-demand nature of a given spoke & = (x,¥) of C{x) is fully captured by
assuning that all but almest twe peiats of the spoke are neutral, The spoke
& = (x,v) is assigned one or two labels: S(e}, D{e)., The interpretation of the
lzbels is as follews. The label S{e) iz agsocizted with a supply point located
on 8 at a distance 5{e) away from the base x. A positive label D{e)} corresponds
to a demand point located om e at a distance Die) from x. A negarive label Die}

corresponds to a demand point located om & at a distance D(e) from =. 4 negative
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label D{2) corresponds tu a facility already located on e, at a distance -D{e)
wnits away from x. Exeept for the (at most twoe) points indicatad by the
labels, and pogsibly the base x=, all other points of the spoke s are assumed

neutral. Further, the spoke length can be reduced to vield
A{x,¥) = max {S(E),]D{e)!}_

The labels assigned to a spoke e = (x,y) satisfy coaditions 1-3 below, Thase

conditions are enforced throughout the erecution of the feasibility test.

1} At least one of the labals S{e}, D(a} isfactuallv acsipned

2) -d(x,7) £ D(e) < dlx,v), Dled £ 0 4if D{e) is assigned
0 < 3(e) < dix,y) if 3{e) is assigned
3) Either iD(ed = dlx,y)
ot S{e) = d(x,v)
4) iD{ed)]| < r if D{e) is assigned

53} If both D(e) and S{e) are assigned, then
r>=Dle) >0
and
$(e) - Dfe) < ¢
Condition 1 asserts that strictly neutral spokes are elizinated as soen
as they are detected, Condition 2 means that the points indicated Dy the labels
bhecher supply or demand) lie within the seai open interval (x,y]. <Condition 3
implies that at least one of those goints lie on rhe tip v. {ondition 4 asserts
that there is no need to carry information about a demand point or a facility
incated at a distance of wore than v from =, fer otherwise, we have either infeasi-
bilicy (4D case) or the -0 label can be Ignored as it cannot cover any demand point

of T. Condition 5 refers to a spoke labeled as D and S simultaneously. Its first
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part asserts that in such a case, the D label is positive, i.e., corresponds to a de-
mand point and not to a facility. Fer consider a spoke which contains both a facilicy
and a supply point. 1f the faeility is closer te the base than the supply point, then
the latfer can be obviously ¢liminated. In the oppesite case, wWe can replage the spoke

with two new spokes oue containing only the supply peint and the other containing

just the facility. The second part of the condition, topether with condition 4,
implies that if a spoke contains beth 2 desand and a supply point, them the lat-
ter must mover the former. Otherwise, the supply point can be ignored, as in the
first part of this condition. The reader can noteé that conditions 4 amd 5 imply~ "
that

max {lD(e}], $(e)} <€ 2r
Thus, at no point in the test will we have te deal with spokes whose length is

larger than Zr.

We show in the appendix how a spoke which is an criginal edge of T can be
bBrought te the form indicated by comditioms I-5. In the next wo phases, we
indicate how these conditicns can be maintained as the algorithm progresses,

Phase II - Labeling the Base of 2 Cluster

Given a cluster C{x) all of whose spokes have been labeled, we proceed to

handle the eluster as a whole. We call this cperation labelines the base x of

£(x). As will be dexonstrated shortly, during this process we eliminate the
vast majority of the spokes of this cluster.

It is useful to distinguish between different types of spokes depending on
their labels. We say that a spoke iz S-labeled iIf it is assipgned an 5 label. It

iz S-only labeled if it is 3-labeled but no D label is assigned to it., A spoke is

4+D-labeled (-D-labeled} if its D label is assigned a positive (negative) label,
and it is 4D only labeled (-D only labeled) if it is 4D labeled (-D labeled} but
not S-labeled. Finally, a spoke is 3-D labeled if it is both 8-labeled and

+Hi- labeled . (Condition 5 ensures that a spoke cannot be beth S5-labeled and

-B labeled. Hence, a =D labeled spoke is also -D only labeled. y



Propositivns 3 and 4 below allow ug to eliwminate from £{x} a2ll but at
most one spoke of each type. The proof of proposition 3 is given in the ap-
pendix. Proposition 4 Iz immediate and its proof is omitred.

For x &€ N, denote by w(x) a point in ¥ which is closest to x. In parti-
cular, if x 2 X, oix) = =

In provositions 3-6 below, ties can be broken arbitrarily.

Proposition 3, Conzsider a cluster C(x) whose spozes are labeled. We can

eliminate withoeut affecting the wvalidity of the test, all the 35 labels on
spokes of C{x} (whether on 5 oaly or on $-D labelsd spokes) accept perhaps

ol one spoke which contains o{x). The D only labeled spokes wvhich result from
deleting the S labels of 5-D labeled spokes may be either of the + or -D Cype.

Provosition 4. Consider a cluster C(x) whosze spokes are labeled. We can

eliminate without affec¢ting the wvalidity of the test, all the +D only labeled
spozes except for ome, whose D label is maximal. 4lse, we can eliminate all
the -D only labeled spokes except the one vhose absolute value is minimal and
2ll the 5 only labeled spokes except the one whose 5 label is minizal.

Applying propositicons 1 and 2 to a given cluster, we are lefif with at
mest one spoke of each type. The fellowing twe propositions allow us to
eliminate additional spokes from C{x}. Proof of these propositions are left
for the appendix.

Propogition 5. Let x & L. Then we can elipinate, without affeeting the validiry

of the test, 211 spoxes of C(x) but possibly one. Further, this spoke is either

+8 or =D labeled only.

Propositiom 6, Let x € Z. Then we can elinfnate, without affeeting the out-

cone of the test, all spokes of C(x) but possibly at cost two. Furthermore,

these two spokes contain {(together) at most two labels; one $ and one + or =D,
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Phase I1I Zxpanding the Cluster

After the propeositions of the second phase are applied, the given cluster
consistz of ar most two spokes. In the third phase we eliminade the cluster
C{x} by ezpanding it in the direction of its stem, say (=,t). Generally
gpeaking, this is done by replacing C{x) and its stem (®,t} by a new cluster
whoge spokes are cobtained by attaching a neutral copy of the stex (x,t) to each
of the spokxes of C{x). (Becall that C{(x} has at Zost twoe spokes.) This oper-

ation is demonstrated graphically in Figure 4.

1

Yz }rl L
Figure 4 Yy

Obviously, such an operatlion may change some distances betweeno pairs of
points of T. Specifically, if C{x) has two spokes, then distances between
points located on the different spokes are Increased by 2d(x,t). Clearly,
such an inerease iz of oo importance wmless the polnts in question belong to
T and E'respectively. However, it iz shown in the appendix (Bemark to Frop-
psition 6} that in this case the two points io guestion were not within covering
distance to begin with. Thus, incraasing the disztance between thex does not

fect the validity of the test.

The gperation of expanding Cf{x) can be implemented in practice by updating

the labels of the expanded spokes which are now commected to the mode t.



The details of the updating routine differ somewhat from case to case depending
on the supply dewand nature of the original stea (x,t}. A precise description
of rhis operation iz given in the appendix.

Applying succescively the three phases of the test to the clusters of
T , we eventually exhaust all the edges of T and can stop. By keeping a
record of the nusber of facilities esztablished, and cowmparing this aumber
to p we can decide the feasibility of r. {(Of course, we can stop the pro—

cadure with a negative answer as soon as the numbar of facilities established

exeeed p). The running time of the procedure is established in the follewing:

Proposition 7.

The test tun im time O(n) (including calculating the set {afx), =€ X )]
Proof: The computation of the sequence f2(x)} can be performed in O(n} time
by a double scamnning of the original tree T. First scan the tree from its
tips to the root and fiad for each nede = the closest supply point to x® among
the descendents of x on the rooted tree T. Then, by scanning back from the

root te the tips the sequence {a(x)}is found.

Te show that the rest of the procedurs can be implemented also wirhin
the o(n) bouwnd we first note that the time needed to handle apy given adge of
T (either as a spoke or as a stem of cluster) can be bounded by a constant.
We emphasise that this cemstant iz independent of the pumber of facilities which
get astablished on this edpge. This follows the fact that if several facilities
are assigned ro a certain edge thev are located in a periodic¢ pattemn at a dis-
tance of Zr from each other. Thus, all which has to be speciiied is the number
of these facilities, and the location of the last (i.e. the one c¢lasest to the
base). Finally we note that the total nusmher of "new edges" created by the
algorithn is bounded by 2a, since whenever we expand a c¢luster it contains
at most 2 edges. Thus the total nuuwber of esdges treated by the test is no

zore than 3n.



VI. 4n Algoritho for the p Center Problam

The zet R described ian section IV. and the feasibility test of sectiom
V, form a basls for an algorithm for the p-center problem. As pointed out in
section III, a straight forward bimary search algerithne will require Dinz}
steps 1f any one of the sets £ or 4 contains only discrete points, and D(nzp}
if both contain at least ome adge. The bulk of the efforr involved corresponds
to generating the set R, We now briefly discuss a data structure introduced
in [9] which enables us to reduce the computational requirements.

Given a trae T, we show in [9] how the set of inter nodal distapces of
T can be partitioned inte O({nlogn) subsets such that the kth longeast ale-
mant in each subset can be found in comstant time. The effort invelved in

this partition is C{nlogZn),

let R 3{%£E§E%}) x,yeN, jed = £1,...m} be the set described in seetion IV. We
can use the partiticn of iatermodal distances of T to create a similar partition
of the set R by revlicating each subset of the former set m times. The number of
subsets thug created is O{nlopgn) if m=2 and o{oplogn} if ==ip.

Let the subsets which make the partition ¢f R be Ry ... Rk' it ezach
: k

itteration, let R] & R, be the set of remaining variables with B = U R;. Let
i=1

r, € Ri be the median elezent in this set and let r be the weighted median element

of the sex {rJ; where the weight of r, is 1Rll. The effort needed to

=1...k,
find r is o{x}. Turthermore, r is koown to lie sowswhere within the two central
quartiles of X°. Thus, once the feasibility test is perfermed oo r, we can
eliminate from R ar least one guarter of ity element=. ERunning the teat re-
guires of{n) steps and updating the set R requires o(x) steps. Thus, the doainat-
ing effort at each iteration is of order ofk).

let T(L} be the effort required to search a set containing £ elements, We

then have

T(2) < C-k + T {3/4 £)
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Thus, this approach yields an algerithm of complexity D{nlogzn) for the

case where ==2 (i.e. k=0(nlopn)) and n[nplngzn] for the case m=?v, (k=0(nploga)).
For the second case, i.e. when both Z and & contain full edges of T, we can
sometine do better following a different aporoach. This approach iIs partic-
ularly advantagecus for large values of p, Here one computes explicitly the

=

set of internodal distances on T and sort this set entirely, The set R can
be then described az o=2p duplications of this set. TUsing the same search
strategy on the sel R organized in this manmer yields an algorithm whose over-
all ecomplexity iz D(nzlagp). Thus, the "continusus" wversion of the p- ceater
problem (i.e. the case whexre L ¢ N, & ¢ N), can be solved in O(n min {nlogp,

plﬂgzn}.



Appendix

We give below the missing details needed to implement the test procedure

and supply the olssing proofs.

I. Labeling Spokes which are edges of the Oripinal Tree.

Congider a cluster C(x} and let e=(x,i) £ C(x) be an edge of T. Then
exactly one of the following conditions is met:
(i) Each point oa e, buot possibly % or 1, 13 ueither a supply point nor a
dermand peoint.
{11} Each point of e including x and 1 iz a supply and depand peint,
(idd) Each point of ¢ is a dewmand point, but none (with a vossible exception
of x and i}, is a supply point.
{iv} Bach point of e is a supply point, but none {with a possible exception
of % and i), i5 a dewmand point.
Starting with type (i) spoke e = (%,1) we note that if the tip i is neither
a supply nor a demand point, we can eliminate 2 from the tres, The same conclu—
gion follows if i is a supply, but not demand point with d(x,i) » r. By
eliminating a spoke e = {¥x,1i), we =zean here, as in the following paragraphs,
eliminating the semi-open interval (x,1i). Thus, the base x remains unaffected
by such a deletion. Counsider aow a tip 1 which is & supply, but not a demand
point, and such that d(x,i} < r. 1In this case, we leave e as is. We indicate
such a spoke configuration by assigoning 2 supply label S5{e2) = d(x,1i) to this
spoke. The situation with respect to a demand omly tip 1 is similar. If
d({x,1i) > r, the test is infeasible. If d(x,i} <1, we leave ¢ as is and indicate
this situation by assigning a2 demand label D9e) = d(x,i). Finally, suppose that
i is a supply and demand peint. If d(x,%) > r, we set a facility at 1 and delete
the spoke (x,1). If d(x,i} <z, we leave the arc as is. This will require assig-

ning both a supply and a demand label to the arce e, with S(e) = D{e) = d(x,i}.
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Wext we consider a type (iv) 2rc. 1I£ 1 i3 not a demand point we can eliai-
nate e 23 x ¢learly dominates any point on the semi open interval (w,i) as a
potential supply lecatioen. Consider, then, 2 spoke 2 = {x,i) with i €a. 1if

di{w,i) < r, then again the supply region in the semi open interval (x,i] can be
ignorad as x clearly deminates any peoint in this interval, Thus, we can traat
such a spoke @23 if it were 2 neutral spoke with a demand only tip. As shown

in the previous paragraph such a spoke is assigned a demand label Die) = d(x,i}
but ue supply Labal, In the case d(x,i} » r, we must position a facility on ¢ in
order to cover the damand point 1. It should be evident that the best locatiom
for sueh a facility 1s at a distance v from 1. The demand point on e has been
now coverad and can be ignored. If d(x,i) > 2r, then, clearly, the facility on e
can be alss ignored and the spoke ean be eliminated. Otherwise, the spoke can be
shortened up to the location of its facsility, f.e., up to 4 length of

0 < d(x,i} ~ r € r. We indicate a spoke of this type {(i.e., a aeutral spoke

with a facilivy at itz tip) by & nezative-demand iabel D{e} = -{d(x,1i) - r}.

How, let e {x,1) be of type (iii). assume first that i is not a supply
polnt, If d{x,1} » r, then the test is obviously infeasible. TIf d4{x,i) T,

we can ignore the demard points in the semi open iaterval [x,i}, as any facility
assigped to cover 1 will cover this interval as weli. We Label such an are

by setting D{e) = d(x,i). Next, consider the case 1 € I, If d{x,i) € r, we

can agzin igneors 21l the demand points on e except for 1. Thus, e is treated

as 4 neutral spoke with a tip which is both a supply and a demand point. We
Label such a spoke by D{e) = S(e) = dfx,i)., If d{x,i}) » 2r , then there is no
way to covar the demand region om g in ifs entirety and the problem is infeasible.
We are teft with the case r < d{x,1) < 2Zr. Ia this case, we must set a facility
at i. This facility will sover szome of the demand oo e arnd will therefore leave
us with a demanrd enly are of length dix,i} - r. As mentioned previcusly, we

label wuch 2 spoke by setting Dfe) = d{x,i) - =©.
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Finally, we consider a type (ii) are. If d{x,i) > Zr, then at least cue
facility must be established on e. . Obviously, the best position for the first
(from the direction of 1) such facility is at a distance v from . Thus, we can
reduce the length of ¢ by Zr. 1In general, let d{x,i) = ki{Erj +—bi with 0 < bi
< 2, ki > 0, integer. We then ser ki facilities on e at a distance of 2r
£rom each other and reduce the length of 2 to bi' Thus, coasider a spoke with
d(x,i) < 2r. 1If d{x,i} € r, then the supply region irn the semi open interval
{x,1] can be ignored. We thus set Bfe) = d(x,i}., If r < d(x,i} £ Ir, we must
place a facility on 2. The best position of this facility is at distance o

from i. Thus, we label the spoke 2 by D{e) = -{d(x,i) - r).

II. Proof of Proposition 3.

Let v # @#(x} any supply point located on an $-D labeled spoke of C{x},
gay & ={x,1}. Let z be any demand point on T but not on the sexni open interval
{x.i]. The n

d{au(x),z) € dalx), x) + d(x,2) < dly,x) + d(x,2) = d{y.=)
Thus, a(x) is (weakly} closer to any demand point accept perhaps to the demand
point on &. There are twe cases to congider:
(1) da(x),x) + D(e) < ¢

i.e. 6{x) covers the demind point on e 23 wall., In thig case x dominates

y as a possibly loeation and we can eliminate y (i.2, drop the label se)}.

This will ¢onvert e into I-oaly labeled spoke.
fii} d{uix),x) + D{e) > r

It this case there iz o supply polnt, save for y, which can cover the

demand voint on e. Tous we must establish a facility on yv. The spoke e

is then transforwed into a -0 only labeled spoke,

If v # a(X) is a supply point on an S-only labled spoke thea the same

dominance arguments hold and spoke cam be eliminated,
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III. Proof of Propesition 5,

If x € ¥, thea x=0{x}. Thus, by proposition 3, we can eliminate all the
gupply labels from spokes of C{x}. Applyving proposition 4 leaves us with at most
two spokes one +D only and the other -D only. Call these spokes e and e respec~
tively. There are two cases to consider:

(i) D(z) + [D{e™)} < ¢
i.e. the faeiliry covers the demand poiat. Thus the letter can be
ignored,
(i) D(e) + |D(e™)] > ¢
In this case the demand point of ¢ nust be coversd from ancther £aeility which
is eleser to x than Df{e” )} . Thus, any (potential) denand point which 1s covered
by the facility on e  will be also covered by this other faecility. Coasequently,

the adge ¢ can be ignored.

IV. Progof of Proposition 6.

By propositions 3-~4 we are left with at most one each of 4D enly, -D only,

5-D, and 5 only labeled spokes. Furthermore, we have at most one 5 label.

(i) By the same arguments invelwved in the proof of proposition 3, we may
assume that we have at most pne out of the 4D only and the =D only labeled
spokes.

fii) Azsume 4 cluster which contaims bBorh an 5-D and a +D only labled
spokes, say e and ¢ 1espectively., Clearly we must have

D{e" ) + 8{e) = D(e ) + d{ax),x) <r
or else we have detected infeasibility. We can thus replace the pair

L

e, ¢ by a unique 5-D labled spoke e"" with 5{e") = 8{&), D{e" )= max

{p(e™), D(e)}.
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(111} adssume finally a eluster containing both an $-D and a ~D only izbeled
spokes, @ and ¢ . Obviously if
fDge™y| + Dle) < ¢
Then the demand label om ¢ can be dropped. In the opposite case the -D
label of ¢ c¢an be dropped by the sane reasoning used in the proof of propo-

sitien 5.

Remark
We note that if €{x) contains an 5 only and a D only labled spokes
say ¢ and &~, then
Sfe) + D{e™) » ¢
Otherwise, we can replace e and & by one spoke, e, with D(e™ "} = D(2),

S{e™™) = S(e).

V. The Expanszion Eoutine.

Consider flrst the case x #L. This implies that the stem (x,t) is either
neutral or is a demand tywe arc.

The casa 6f a meutral stem is the simplest to disposé of: (i) Assume
first that x ¢ A. Then each spoke of C(x) is enlartged b} a distanée d(x,%) and
the base is transfommed from » to t. Enlarging the spoke can be dene by
incrementing each of the labels on the spokes of C{x) by d{x,t). The only
exception is a -D label where the absolute wvalue, rathker than the label it-
self, is inereased. We note that the operaticn of expanzion may result in
labels which are too leng and thus violate some of the conditiens 1-5. These
viclations can be tz2ken care of as follows: If the new label of an S-only

labeled or ~D only labeled spoke is now larger than r, that spoke can be re-
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woved, If the new label of a +D anly labeled spoke is larsger than r the test
vislds infeapibility. XNow suppose the spoke is E-D labeled., I the new
lakel is greater than v, 2 facility is established at the supply point corres-
ponding to the S-label, the D labzl becomes negative with I{z) = =%{e), and
the § label is cmitred. If alse |D{e)| > r the entire spoke is removed.

(ii) Assume now that x ¢ & . If C(x) contains a D ouoly iabeled
spoke (positive or negative), we can assuze with no less of generalicy rthat
% § & and proceed 2s in (i). If C(x)} contains an 5-D labeled spoke 2, then
S(e) + D(e) < r (Property 3). In particular, S{e) < r, which implies thar x
iz covered by anv supply point ecovering the demand neint on e eorresponding
to the D label. Thus, again we zDay assune x ¢ 4 , and proceed as in {i).
Thus, suppose C{x) contains no D-labeled spokes, a2nd lat e be the (unigue)
spoke of C{x). e is 8 only labeled. We enlarge this spoke by a distance of
d{x,t} and transfora the base from x to t. Then we set S{e) + 5(e) + &(x,t),
D{e) = d{x,t) and continua as in (i) above.

Je now turn to examine i demand tvpe stem {x,;} (still assuming = ¢ L). This
case can be treated essentially like the previous one with some axtra zare
given to makiag sure that the demand on (x,t) iz fully covered.

We first aote that if any of the demand points within C{x) will be covered
9y a facilitv putside Ci{x) then this fapility will cover (x,t) in its entiretw
as wall, Thus, if there is a -+D only labeled spoke in C(x}, the denand on
(x,t) need not be further considered. Also, if C{x) contains an 5-0 labeled
spoke e with 3{2) + d(x,t} € r, then any facility assigned to cover the demand
point on e, whether thisz point is on e, or some other polat outside C{x).
will cover {x,t) as well. Finally we note that 1f there exists 3 -D labeled
gpoke, e, which covers t, {i.s. such that ID{e}| + d{x,t) £ r)), then the
demznd on (x,t) iz alrsady covered by this facility, e. In all those cases we

can proceed as if the stew (x,t) is completely neutral.
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Thus suppose that C{x) does not contain a +D only labeled spoke, or an

5-D labeled spoke covering neds t, or a -D only labeled spoke covering t.

=

et | Dle}|, {f C(x) contains a -D only labeled spoke e.
5, (=) ={
T atharvige
8(e) 1f C{x) contains an 3-D labeled spoks =
d,(x) = {

T octhervise

Wote that 52{x) iz well defined since C{x} has at zost one 5-D labeled spoke
{Property 5). Let v{x} = mia {Glix},ﬁz{x)}. Then, ¥(x) <r. We observe that
all demand peiats on {x,t} which are at a distance less than or equal to
t ~ 7{x} from x {(exeept for the point = itself in the case where C{x) has
ne ¥ labaled spoke), can be ignored since they are either covered by an exist-
ing facility or oy a faeility that will ewventually cover somg demand point
of C{x). Observing that under our agsuaptions v(x) + d{x,t) > r, the demand
points on the upper segments of (x,t} of length & = d(x,t) - (c=-{x)} > 0
will sither be covered by a2 facility not on C{x } or v a facility om an §
gailv labeled spoke of C{x}, if omne exists. 1If C{x} does not contain an S
only labeled spoke we append a +D only labeled spoke to C{t), whosge +D lakel
is set equal te S, (If 3 » r the test vields infeasibility.) Thus excest
for the adédition of the artificial 4D only labeled spoke to C{t}, we can treat
the are (x,t) as if it wera neutral,

¥ew suppose that (C(x) contaias an 5-only labeled spoke, e, IE
5{e) + di(x,r) < r, set D(e}) = o, and $(e) = S(e) + d{x,t). The other s3ckes
of Cfx) are trezted as if the are (x,t) were meutral. If S(e) + d(z,t) » r,
then we avpend a 4D only spoke to C{r), whose +D label is equal to d(x,t) +5(e) - .

Also e becomes 5-D labeled with D{e) = &, 5{e) + 5{e) + d{x,t}, 2nd the other
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spokes of C{x) are treated as if (x,t) were =meutral. This completess the
discussion for a cluster whose base x satisfies = ¢ T .

Jonsider now a cluster Cfx) such that x ¢ © . We have already seen that
such a cluster contains exactly one spoke and that this spoke 1s either <47 oaly
ar =D labeled. Let the spoke in gquestion be e = (x,v}.

(i) Suppose first that the stem (x,t) is neutral, If also d{x,t) > r,

delete the spoke if & 18 -D onlv labeled; set a facility at x, and
delete the spoke, if ¢ is 4D only labeled. Let d(x,t) 2r. I e
is +D tapeled set S{a) = d{x,t) and Bf{e) + Dfs) & di{x,t). If & is
~D labeled apd Die) + d{x,t) > 1, delate the D label and set

8{ej = d{x,t)., Finally if e is -D labeled and D{e) + d(x,t) < 1,
the svoke & is now replaced by two sookes of ((t). The firse, €5
iz a -9 only labeled spoke with D{el} = D{e) + d{x,t). The second

By, iz S only labelad with ${e) = d{x,t).

(ii) Jext we assume that the stew (x,t} is a demand only are. Without
less of gemerality we also assume dé{x,t} < 2z, since otherwise the
test vields Iinfessibility., Suppose that & i3 -0 onlvy labeled.

If &{x,t) + |D{e}| < r the demand points of {(x,t) are covered hy the
facility located on ¢ and we treat this case as if (x,y) wers
neutral. Hence suppose d{x,:) + |D(e)) > z. The spoke e of

C{x) now becomes a spoke of C(t} with 3{e) = d{x,t) aad

D(e) + d{x,t) + ;D{e}| ~ r.

{a) If D{e) » 2r the test yields infeasibilirv.

o}

(b) If r < D(e) £ 2r, set a faciliry at =, delete S{e}
and set Dfe} = d{x,t) - . {If rhis new label is

greater than r the test yields infeasibility. )
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(e} Let Die) é_r. If also S(&) < f, #éuieave the lapels
as are. Otherwise, (D(e) < ¢ but 5{e) » ), we
replace ¢ by two spokas of C(v). The first, €q

is D only labeled with D{el) = 5({2} = r. “he
second, 25, iz 5-0 labelad with 5(22] = 5(e) and
D{ez} = D{a},
¥ow let 2 be +0 only labeled, while still zssuming (x,t) to be
a demand ounly are. If d{x,t} > r, set a facility at x, and rTeplace
the spoke & by a +D only labeled spoke of C{t) with D{e) = di{x,c} - r.
{If D(e) > r the tast yields infeasibility). Let d(x,t) < r. Then
raplace & by an 3~D spokxe of C{t) with D{e) = D{e) + d(x,t} and S{e)=d{x,t).

{iii) Now we assume that the stem (x,t} is a supply oﬁly are. First let

e be a +D onlv labeled spoke. Then if Dfe) + d{=,t) £ r, replace
e by a +D only labeled spoke of C(t) with D(e) + D{e} + d{x,t). II
D{e} + d{x,t) » r, astablish a facility at a distance 7 from y and
replace # by ~D oanly labeled spoke of C(t) with D{e) + -{d{x,t) +D(e) - 7).
{Delete this new spoke if ID(e)| > r.)

Assume that ¢ is a -D only labeled spoke, If |D(e)| + dix,t) < ¢
Teplace e by & -D only labeled spoke of C(t) with D{2) += D(e) - d(x,t).

Otherwisa, delete the spoke e and arc (x,t) from the tree.

(iv} Finally we treast the case whera the stem (x,t} is both a supply and
de¢mand arc. First let e be -D only labeled. If ;D{e)} + d(x,t) <
raplace & by a ~D only labeled spoke of C{t) with D{a} + D(e} - dfx,t).
Otherwise, {{D{e}! + d{x,t) > r), replace e by a supply and demznd
spoke of C(t) whose length is d{x,t) + [D(e)! ~ r. This spoke can
be now labeled as was described abowe for the spokes of the original

[l ~1 8
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How let e be 4D only labeled, IE D{e} + dlx,t) r this spoke
becomes a +D only labeled spoke, with Dia) Df{e) + dix,t)., Other-
wise replace e by a supply and demand spoke of C{t) whose length is
dix,t) + P{e}. Apain we can label this spoke as was indicated pre-

viously.
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