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1) Introduction

My purpose is to show that underlying what seems to be Milton Friedman's
vision of reality, there is a rigorous model of competitive equilibrium wﬁich
can serve as an alternative to the Arrow-Debreu model. More precisely, a
careful analysis of Friedﬁan's paper 'The Optimum Quantity of Monmey" [28] leads
naturally to a model in which an eqﬁilibrium is a stationary sequence of temporary
equilibria and is also Pareto optimal. It is Pareto optimal even though there

is no forward trading and there are no markets for contingent claim contracts.

I do not know whether Friedman would agree with my analysis, nor do I
claim that he should agree. My aim is to synthesize his ideas and my owm.

In "The Optimum Quantity of Money,'" Friedman argues that an economy cannot
be economically efficient if any consumer economizes on cash balances. Consumers
should be constrained by their average flow of income, but not by immediate short-
ages of cash. Wasteful economizing of cash would £e avoided if money earned a
real rate of interest equal to consumers' rate of time preference. The quantity
of money which would be held by society in this situation is called the optimum
quantity of money.

In explaining his ideas, Friedman uses a simplevmodel, which he calls "a
hypothetical simple society" ([28], p. 2). This is a étationary society with a
constant population and with given tastes and resources. Consumers buy and sell
services. Money is the only durable objecf which may be exchanged. There is no
borrowing and lending. The nominal stock of-money is fixed. Consumers are
subject to random shocks. The shocks are such that "mean values do not (change)."
I interpret this last assumption as meauing that the shocks form a stationary

stochastic process.
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I define a mathematically precise version of Friedman's model. I assume
that the model is of an exchange economy, with no production, although Friedman
is not clear on this point. The most important specification I make is that

consumers live forever. Here, I follow Friedman. Friedman says that "it is

simplest to regard the memberé of this society as being immortal and unchangeable.™
However, one could also interpret his model as an intergenerational model similar to
Samuelson's consumption-loan model [61]. The random shocks in Friedman's model
are assumed to form a Markov chain. Corresponding to each of the finitely many
stétes of the chain, there is a Walrasian pure trade economy. Each consumer has
an endowment and a concave utility function which is a function of the state.
The endowmeﬁts are not storable, but must be traded and éonsumed in the period
in which they appear. Each consumer acts so as to maximize the expected value
of the discounted infinite sum of his utilities from consumption. Consumers
are assumed to have rational expectations in that they know the true probability dis-
tribution of future prices and of their own utility functions and endowments. Money has
price one. in every period. It is. not needed to pay for purchaseé énd does not !
enter anyoné's utility function. It is useful to consumers only because it
allows them to spend more than they earn sometimes. The only intertemporal
aspect of the model is that consumers must decide each period how much money
to save or dissave.

The assumption that consumers.live foreover involQes a delicate question
of interpretation. What is involved is the interpretation of the time scale and
of the nature of the random events. My model is deéigned to represent what
one would see approximately in a grander model if one looked at how consumers
reacted to everyday fluctuations over a short period of time. I think of random
events as small events, which tend to average out after a year or so. Periods
are days and a day two years hence is nearly infinitely far away. The infinite
horizon should not be taken litefally. It is simply a way to look at the con-

sumér's life as a process rather than in totality.



My point of view seems to be roughly consistent with Friedman's. He
specifically assumes that physical resources and '"the state of the arts" are
fixed. These assumptions would not be appropriate if he visualized a period of
time spanning five to ten years, say. However; my point of view is not entirely
consistent with what Friedman says. For he asserts that one ''reason for holding
money is as a reserve for future emergencies" ([28], p. 3). Emergencies are
hardly the everyday events I have in mind. However, I do not find it appropriate
to assume that ordinary consumers could ever hold sufficient assets to be able
to handle major emergencies, even if money did pay interest. Most people are
simply not that rich. The best they can do is to buy insurance against specific
catastrophies.

I also part company with Friedman in not making money necessary for trans-
actions. Friedman states that in his model the two motives for holding money
are self-insurance and as a medium of exchange in order to circumvent the double
coincidence of wants needed for barter. However, introducing transaction costs,
limited information about trading possibilities, and so on, would only complicate
my model. It would not change the conclusioms.

I now return to what I do. I define a monetary equilibrium to be an

infinite sequence of random temporary equiliﬁria such that the price of money
is always one and such that all prices are uniformly bounde& away‘from zero and
infinity. By assuming that prices are bounded, I exclude the inflatiomary
equilibria which apparently may occur in almost any model with an infinite
horizon and rational expectations. (See, for example, Gale [29], p. 24.)

The sequence of random price vectors in a monetary equilibrium do not
necessarily obey a stationary probability law. This fact is a weakness of the
concept of monetary equilibrium. For it makes little sense to assume rational

expectations if the probability distributions involved are not stationary.



(Observation does not reveal the distribution law of a non-stationary distri-
bution). I suspect that in a wide class of cases, there exist no stationary
monetary equilibria. I hope to turn to this question in a later paper.

I make two strong assumptions about endowments and utility functionms,
which guarantee that consumers need money in qrder to compensate for fluc-
tuations in their incomes and needs. I then prove that there exists a mone-
tary equilibrium provided that the interest earned on money is less than
every consumer's rate of time preference. 1 also prove that in this case, a
monetary equilibrium need not be Pareto optimal. More precisely, if each con-
sumer always consumes something, then the equilibrium is not Pareto optimal.
This is in accord with Friedman's argument. Every conéumer economizes on
money balances to some extent, since his rate of time preference exceeds the
rate of interest. Since consumers economize, the equilibrium cannot be Pareto
optimal.

A consumer would not economize on money.balances if the rate of interest
equaled his rate of time preference. He would accumulate money balances until
he was fully self-insured. For self-insurance would be costless, since the
trade-off between present and future expenditure would be the same when
measured in“terms of money or utility. So following Friedman, I assume that
all consumers have the same rate of time preference and that money earns in-
terest at this rate. I prove that in this case, there exists no monetary equi-
librium for almost every choice of consumers' random endowments. ("Almost every"
means "for all endowments except those belonging to a set of Lebesque measure
zero.") In proving this result, I make a special assumption which guarantees
that the underlying stochastic fluctuation is sufficiently random. The idea of

the proof is that a monetary equilibrium can exist only if the pattern of net
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expenditures of each consumer is periodic and not random. Periodicity can be
destroyed by small perturbations in endowments. (Such periodicity is illustra-
ted by the example given in section 13).

If the pattern of net expenditures of some consumer were not periodic, he
would need an infinite quantity of money in order to insure himself completely.
For he would have to protect himself against an arbitrarily long run of bad
luck. In short, I prove that almost surely, the optimum quantity of money is
infinite.

I express the infiniteness of the optimum quantity of money in another way.
I.show that for almost every chéice of consumers' endowments the following is
true. The real stock of money in a monetary equilibrium may be made arbitrarily
large by paying interest on money at a rate which is sufficiently close to the
common rate of time preference.

One might interpret these results as a criticism of Friedman's notion of an
optimﬁm quantity of money. T make his model precise and reduce the idea to
an absurdity. Howevér, this would not be a valid interpretation of my work.

It seems fair to say that Friedman's primary interest was in economic policy.

From a practical point of view, the idea that the optimum quantity of money is
infinite is perhaps just silly. This idea becomes important only when one

tries to use a precise model of general equilibrium in order to express Friedman's
ideas.

It might seem that the infiniteness of the optimum quantity of money is
simply an artifact of my model. It is, of course, a consequence of the
bizarre assumption that consumers never die. However, the theoretical problem

cannot be resolved by assuming that consumers do die. TFor if consumers do die,
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the optimum rate of interest may not lead to a Pareto optimal allocation. Imagine
for the moment, a version of my model with mortal consumers. Suppose that
each consumer lives many periods and is replaced at his death by a new con-
sumer. Suppose also that there is no inheritance and that each consumer
knows when he is going to die. Then, each consumer would spend all his money
during his last period of life. Also toward the end of his life, he would
tend to decumulate money. As a result, he might at some ﬁbint be caught
without enough cash. Such illiquidity would cause economic inefficiency.
Clearly, no matter what the rate of interest, there would exist a monetary
equilibrium and the real quantity of money would be finite. Hence given a
social welfare function, there would exist an optimum real rate of interest.
However, there is no reason to believe that this rate of interest would equal
the c ommon rate of time preference. Monetary equilibrium with an optimum
rate of interest would not necessarily give rise to a Pareto optimal allo-
cation. I do not pursue this line of thought in this paper. .

I return now to the idea that the optimum quantity'of monéy is infinite in
the model of this paper. I interpret the infiniteness of the optimum quantity
of money as expressing the idea that the optimum quantity of money in a more
realistic model would be so large that consumers. would rarely be constrained
in ‘their day to day lives by lack of cash. That is, they would be able to
insure themselves effectively against small fluctuatioms. |

In the theory of the consumer ., self-insurance is expressed as constancy of
thesmargin;l utility of momey. It stays constant over time, even as prices, and

current needs and income fluctuate. I call this consumption the permanent income

hypothesis. This is a notion I have explained before, using a model of a single
consumer [9]. Here, I express the idea in a general equilibrium framework, and

relate it to Friedman's ideas on the optimum quantity of money.



Ideally, I would like to have proved that if the rate of interest paid on
money were sufficiently close to the common rate of time preference, then in a

monetary equilibrium each consumer's marginal utility of money would be nearly

constant. Unfortunately, I could not »vove this, and it may not be true. If a
monetary equilibrium is not stationary, one can say little about marginal utilities
of money. As I-have said, it is not clear whether stationary monetary equilibria
exist.

The permanent income hypothesis leads naturally to a new version of equilibrium
theory. In this theory, each consumer's demand function is defined by the assump-
tion that the marginal utility of money is constant. He simply spends money on
each good until the utility gained from consuming the quantity bought with the
last dollar equals the fixed marginal utility of money. The consumer's budget
constraint is that his long-term average expenditure per period not exceed his
long-run average income per period. These long-~run averages are computed using
éhe true distribution of future prices, for the consumer is assumed to know this
distribution. The consumer adjusts his marginal utility of money so as to bring
his averﬁge expenditures into line with his average income.

Assume that each consumer's demand is defined in this fashion. I define a

stationary equilibrium to be a stationary distribution of prices such that

aggregate excess demand is always zero. I prove that in the model of this
paper, a stationary equilibrium exists and is Pareto optimal. (I have discussed
stationary equilibrium in three unpublished papers, [6,7,8].)

Stationary equilibrium is a way of describing the world when the quantity of
money is optimal. This.might seem confusing, for money plays no role in stationary
equilibrium., But since the optimum quantity of money is infinite, it camnot play
a rale. In fact, the absence of money is an advantage from my point of view, for

I seek a simple model of general equilibrium.
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The fact that money disappears from the model expresses Frank Hahn's
criticism of Friedman's theory of the optimum quantity of money [36]. Hahn
expresses his main criticism as follows. '"The necessary conditions for Pareto
efficiency in a world of uncertainty with inter-temporal choice will in general
be fulfilled by a market economy only if money plays no role." Hahn elaborates
this point in three other papers [37,38,39]. An allocation is Pareto optimal
only if it can be generated by equilibrium in Arrow-Debreu markets for forward
and contingent claims. But in such an equilibrium, money plays no role. Hence,
money is '"inessential" in any system which generates Pareto optimal allocations.

In order to reconcile Hahn's and Friedman's ideas, one may think of Friedman's
optimum quantity of money as optimal only in some asymptotic or approximate sense.
One can think of money as present but nearly irrelevant from the point of view of
equilibrium theory. Since cash rarely constrains consumers, it may be ignored.

This peint of view also helps to reconcile Hahn's views with those of Starrett
[70]. Starrett argued that Pareto inefficiency arises in Hahn's model of equilibrium
with transactions costs only because of the lack of an intertemporal unit of account.
Starrett is careful to point out that this unit of account would not be real money.
In his model, consumers have unlimited ability to borrow and lend the unit of
account. The only restriction 1is that debt be repaid in the last period of life.
The point of my work is that in a model much like Hahn's, real money resembles
Starrett's intertemporal unit of account asymptotically as the rate of interest
approaches the common rate of time preference.

The concept of stationary equilibrium involves many notions that are commonly
associated with modern, politically conserﬁative, economic thinking. ©Not only is

stationary equilibrium related to Friedman's optimum quantity of money and to his



permanent income hypothesis, but it is based on the idea of rational expectations.
I view stationary equilibrium as expressing rigorously the conservative vision of
Walrasian equilibrium.

The notion of stationary equilibrium can serve as an alternative to the
Arrow-Debreu model. By an alternative, I mean that each model is appropriate in
certain settings. (The Arrow-Debreu model is defined in Arrow (1] and in Chapter
7 of Debreu [21].) Stationary equilibrium has the obvious advantage that trading
takes place all the time, not exclusively in some ethereal initial period. How-
ever, in my opinion, stationar& equilibrium can be thought of as applying only in
short run contexts where random shocks are never severe. If the context is not
short run, then stationarity does not make sense. The world changes over long
periods of time. If random shocks are severe, then external insurance is peeded.
External insurance is formalized by contingent claims contracts.

The notion of stationary equilibrium strikes one as intriguing, in.spite of
its limitations. For instance, it provides a partial solution to a problem posed
by Arrow [2]. The problem is to explain why we do not in reality observe complete
markets for contingent claims. I intend to develop this point in a later paper.

Turning to another matter, I give a new solution in this paper to a problem
posed by Hahn [35]. The problem is how to prove the existence qf a competitive
equilibrium in which money has a positive price. My monetary equilibrium is suéh
an equilibrium. The device I use to give money value is the infinite horizon
(together with the need for insurance). This is, of course, an artificial
device, though perhaps more elegant than others that have appeared in the

literature.

I wish to emphasize that I do not view this existence result as in any way
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explaining why money exists, nor as providing a basis for monetary theory. The
existence result is simply a convenient way to describe precisely an aspect of
reality which interests me here. Much of what is monetary about money is
excluded from my model. )

The following three sections contain formal definitions, assumptions and
. statements of results. In section 5, I attempt to relate my work to the vast
literature on the optimal quantity of money and on the link between general
equilibrium and monetary theory. The body of the paper gives formal proofs.

The basic idea of the proof that the optimum quantity of money is infinite may

be found in Schechtman [66]. The last section contains an example.
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2) Definition, Notation, and the Model

Notation
RL denotes L-dimensional Euclidean space. Let x and y belong to RF.

"y é’Y" means "xk = yk’ er all k.” "y > Y" means !'x = v and x .7,' y.n nx oSS Y"

L L L
" " .
means X > yk’ for all k. R~ denotes {xeR l x = 0}. int R denotes

L
{ xeR | x>> 0.
Let f:U » (-», =) be twice differentiable, where U is an open subset of

L
R°. DPf(x) denotes the vector of first derivatives of f at x. D2f(x) denotes

the matrix of second order partial derivatives at x.

Prob [A | B] denotes the conditional probability of A given B, where A
and B are formulas describing events, Prob [A] denotes the probability of A.
E(x l B) denotes the expectétion of the random variable x given the eveﬁt B.

Ex denotes the expectation of the random variable x.

The Underlying Stochastic Process

-}
Exogenous fluctuations are governed by a stochastic process {sn}n I

The random variable s, take their values in a set A. A is called the set
of states of the environment. I assume that {sn} is a Markov chain. That 1is,
{sn} is a Markov process with stationary probabilities and A is a finite set.

If a and b belong to A, the Pa

b denotes the transition probability,

= = a7 : . (k) _ - =
Prob[sn+1 b[sn al], for any n. Similarly, Pab = Prob[s = blsn = a]j,

otk
for k > 1. I also assume that {sn} is ergodic with no transient states.

(n)

That is, there is a positive integer n such that Pab

> 0, for all a and b.

Since {sn} is ergodic, there exists a unique stationary probability

T satisfies T = agA ﬂaPab, for all b ¢ A. Since

{s } has no transient states, L > 0 for all a ¢ A.
n

distribution on A, (wa)asA'
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I will always assume that s1 is distributed according to 7. That is,
the probability distribution of (51’52""'°) is determined by the unique
stationary distribution for the process {s }.

n

A history for the process {sn} from time n to time n + m is a finite

sequence an, an+l""’ a such that ak e A, for all k, and Prob[sn = an,...,

n+m

s = ] > 0. Histories will be denoted by a seees a m A history following

a
n+m n+m

i ini ce ' a ceey @ forms a his-
a is a finite sequence a1’ > & 4m such that a s 8 490 > & 40
tory.

The Economy

The economy is a pure trade economy with no production. Initial endowments
and utility functions fluctuate in response to fluctuations in s -

There are L commodities and I consumers, where L and I are positive

L
+ 2

integers. The endowment of consumer 'i is determined by wi:A -+ R
for i=1, ..., I . wi(sn) is the endowment vector of the
consumer in period n. The utility function of consumer i is ui:Ri_xA,+ (o, ),
His utility function at time n is ui(.,sn):Ri + (-»,»). I assume that for all i,
ui(.,a) is everywhere twice differentiable. Also, Dui(x;a) >> 0 and

D2Ui(x,a) is negative definite, for all x. 1In other words, ui(-,a) is differen-

tiably strictly monotone and strictly concave.

A consumption plan for a consumer is of the form x = (xn(ai...,an)),

where n = 1,2,... and ayseees an varies over . histories and where each

L . .
xn(al,...,an) belongs to R+ .xn(s ,...,sn) is the consumer's consumption bundle

1
at time n.

Consumer i discounts utility at the rate Si, where 0 < Gi 2 1.

-1 . , .
éi -1 1is his rate of time preference.

The expected value of the utility to consumer i of a consumption plan x

. _ oo -1
is Ui(x) = E[L Si

I ui(xn(sl,...,sn),sn)], where E denotes the expected value



operator. Ui(x) is well-defined as long as Gi < 1 and the xn(sl,...,sn) are

uniformly bounded.

An allocation is a set of consumption plans (x) ='(xl,...,xI), where
- i

xi is the consumption plan of consumer i. The allocation is said to be feasible
I

if igl(xin(al,...,an) - wi(a;)) = 0, for all n and all histories a a .

l,..., a

If Gi < 1, for all i, then a feasible allocation (xi) is said to be Pareto op-
timal if there exists no other feasible allocation (Ei) such that Ui(§i) ;:Ui(xi),
for all i and Ui(Ei) > Ui(xiL for some i. This definition makes no sense if
Gi = 1, for some i. Suppose that Gi = 1, for all i. Then, the feasible alloca-

tion (xi) is said to be Pareto optimal if there exists no feasible allocation

(Ei) such that

N N
2.1) E[nflui(xin(sl,...,sn),sn)] = E[nflui(xin(sl’""Sn)sn)]’ for all i

and N, with inequality for some i and N,

Monetary Equilibrium

A price system is of the form p = (pn(al,...,an)), where the pn(al,...,an)
L . . .
oo h rice veetor at time n.
belong to R_. pn(al, ,an) is the p |
r>0 denotéé the nominal interest rate paid on money. Interest payments
are financed by a lump-sum tax. Let Ti be the tax payments paid by consumer

i each period. M, (p,x; al,...,an) denotes the money holdings of consumer 1
in

at the end of period n, given the price system p, his consumption program X and

the history ayseees 3 Min(p,x; ayseens an) is defined inductively as follows.

2.2) MiO(P’X) = MiO is given and Min(p,x;al,...,an) = (1 + r)Mi,n-fP’X;
al"""an-l) + pn(ai,...,an)-(wi(an) - xin(alyo--:an)) -
Ty for all n = 1 and for all histories al,...,an.

T will assume that 5 M.. = 1. In order to assure that the nominal supply of
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I
money never changes, I assume that z T, =T
i=1
The budget set of consumer i, given a price system p, is Bi(p) = {x\x
is a consumption program such that Min(p,x; al*"”an) = 0, for all n and for
all histories al,...,an}.
In order to guarantee that Bi(p) be non-empty, I assume that ;=T MiO’

for all i. If T, exceeded rM, the consumer might have no way to avoid

i0?
being driven to bankruptcy by tax payments.

1f Gi < 1, then consumer i's maximization problem is the following.

-]
2.3) max {E [ } 6n—lu (x_(s,,...55 ),s )| xeB.(P)}.
=1 + im 1’ >n’’"n i

Ei(p) denotes the solution to this problem,if it exists. Ei(p) does indeed
exist, provided that the components of p are uniformly bounded away from
zero and infinity. It is not necessary to prove this fact for the purposes

of this paper. The strict concavity of the functions ui(°, a) guaranteés

that the solution of (2.3) is unique.

If éi = 1, then (2.3) makes no sense. However, one may still obtain
a plausible definition of.gi(p) , though gi(p) is no longer necessarily

unique. I will return to this matter in a subsection below.

A monetary equilibrium is a vector (p,(xi)), where P is a price system,

(x.) is an allocation and both satisfy the following conditions.
1

2.4) (xi) is a feasible allocation.
2.5) The components of pn(al,...,an) are uniformly bounded away from zero
and infinity as n and al,...,an vary.

2.6) xiagi(p), for all i.
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Remark: Given a monetary equilibrium (p,(xi)) with positive interest
rate, r, it is possible to define an equivalent deflationmary equilibrium

(5,(xi)) with no interest payments. One simply deflates the taxes and

-n+1

prices at rate r. p is defined by En(al,...,an) = (1+r) pn(al""’an)'

-n+1
T

The tax payments of consumer i in period n are Ein = (1+r) i His

holdings of money at the beginning of period n turn out to be ﬁin(ﬁ,xi; S,
-n+
...,sn) = (1+r) lMin(p,xi;sl,...,sn).

Marginal Utilities of Money, When éi.< 1

There are marginal utilities of money associated with any monetary

equilibrium (p,(xi)), provided that r = &Tl - 1. I will always assume

i
that r = 5;1 - 1. The marginal utilities of money are simply the multipliers
associated with the consumers' budget constraints. The marginal utility

of money of consumer i 1is an infinite vector Ki = (Kin(al,...,an)), where
each Kin(al,...,an) is a positive number. The marginal utility of money
must be distinguished from the marginal utility of expenditure. The vector
of marginal utilities of expenditure associated with x; and p 1is always

denoted by @, = (ain (al,...,an)), where again each ain(al,...,an) is a

positive number. ain(al"*"an) is defined as follows.

2.7) ain(al,...,an) is the smallest number t such that

aui(xin(al,...,an),an) .. . 25
sz = b Ppgtdrrce0dy) o

for all k , with equality if xink(al""’an) >0

Bu,(x,a)
In this formula, ——%;———— denotes the partial derivative of ui(x,a) with
: k

th
respect to the k - component of x .



)‘i and a, satisfy the following conditions. These apply for all i, n

and al,...,an.
2.8) Kin(al,...,an) = max [din(al"'"an)’5EFL+r)E[xi,n+1(a1’""an’
sn+1)l Sn an)]
2.9) kin(al,...,an) >-51(14-r)$[xi)n+1(a1,...,an,sn+1)]sn = an]
only if Mﬁn(p’xi; al""’an) =0 .
2.10) Kiu(al,...,an) >-ain(a1,...,an) only if xin(al""’an) =0,

The marginal utilities of money are uniformly bounded above and away

from zero. Before stating this fact, I define some key bounds.

1

Let W € Ri be such that I wi(a) << w, for all acA.
i=1

There exist g and q such that 0 << q << Dui(x,a)A<< q,

2.11)

for all a“e A.and for all x ¢ Ri such that x §=5.

The existence of g and“'E follows from the strict monotonicity.of the
functions ui(-,a) and from the continuity of their derivatives.

- L
By (2.5), there exist vectors p and p in R_ such that

0< <p= pn(al,...,an) s ; ; for all n and a a The bounds

1)..

on the marginal utilities of money are as follows.

. =1 < - -1 - ]
2.12) min P Y = Kin(al,...,an) = mix Py 9 for all i, n and

a ,a

1708, -
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I now sketch the proof that if bi < 1 , then marginal utilities of

money exist and satisfy (2.8)-(2.10) and (2.12). I here use the methods

of Schechtman [66] or of my own paper {9]. Let Kg = (x?n(al,...,an)) be

the vector of marginal utilities of money associated with the solution of

the problem

N
max {E[niléz-lui(xn(sl,...,sn),sn)] | x € B, (@) }

This problem clearly has a solution, and the K? satisfy (2.8) - (2.10)

and (2.12) . It is not hard to show that the numbers Kfn(al,...,an)

are non-decreasing in N . (See Schechtman [66], p. 224, theorem 1.7, or

(91, p. 270, lemma 5.1.) The K?n(al""’an) are uniformly bounded

above. This follows from the following facts: r = 6?1

P 1; prices are

uniformly bounded away from zero and bounded above (2.5); and utility
functions are concave and have continuous finite derivatives. Kin(al,...,an)
is simply 1lim Kfn(al,...,an) . Pagsage to the limit in (2.8) - (2.10) and

N e
(2.12) proves that Ki satisfies the same conditions.

Demand When éi =1

I now turn to the question of the definition of demand when 51 =1
(and r =0). A program x belongs to §i(p) if x € Bi(p) and if there
exists a vector of marginal utilities of money, %i =(Kin(a1,...,an», such
that x,hi and p satisfy (2.8)-(2.10), with 5i(1-+r) =1, and also

satisfy (2.13) arni(2,14) below.
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2.13) There exists M> 0 such that Min(p,x;al,...,an).é M , for all
n and al,...,an.

2.14) There exist positive numbers A and N such that AS )xin(al, . .,anéi
for all n and @yseeesd .

Programs in gi(p) are optimal in a long-run average sense. In fact,

if x = (xn(al,...,an)) € §i(p), then x solves the problem

N
2.15) max {lim inf N_ E[ z u, (x (s ,...,sn),s )] ] x, € Bi(p) }
N-o= n=1 n 1
-1 N
First of all, observe that max{llmlan E[ Z Uy (x (s s5eee38 ),8 )] |
n’’°n
N2 e n=1 *
-1
Xy € Bi(p)} = llzb?*l:f N "max{E( Zlu (x (s ...,sn),sn)] l X € Bi(p)} . It

follows that it is sufficient to prove that there is a constant B such that

N
2.16)  max{E[ 2 u;(xy(sg,eeer8.)58)) | x; € 8;( }

N
s E[ 2 ui(xn(sl,...,sn),sn)] + 3B, for all N .
n=1

I now prove (2.16). Let )\.i be the vector of marginal utilities of
money associated with x . Clearly, x solves the problem.

. max{E[ Z u, (x (sl,.. .,8 ) s )+?\ (S «es8 )MiN(P’X Sl,---:SN)”X € Bi(P)}
—1

For this is a finite dimensional maximization problem with a concave objective
function. Hence,it is sufficient to satisfy the first order conditions. But these

conditions are given by (2.8)-(2.10).



By (2.13) and (2.14), E[KiN(sl,...,sN)MiN(p,x;sl,...,sN)] =AM .1t
follows that (2.16) is true with B = XM . This completes the proof that

x solves (2.15).

Stationary Equilibrium

Stationary equilibrium is the concept of equilibrium appropriate when
the rate of interest equals the common rate of time preference. It is

defined as follows.

. . L .
A stationary consumption plan is a function x:A > R+. A stationary

allocation is of the form (xi) = (xl,...,xI), where X is a stationary con-

sumption plan. The bundle allocated to consumer i in period n is xi(sn).
1
The allocation (xi) is feasible if I (xi(a) - mi(a)) = 0, for all acA.
i=1

To every stationary consumption plan x, there corresponds the infinite
~  m -
consumption Program x = x .o ined ceesd )= . A
mp prog n(al, ,an), defined by xn(al, ,an) x(an)

feasible stationary allocation (xi) is said to be Pareto optimal if the

corresponding allocation (ii) is Pareto optimal.

Remark One can also conceive of stationary consumption plans and prices

which would be functions of the infinite history (..., ,an), and not just

a
n-1
of the current state a,- A stationafy monetary equilibrium, if it existed,

would be stationary in this sense. For the history would determine the current

distribution of money balances.

A stationary price system with deflation rate r is of the form (p,r),
where r > 0 is the deflation rate and p:A + Ri is such that p(a) > 0, for
all a. The interpretation is that the price vector at time n is (l+r)—n+lp(sn).

L .
Given p: A -~ R+, the stationary budget set of consumer i is Bi(p)

= {x:A > Ri | z. L p(a) - (x(a) - w(a)) = 0}, where m is the statiomery
acA

distribution ca A.



The stationary expected utility of consumer i 1is Ui(x) = 2 nau(x(a),a),
acA

where x 1is a stationary consumption program.

The stationary demand for consumer i , given a stationary price system

(p,r), is the unique stationary consumption plan Ei(p) which solves the problem

max {U, (x)|x € B,(p)}.

If the deflation rate equals the consumer's rate of time preference,

then gi(p) describes an infinite consumption program which is optimal given

a long-run budget constraint. To be precise, suppose that the deflation r

is positive. Then, the infinite consumption program gi(p) corresponding to

§i(p) solves the problem,

*® -
max {E[ £ (1+1) n+1u.(x (sl,...,s ),s )], x is an infinite consumption
n=1 i“n n’"’"n
2 -n+l
program which satisfies E[ Z (1+r) p(sn)-(xn(sl,...,sn)
n=1

-0 (s N]1=s0} .

Now suppése that there is no deflation. Then,"gi(p) solves the problem

N
max{lim inf N-IE i infini i
{ N_’:n [nilgi(gn(sl,...,sn),sn;l X is an infinite consumptlgn
i p(sn)-(xn(sl,...,sn)

program which satisfies lim inf N-lE[
1

Noae n

-0 (s )] =07,
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I may now define stationary equilibrium. A stationary equilibrium

with deflation rate r 1is a vector (p,r,(xi)), where (p,r) is a stationary
price system with deflation rate r , (xi) is a feasible stationary allo-
cation and X, = §i(p), for all i . The rate of deflation r plays no role:
in the conditions defining a stationary equilibrium. It becomes important
only when one interprets the equilibrium.

One may think of consumers in a stationary equilibrium as keeping the
marginal utility of money <constant. The marginal utility of money of con-
sumer i is the Lagrange multiplier associated with the constraint

'z nap(a)-x(a) = 2 ﬁap(a)-w(a). It is, of course, simply a positive

acA agA
number, Xi. Xi together with p determines consumer 1i's demand. That
is, if gi(p) = (xi(a))aeA , then for each a, xi(a) is determined by the

following set of inequalities.

du, (x, (a) ,a)

sz

IA

Kipk(a) , for all k , with equality if xik(a) > 0.
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3) Assumptions

Here, I collect the assumptions I use. Many have already been

mentioned in the previous section.
3.1) {sn} is a stationary Markov chain.
The realization of the random variables s belong to the finite set A.

3.2) {sn} is ergodic and has no transient states.

™= (ﬁa)asA

for all a € A.

denotes the unique stationary distribution of {sn}- T, 0,

mi : A~ Ri describes the initial endowment of consumer i. I

make use of the following conditions on the Wy

3.3) For every i, mi(a) # 0, for some a e A.

I
3.4) For every a € A, z mi(a) > I(1,...,1).
i=1

The validity of this assumption depends on the choice of the units

of commodities. 1In more general terms, I have simply assumed that

I
) w,(a) >> 0, for all a.
. 1
i=1

L

u,: R+ x A+ (==,») 1is the utility function of consumer i. I make

the following regularity assumptions about the u,.

3.5) For all i and a, ui(-,a) is everywhere twice continuously
differentiable.
. L 2 .
3.6) For every i and a and for every x ¢ R+, D ui(x,a) is nega-

tive definite and Dui(x,a) >> 0,
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The final assumption has to do with initial money balances and the

tax system.

1
3.7) X M, =1, and for all i, M, > 0 and <, =r M, ,
4o 1o io i io

where r is the interest rate on money.

The next two assumptions guarantee that a monetary equilibrium exists. They

are very strong. The Yy appearing in these assumptions is some small

positive constant.
3.8) For every a € A, Prob [wik(sz) <y, for k= l,...,LIsl = al] > 0,

where 0 < vy < 1.

3.9) There exists Q ¢ RL such that Q >> 0 and the following are

true. For all i and a, Dui(x,a) >> Q, whenever x is such’

. 1 k
that X 2Y 9y Z

aj’ for all k. Also, for every k, a and i,
§ .

. 1
Bui(x,a)

e

<< Qk ,if x ¢ Ri is such that x < (1,...,1) and X, = 1.

The validity of this assumption depends, of course, on the choice of scale
for the utility functions.
The next assumption expresses the idea that the Markov process

{sn} is sufficiently random.

3.10) There exists a state a € A for which there are at least three
distinct histories which begin and end with a. Each of these
histories contains a state which is distinct from a and does

not appear in either of the other two histories.
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4) Theorems
In all the following theorems, I assume that assumptions (3.1)

- (3.7) apply. Assumptions (3.8) and (3.9) are used only in theorems

(4.1) and (4.4). Assumption (3.10) is used only in theorems (4.3) and

(4.4).

4.1) Theorem Assume that assumptions (3.8) and (3.9) apply. If

Gi < (l+r)-l, for all i, then there exists a monetary equilibrium

provided that m%n Gi

4.2) Theorem Suppose that Gi < (l+r)_l, for all i. Let (p,(xi))

is sufficiently large.

be a monetary equilibrium such that xin(al,...,an) # 0, for all i, n
and ayseeesd . Then, the allocation (xi) is not Pareto optimal.
In the following theorem, Q denotes the space {(wl,...,wI)Iwi:
A » int Ri, for all i}. If w = (wi) e Q, then A& (w) denotes the economy
..,u. and with initial endowment functions

1°° I
Wyseeestdre Notice that & may be viewed as a subset of RLIAI, where

with utility functions u

o] is the number of points in A. The statement "for almost every w & Q"
means "for all w except for w belonging to a subset of Q of Lebesque
measure zero.'"

Recall that Pa denotes the transition probability from a to b

b
in A.

4.3) Theorem Assume that I > 2 and that assumption (3.10) applies.
If 6i = (l+r)-l, for all i, then &4 (w) has no monetary equilibrium,
for almost every w £ Q.

4.4) Theorem  Assume that I > 2 and that assumptions (3.8) - (3.10)

apply. Assume also that Gi = (l+r)—l, for all i, where r > O.

Then for almost every @ e s, the following is true. Let Iy be such



A90

that 0 <r <r, where k=1,2,.... For each k, let (pk,(xi)) be

a monetary equilibrium for g(w) with interest rate - If klimm r,

=r, then 1lim pk(a sees3a ) = 0, uniformly with respect to n and

CIEREETL I
4,5) Theorem If S, =968 % 1, for all i, then there exists a station-~

i
ary equilibrium with deflation rate 5—1-1. Such an equilibrium is Pareto
optimal.
An example given in section 13 illustrates the need for the special

assumption in theorem (4.2) and for assumption (3.10) in theorems (4.3)

and (4.4).



5. Review of the Literature

I review briefly the literature on the optimal quantity of money and on
the relation of monetary theory to equilibrium theory. ©Not all of this
literature is directly related to my own work. However, my own work falls in
this general area. Since the literature is large and confusingly diverse, it
seems worthwhile to review it. I first deal with the literature on the optimum
quantity of money.

It seems to be impossible to attribute the idea of the optimum quantity of
money to any one author. It must have been in the air for some time. In a
paper of 1953 [27], Friedman discusses the fact th;t inflation leads consumers
to economize unnecessarily on cash balances. This idea was formalized by Bailey
[4] in a paper appearing in 1956. The idea was empirically tested by Cagan [14]
in a paper of the same year. 1In a paper of 1963 ([62], p. 535), Samuelson mentions
the idea that the real rate of interest on money should be positive, at least in
idealized models. In a paper of 1963 ([43], p. 113), Harry Johnson remarked that
money should earn the same real rate of interest as other assets. Samuelson
developed his ideas somewhat in two papers of 1968 [63] and 1969 [g4]. Tobin
([76 }, p. 846 discussed the same idea in a paper published in 1968. Both Samuelson
and Tobin argugd that from the point of view of efficiency, economic agents should
be saturated with money balances. Hence, money should bear a real rate of return
high enough to remove all.incentive to economize on it. This idea was discussed
at length by Milton Friedman in "The Optimum Quantity of Money" [28], which
appeared in 1969. |

There was a long debate about whether money should bear interest in reality.

Friedman [28] advanced this idea. Harry Johnson [45], Tsiang [77], Clower
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[18,19] and Phelps [58, pp. 201-220)} and [59)] made important contributions to the
debate. Johnson was mainly concerned about substitution between money and
interest bearing assets. Since money does not beaf interest, consumers
economize on it in order to buy other assets. Tsiang expresses the view

that if money bore interest at a rate equal to the general rate of return on
capital, then it would tend to displace all other aésets. Clower's main point
is that one cannot make practical recommendations about monetary policy in
terms of models which do not capture those aspects of reality which make
money useful.  Phelps related the question of the optimal level of inflation
(or deflation) to the theory of optimal taxation. He pointed out that infla-
tion is a form of tax, so that there is a trade-off between dead weight losses
caused by inflation and those caused by other taxes.

The issues raised by Johnson and Tsiang cannot be discussed in terms of
my model, since money is the only asset in my model. Nor can I discuss the
theory of optimal taxation, for I permit lump-sum taxes. My model is, of
course, open to Clower's criticism. There are no transactions cost, no
information problems and so on which could explain why money exists., But I
do not make practical recommendations either.

I note in passing that in Inflation Policy and Uneﬁployment Theory, Phelps

mentions the idea that consumers would have an insatiable demand for liquidity
if the real rate of interest equaled the rate of time preference (see [58], pp.
181-2). This is, of course, one of the main ideas of this paper.

The theory of the optimal quantity of money is related to the literature
on the optimal rate of growth of the money supply from the point of view of
growth theory. This is a vast literature. See, for example, Johnson [44],

Levhari and Patinkin [48], Marty [50], Sidrauski [68] and Tobin [74,75]. This
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literature is surveyed in Stein [73]. One of the main preoccupations of the
literature is the effect of the real rate of interest on saving and investment.
Most of the discussion is in terms of Keynesian and Solow gfowth models.

A revival of this literature was initiated recently by Brock [11, 12].
He formulated the problem in terms of a mathematically rigorous, infinite hori-
zon growth model. All consumers are identical and live forever. Utility is
additively separable with respect to time. There is no uncertainty. Consumers
have perfect foresight and maximize the discounted infinite sum of present and
future utilities. The utility of each period depends on consumption, leisure
and real balances. Brock's model of a single consumer is similar to my ownm,
except that Brock puts money directly in the utility function. (In my model,
uncertainty and the heterogeneity of consumers are what give money value.)
The questions Brock asks are different from my own and also from those posed
in the earlier literature on growth and money. His primary concern is with
uniqueness of the perfect foreéight equilibrium. He also studies the response
of the model to anticipated future changes in the nominal supply of money.
He discusses the optimal quantity of money and proves that it is infinite if
the marginal utility of money is not eventually zero. (The marginal utility
of money in Brock's money is measured directly by the utili;y function.)
Calvo [15] studies the uniquéness of equilibrium in models similar to that

of Brock. Calvo allows money to appear in the production function.

I now turn to the enormous literature on models which describe in detail how
and why people use money and why it is socially useful to do so.

The early papers of Baumol [5] and Tobin [74] use an inventory theoretic
model to explain why people hold money rather than interest bearing assets.
Money is the sole means of payment and-each purchase or sale of an interest

bearing asset involves a fixed transaction cost.



Clower and Howitt [20] analyzé an inventory théoretic model of consumer
behavior in a model with both transaction costs and inventories of goods. They
find that because of delicate questions of timing, average cash balances can
depend in a discontinuous way on the parameters of the consumer's problem.

Feige and Parkin [24], Niehans [53], and'Perlman [56] also introduce

commodity inventories into the story told by Baumol and Tobin. They discuss

the optimal quantity of money in a semi-formal general equilibrium framework.
That is, they give general equilibrium interpretations of the first order
conditions of consumer equilibrium, but they do not prove that equilibria
exist. The work of Feige and Parkin and of Perlman has led to some controversy.
See Feige, Parkin, Avery and Stones [25], Perlman [57] and Russel [60].

The model of consumer behavior most closely related to my own is that of
Foley and Hellwig (26]. In their model, as in mine, money is needed only for
éelf-insurance. Consumers live forever and maximize the expected value of a
discounted infinite stream of utilities. . Utility in each period depends on
consumption and leisure. Consumers fluctuate between being employed and involuntarily
unemployed. They use money to compensate for the resulting fluctuations in income.
The model is of partial equilibrium in that it is a model of a single consumer.
Foley%and Hellwig demonstrate-ﬁhat the probability distribution of money holdings con-
verges to a long run statiomary distribution. N

There is a large literature which analyzes in detail the role of money
in transactions. Authors in this area try to show why exchange involving |
money is simpler and cheaper than barter. They also loék for the essential
difference between money and other goods. Works in this area include Brunner
and Meltzer [13], Niehans [51,52], Ostroy [54], Ostroy and Starr [55], Saving

[65] and Starr [70].



The papers just referred to explain why individuals would find money

‘convenient if others were willing to accept it. They also explain why money

is socially useful. But they do'not describe a rigorous model in which it would
be completely rational for every individual to accept and use money. The

problem is that if one thinks in terms of a finite horizon model, money would

have no value in the last period. By backward induction, it would have no

value in any period. In order to bypass this problem, one must think of
equilibrium as an ongoing process, as I do in this paper. Shubik does so as
well in his game-theoretic approach to monetary theory. (See, for instance,
[Gﬁ.) Jones [46] treates equilibrium as an ongoing process in a model which
includes costs of finding a trading partner. His equilibria may be interpreted
as Nash equilibria. He also describes a process which leads in an evolutiomary
way to the adoption of a medium of exchange.

Samuelson's consumption-loan model [61] is another example of a model of
an ongoing process in which money has value. This model has been much studied.:
See, for instance, Gale [29], Grandmont and Laroque [32], Cass, Okuno and
Zilcha [16] and Wallace [78].

There have been many rigorous, finite horizon general equilibrium models
in which money -is given value by imposiné.somewhat artificial terminal conditioms.
These works include Hahn [39], Heller [40], Heller and Starr [41], Kurz [47],
Sontheimer [69] and Starr [71]. All of these papers, except that of Starr,
inglude transaction costs. Kurz's model allows barter and monetary trade to
occur simultaneously with distinct transaction costs.

Another approach to giving money value is simply to assume that consumers
believe it will have value in the terminal period. That is, the value of money
is a consequence of consumer expectations. This is the approach taken by

Grandmont [30]. Drandrakis [23] seems to have had the same approach in mind
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in his early work on temporary equilibrium theory. Grandmont proves the existence
of a temporary equilibrium with a positive price for money in a two period model
in which consumers believe that the real value of money in the second period is

bounded away from zero. These beliefs are not necessarily rational. In my

model, money also has value only because consumers believe it will be valuable

in the future. Because I use an infinite horizon, I am able to prove that
these beliefs are rétional.

Yet another way to obtain equilibrium with a positive price for money is
to use the Clower constraint in an infinite horizon model with rational expecta-
tions. The Clower constraint is the requirement that goods can be exchanged only
for money. It was proposed by Clower in 1967 [17]. The Clower constraint sérves
to make money useful. The infinite horizon does away with the problem of the
value of money in the terminal period. Grandmont and Younes [33,34], Hool [42],
Lucas [49] and Wilson [79] all take this approach. Grandmont and Younes prove
. the existence of a stationary, monetary equilibrium and analyze the optimal
quantity of money. Hool solves a difficulty met by Grandmont and Younes.

Wilson analyzes in detail the nature of the equilibria in his model.

The Clower constraint has a curious interpretation. In monetary models
which specify transaction costs, it is usually autdﬁatic that goods can be
exchanged only for mbney (or for other goods). This is so in the papers of
Hahn [39], Heller [40], Heller and Starr [41] and Kurz [47]. However in models
which do not specify transactions, the Clower constraint must be interpreted as
a payments lag. It takes one period for money to pass from buyer to seller.

My work is closely related to the literature on temporary equilibrium.

Both monetary and stationary equilibrium, as I define them, are forms of
temporary equilibrium. Unlike many models of temporary equilibrium, my models
have rational expectations. The literature on temporary equilibrium has

been surveyed by Grandmont [31].
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6) Letmas

The lemmas of this section exﬁress relations between the marginal
utility of expenditure and equilibrium prices. I assume throughout that
assumptions (3.1) - (3.10) apply.

Let & (a), for a € A, be the pure trade economy corresponding to state

a € A. That is, & (a) has I -‘consumers and L commodities. The utility func-

tion of the ith consumer is ui(-, a): RE +> (-o,m), His initial endowment is
L
wi(a) e R/ .

An equilibrium with transfer payments for & (a)is of the form (Q:(Yi)%

where q ¢ Ri is the price vector and (yi) is a feasible allocation for & (a).
These must satisfy q > 0 and ui(yi,a) = max{ui(y,a)ly € Ri and q°*y é=Q‘Yi},
for all i. The transfer payment of consumer i is q - (mi(a) - yi). Clearly,
if every consumer's transfer payment is zero, then the equilibrium is in fact
a Walrasian equilibrium in the usual sense.

The marginal utility of expenditufe of consumer i associated with_(q,(yi))
is defined to be the Lagrange multiplier, ai; associated with the problem

max {ui(y,a)l vy € Ri and q-y §=q°yi}. That is

aui (yi) a)

%y

6.1) ey is the smallest number t such that Lt 9y s

for all k with equality if Yix > 0.

Throughout this section, q and a are as in (2.11).

-1 - -1 -
6.2) Lemma (m?x ] ) 9 << g << (m?x ai )q, whensver (q,(yi)) is on

equilibrium with transfer payments for & (a), for some acA, and where

(ai) is the vector of marginal utilities of expenditure associated with

(q, (yi)) .
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Proof If (ql(yi)) is an equilibrium with transfer payments-fdr
é(a), then 0 <Y < w, so that g << Du, (y,,a) << q, for all i.
g -1
By the definiti f .q 2> Du, (y, >
y the definition o aj, an > uJ(yJ,a), so that q >> (m?x @ 7)g.

This proves the first inequality.

1 I
i£1 ¥; = i£1 wi(a) >> 0, so that for each k =1,...,L, Vit > 0,
for some i. (Here I have used assumption 3.4.) For this i, Bui(y,,a) = 2.9
i i
9x
-1 - k

so that 9 < a, This proves the second inequality.

q.k'
Q.E.D.

6.3) Lemma - Let (q, (yi)) be an equilibrium with transfer payments for

& (a), for some a, and let (ai) be the vector of associated marginal utilities

of expenditure. -Then, "max a; < b min a,, where b = max g1 7.

i i k k k

Proof. It follows from the definition of ai that for each i,

aui(yi,a) _ Sui(yi,a)
—_— = aiqk, for some k. But 9 > —————— , Also, by the

Bxk Sxk

-1qk' Putting these inequalities together,

-1~ .
. It follows that a, < 9 q, min aj

previous lemma,

I obtain g, > a_(min a,) "q
k 1 J J <k h|

< b(min a.).
= 3 %

Q.E.D.
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An equilibrium for & (a) with transfer payments and marginal utilities

of money is defined to be (q;(yi), (Ai)), where (q,(yi)) is an equilibrium
with transfer payments for & (a) and where Ai ;:ai, for all i, with equality
if y. > 0. Here (ai) is the vector of marginal utilities of expenditure

associated with (q, (yi))~

6.4) Lemma Let-(q,(yi), (Ai)) be an equilibrium for &(a) with transfer
payments and marginal utilities of money, where a ¢ A.. Then,

(max A;l) g < <qg < < b(max All) q, where b is as in lemma 6.3.
i - i

Proof The first inequality follows trivially from lemma 6.1, since

A, 2a,., for all i.
Si="1

In order to prove thé second inequality, let i be such a, = m%n a .
By lemma 6.2, q << a;l q. By assumption 3.4, there exists j such ihat
yj > 0. Then, Aj = aj, and by lemma 6.3, Gj §=bai. Putting these inequal-
ties together, I obtain q < < bkgl gq.
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7) Proof of Theorem 4.1

The first step of the proof is to £runcate the economy at the Nth period,
artificially giving money utility in the Nth period. I use a standard fixed
point argument to prove that the truncated economy has an equilibrium in which
money has price one in every period. I then prove that the N-period equilibrium prices
are uniformly bounded away from zero and infinity. This fact allows me to apply
a Cantor diagonal argument in order to obtain a monetary equilibrium in the
limit .as N goes to infinity. The hard part of the proof is the demonstration
that N-period equilibrium prices are bounded above and bounded away from zero.
Prices are bounded above because money is needed for self-insurance and because
high prices make the real stock of money low. Prices are bounded away from zero
because there is a limit to the level of real balances that consumers will hold.
This 1limit exists because the interest rate is less than consumers' rates of

time preference.

The Finite Horizon Economy

I truncate the economy at period N. 1In the truncated economy, it is
sufficient to deal with N-period price systems and programs. These specify prices
and consumption bundles in the first N periods only. An N-period allocation (xi)

1
is feasible if iél(xin(al, ooy an)_- wi(an» = 0, for all histories al,..., an

and for all n such that 1 < n < N.
Given an N-period price system p, g?(p) denotes the unique N-period program

which solves the following maximization problem.
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N n-1 N-

7.1) max {E [ Zléi ui(xn(sl, ceny sn), sn) + §i lMiN(p,x; S1s eees SN)]‘X
n=

is an N-period consumption program and Min(P’ X3 815 eees an) > 0, for all

histories a,, ..., & and for 1 < n < N}

l)

Notice that money is given utility in the last period.
An N-period monetary equilibrium is of the form (P,(xi)), where p is an
N-period price system and each X, is an N-period program. These must satisfy

the following conditions,

7.2) X, = §§(p), for all.
7.3) (xi) is a feasible allocation.
7.4) Pn(al’ eeey an) > 0, for all hist?ries a1y eees 2] and for all n

such that 1 gng N.

7.5) Lemma For each N > 1, there exists an N-period monetary equilibrium.

Proof For the purposes of this proof, I allow money to have a different
price in every period. The L + 1St component of the vector of prices in any
one period corresponds to the price of money. Price vectors vary over

A= 11.31 o AL, where A = {qeRi"'llI.rg]l-qi = 1}. 1If qea, I write
i=

= [ SR a
o=1 1’ E

= eee a .
q=(q @ -5 )
-
I now add a vector ¢ = (¢, ..., €) to the initial endowment of each con-
sumer in every state of the world, where e > 0. That is, I assume that

the initial endowment of consumer i in state a is wi(a) + ¢ , for all i and

a, I also give each consumer ¢ units of money in each period. Later, I will
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let ¢ go to zero.

The plan of consumer i is denoted by (xi, Mi), where xi'= (xin<al’ ceey an))
and Mi = (Mﬁéal’ ooy an)).

- _L
1 truncate the consumption sets as follows. Let we R+ be such that

L - - : -
z wi(a) + e<< w , for all aeA. I forbid each consumer to demand more than uﬁ
i=1

units of good j, for all j, and to hold more than two units of money. 1In
precise terms, I truncate consumer i's budget set to be the following compact

set, given q ¢ A.

T ' -
B.(q,e) {(xi, Mi)§o <x (@, ey 2) £ 0 0N (3, ., a)g 2 and

qn(al, ceey an)-(xin(al, R an), Min(al’ cees an)) < qn(al, cees an)~

a

) + e - Ti), for all histories 3 eees 2

(wi(an) +-2,(I+r)M.

1,n-1(a1’ TS |

and for n =1, ..., N}. 1It follows from assumption 3.7 that Bz(q,e) is non-empty.

I let §§(q) be the set of solutions to the problem,

-1

N n-1 N _ T
max{E[ Z éi ui(xin(s cens sn), sn) + éi P&N(sl’ cees sN)]l(xi,Mi)eBi(q,e)1.

)
n=1 1

Since a consumer begins every period with a positive amount of every good,
including money, it follows that §§(q) is a continuous function of q.

The monotonicity of u, implies that

. S .
7.6) if §i(q) = (Xi, Mi) then qn(al, ooy an).(xin(al,...., an)’ Min(al’ ceny an))
= qn(al, cee an).(wi(an) + ¢, (L+r)Mi’ n__l(al,' ooy an-l) + e - Ti), for

all i, n, and a ; a

1, LRI no

I define the aggregate excess demand function, Z(q), as follows. Let qeA



and let §z(q) = (xi, Mi)’ for each i. Then Z(q) = (Zn(q; a an)), where

17t

I s
Zn(q; al, ceey an) = (.E (xin(al, ooy an) - wi(an) - €, Min(al’ ceey an)

i=1

(a

a )-e+'ri)-

1’ "7 %hal

- (1+r)Mi,n-l

(7.6) implies that

qn(al, ooes an)-zn(q; 815 sees an) =0, for q € A and

for all n and a a

l’ ooy n-

This is the version of Walras' law appropriate for the price space A. Hence,

by a slight extension of the standard fixed point argument, there is q e A such
that Z(q) < 0. Let §§(q) = (xi, Mi)’ for i=1, ..., I. (The standard fixed point
argument may be found in Debreu [21], p. 82, or in Arrow and Hahn [3], p. 28.

My proof is much like that of Hahn in [37].) I call (q,(xi), (Mi» an g-modi-
fied equilibrium.

I now let ¢ , k=1, 2, be a sequence of positive numbers converging to

k)
k k Mk . o cq st
zero. For each k, let (q, (xi), ( i)) be an € - modified equilibrium. By
passing to a subsequence, I may assume that lim(qk,(xi), (M?)) = (q,(xi), (Mi)).

k==

I will show that q >0. Let p = (pn(al, oo an)) be defined by

7.7) P (al’ ceey 2) =4q L+l(al’ RN an)(qnl(al’ ceey an): R

It will be seen that (p, (xi)) is an N-period monetary equilibrium.

Before proving that q >>0, I collect some facts,
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First of all,

I
7.8 X -
) Z e e a) sy (3)) 5 0 and
I
M a oo -
i_—z_l[ in(317 ;a) (1+r)Mi,n_1(a1, s 8 )+ T1<0
for all n and al, oy an.
I
It follows from (7.8) that ¥ M, (a.,, ..., a_ ) <1, for all n and a_ ...,
j=1 1D 1 n’ = 1
. I k
It is easy to see that iflMin(al, ceey an) > 1, for all k, n and 215 cees an.
I R
Hence, iflMin(al, reer 2)2 1. 1In conclusion,
I
7.9) iE_:lMin(al, cess an) = 1, for all n and al, ceer .

Next, I observe that

N
10 apay e e E Gy (g s a) - u(a)),

A
o
-

ifl(Min(al’ cees an) - (1+r)Mi’n_1(a1, cees an-l) +.Ti)] <

for all n and 31y eeey B

I now prove that qn(al’ cees an) >> 0, for all n and ar5 e n

proof is by backwards induction n.

Let n = N and fix 815 +evs By

ey an) = 0. Then,

a_.. I first show that qN L+1(a1, ceey ALY D 0;
2

Suppose that A L+1(a (a ces aN) > 0, for some
2

1’ Ik 12
k < L. There is some i such that wik(aN) > 0 (by assumption 3.4). Then,
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qN(al, ooy aN)-(wi(aN), (1+r)Mi,N_1(a1, ceey aN-l) - Ti) > 0. It follows

easily that

7.11) (x ceey aN), MiN(al’ ooy aN)) solves the problen,

iN (a1’
max{ui(x, aN) + M qu(al, seey aN)-(x,M) < qN(al, ooy aN)-(wi(aN),

(1+r)M:.L (a ) - Ti) and 0 < x < w and 0 <M< 2} .
R = ==

N-1'717 2 gga1 S

Since qN,L+1(a1’ ceey aN) = 0,it follows that MiN(al’ ceny aN) = 2. This
contradicts (7.9). Hence, qN,L&l(al’ cey aN) > 0.
By (7.9), Mi N(al’ ceoy aN) > 0, for some i. For this i, (7.11) is true.
b

It follows at once from.the monotoncity of u, that if gq (a,, ..., 2) =0,
i N,k 1 N

- 1
then xiNk(al’ ooy aN) = o > -E

wj(aN). This contradicts (7.8). Hence,
=1

qN(al, ey aN) >> 0.

Now suppose by induction that qn+k(al’ ceey an+k)'>>0 , for all histories

a TR P and for k = 1, ..., N-n. It follows easily that for each i and

a , x, solves the problem max{E[Ngné k-1 (; (s s ), s )
" % g P ’ e e i M S e T

1’
al,

N-1
- _ ~ ~ T ~ _
+ 5i MN(sl, cees sN)|sn = an]|(x, M) ¢B;(q, 0) and Mn(al, cees an) = Min(al’ vy an)}

That is, X, solves the maximization problem for periods n+l and beyond. It follows
that money is useful in period n and hence I may repeat the argument just made
in order to prove that qn(al, ceny an) >> 0, for all 8y, eeey ap. This completes
the proof that q >> 0.

I must now show that (p,(xi)) is an N-period monetary equilibrium; where
p is defined by (7.7). It follows from what has been said that x, = E?(P).

The feasibility of (xi) follows from (7.8), (7.10) and the fact that q >> 0.



Clearly, p>>0, so that (p,(xi)) satisfies conditions (7.2) - (7.4) of the
definition of any N-period monetary equilibrium.

Q.E.D.
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Remark The proof of lemma 7.5 made no use of assumptions (3.1) - (3.3), (3.8) or

(3.9). The proof applies even if the utility functions are only continuous,

strictly concave and strictly monotone.

Boundedness From Above

I next prove that prices in N-period monetary equilibria are uniformly

bounded from above. It now becomes important to keep track of marginal utilities

of money. If (p,(xi)) is an N-period equilibrium, the marginal utility of money

of consumer i associated with (p,(xi)) is a vector xi = (xin(al, ceas an)).
Similarly, let a; = (ain(al, .o an)) be the vector of marginal utilities
of expenditure of consumer i associated with (p,(xi)). ain(al, ey an)

is defined by (2.7). Ai satisfies (7.12) - (7.14) below, for all histories

al, .oy an and for n =1, ..., N.

7.12)_ xiK(al, ceny aN) = max@xiN(al, ceey aN), 1). If n< N, then
Kin(al’ s an) = max [ain(al, cees an), 6i(l+r)E(xi’n+1(a1,..., a_,s
s, = a)]

7.13) KiN(al, ey aN) > 1 only if MiN(P’ X3 815 eees aN) =0
If n < N, then Kin(al’ ces an) > 6i(1+r)E[xi,n+1(a1, , a ’Sn+1)|sn
only if Min(p,xi; aps e an) =0

o+ |
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7.14) Fo; all n, xin(al’ ceey an) > ain(al, cens an) only if

xin(al, eevy, a ) =0,

This subsection is devoted to the proof of the following.

7.15) Lemma There exist ﬁeRi, A >0 and § such that 0 < § < (1+1’-').1 and the

following are true. Let (p,(xi)) be aﬁy N-period monetary equilibrium and let

C&i) be the associated vector of marginal utilities of money. If 6i > 8, for

all i, then p_(a;; ..., 2 ) < p and Nin(@ps +-es @) 2 A, for all 4, n and all

a .,

histories a .o
1’ > "n

In order to prove this lemma, I need some preliminary lemmas, which
exploit assumptions 3.4 and 3.9. The economies §(a) appearing in the
next lemma were defined at the beginning of section 6. Y 1is as in assump-

tions 3.8 and 3.9.

7.16) Lemma Let (q,(yi)) be a Walrasian equilibrium for §(a), for any -
a ¢ A, and let (ai) be the associated vector of marginal utilities of expendi-

ture, defined by (6.1). If i and a are such that wik(a) 2 Y, for all k, then

. L
a, > max {ajlj is such that Y5 2 )

3.
' k=1

I

. . L ’
Remark: There exists j such that q.yj > 9y s for by assumption 3.4,
k=1
I
q'ZY‘z q.

J

L
w,(a) > I Zgq, .
, . 1 & k
i=1 i

1 =1

I

In order to prove the above lemma, I make use of the following fact.
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7.17) For each i and a, ui(x,a) > ui((l, eesy 1), @) implies that
du, (x,a)
—7%;——-—- < Qk’ for some k such that X > 0. Here, Q = (Ql, cens Qk)
k

is as in assumption 3.9.

O

This fact follows from assumption 3.7 and from the concavity of ui(x,a).

Proof of Lemma 7.16

By assumption, wik(a) <y, for all k. It follows 4 1% é:(m}n aj)qkyik

L
< (min aj)q'yi = (m;n aj)q-mi(a) ;:q-mi(g) Ly Z 9 for all k. Here, I

J n=1
. -1 L _
have made use of lemma 6.2. In summary, y,, < vq Z 9> for all k.
ik = 'S¢ n=1
Therefore, by assumption 3.9,
du_(y,,a)
7.18) = = >Q, for all k.
ax k
k
L ,
Let j be such that 2y, ;mzl q =4q'(1,...,1). Then, u, (yj,a)

;:uj((l,...,l),a), so that by (7.17)

du, (y,,a)
7.19) Q, > ——1— |  for some k such that y,, > O.
. k Sxk : jk
By the definition of a. and ay (see (6.1)),
du, (y.,a) BU.(Y;,a)
7.20) a.q g—-—}—-—l— and —Il—d— = a.q, ,
. i‘k Sxk Bxk i’k

where k is as in (7.19).

Putting (7.18) - (7.20) together, it follows that o, > aj. This proves

the lemma.

Q.E.D.



The next lemma says that lemma 7.16 holds uniformly.

-7.21) Lemma There exists € > 0 such that the following is true. Let
(q,(yi)) be any equilibrium with transfer payments for §(a), where acA. Let
in) be the vector of associated margiﬂél utilities of expenditure. Suppose

that ‘q-(yi - wi(a))l < e mﬁx a;l, for all i. Then, a; 2 (1+¢) max&mjlj is

L
such that q-y., > I q,}, for any i such that w, (a) = y, for all k .
] = k'—'lk ik

Proof If ¢ did not exist, then for some acA, there would exist a sequence

k
(¢, (y?)), k=1, 2,...., of equilibria with transfer payments for §(a),

such that
7.22) © |~ (o, (@) - yli‘) < ! mag;(a?)'l, for all i and
= ]
7.23) ak < (l+k-l)a where k, k > % k d =
. % 37 175 2§, w, (@)=,

for all k .

k, . .
Here, czi) is the vector of marginal utilities of expenditure associated with

@, .

1

I now apply a compactness argument. Without loss of generality, I may

.k :
assume that min aj = 1, for I may replace qk by (min a?)qk. Since min aj =1,
i 3 i

. lemma 6.2 implies that q <<.qk << q , for all k. The set of feasible
allocations for §(a) is compact. Hence, I may choose a convergent sub-
sequence of equilibria. The limit, (q,(yi))is an equilibrium for &(a) with
transfer payments. The corresponding subsequence of Qx?) converges to Gzi),
where Gzi) is the vector of marginal utilities of expenditure associated with

(q,(yi)). Passing to the limit in (7.22), I obtain q-(wi(a) - yi) = 0, so
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that (q,(yi)) is a Walrasian equilibrium for £(a). Passing to the limit in

. L ’
. . =
(7.23), 1 obtain @, < aj, where q yj > n51qn and 0; T Y, for all
k . This contradicts lemma 7.16.

Q.E.D.

Proof of lemma 7.15 It is sufficient to prove that there exist § and A

as in the lemma. For by lemma 6.4, I may let p = bﬁ-lﬁ.

Let § = (I+e?) T(1+r)"! and let » = e(l+e) ", where ¢ > 0 is so small

that it satisfies the conditions of lemma 7.21 and

7.24) e < min{pab|a,beA and P_, > 0}.

b

(P, is the probability of transition from a to b.)

ab
I now prove that § and A satisfy the conditions of lemma 7.15. Assume

that (I+r) > Bi >A, for all i. I must prove the following.

7.25) xin(al, ceny an) > A, for all i, for all histories a

1, e e 0y n

and forn =1, ..., N.

I prove (7.25) by backwards induction on n. Clearly, (7.25) is true for

n

n = N, for xiN(al’ ceey al) 1 > A

N
Suppose that (7.25) is true for n+l. First of all, I claim that

7.26) for any h1§tory 31y eeeny 205 xi,n+1(a1’ ceey an+1) > (I+e)),

whenever wik(an+1) =v, fof all k .

For suppose that mik(a ) =y, for all k , and that ki an+1)<:(l+e)§ .

n+l TR

loss of generality, I may assume that i=1



Observe that [pn+1(a1, ))] forms an

e Bgg)s Oy g G e 2y

equilibrium with transfer payments for £(an). These transfer payments are

made with money. Since there is only one unit of money in the economy,

)l ) - w @ D] s 1= (e

IPoe1 (@ voer 2oy @ s 2y

-1
(al’ seey 4 ) . Now by (7.12), xi,n—i—l(al’

n+1 a )

< e(n\ 1

3

1,0+l

> ai,n+l(a1’ e an+l)’ for all i, so that ‘Pn+1(al’ ves an+l)°[xi,n+l(al’ ...,an+1)

-1
- wi(an+l)]|§ € mgx@xi,n+l(al, cees an+1)) . Therefore, by lemma 7.21.

a ) > (l4+e)a, ), where i is such

% a1 Brr crer 34p) 2 im0 @1 o0 3

L
) > Zp

that p
T k=1

(al’ ceey & )’X

n+1 o) X1, B o B o1,k (Bpoce e 3p)

(a ) = A

Since x,

1,13 e 3 >0y (@ e a 1,001 31 v 2pg)

)

Therefore, ) > (al, cees an+1) > (1+e)>\i

MoerlGrroce Bn) 2% n S L TR

> (l+e)) , where the last inequality follows from the induction hypothesis. This

contradicts the hypothesis about A (al, ceay an+1) and so proves (7.26).

1,n+1
I now prove that xin(al, coey an) > A, foralli and al, ceey an. By

assumption 3.8 and by condition 7.24 on ¢, Prob[wik(sn+l)§'y,forallk]sn==anI§ €

Therefore by the induction hypothesis and by (7.12) and (7.26), A\,

1n(al’ T an)

> éi(1+r)E(xi’ n+l(a1’ oo 2, Sn+l)lsn = an) > S(1+r)[(L-e)r + e (L+e)r] = A,
This completes the induction step in the proof of (7.25) and hence proves the

lemma.
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Boundedness from Below

The next lemma asserts that prices in N-period monetary equilibrium are

uniformly bounded away from zero.

7.27) Lemma  If éi < (L+r)-1, for all i, then there exist p eRi and X > 0
such that p >>0 and the following are true. If (p,(xiﬁ) is an N-period
mbnetary equilibrium and (xi) is the associated vector of marginal utilities

of money, then pn(al, cens an) > P and Kin(al’ cees an) <A, for all histories

a s @ and for all n.

1)

Proof It is sufficient to find X as in the lemma, for by lemma 6.4, I
may let p = N -lg.
I prove the lemma only for the case r > 0, since the proof for the case

r = 0 is similar and slightly easier. Let

- 2 - - K - -
7.28) A =D+ b2 (q-a) (kz e mae 7))
=1 i
where b = mﬁxs-;lik and a), q and c—l are as in (2.11). Here, K is a positive

integer such that

7.29) min(s, (14)) "7 > 1.
1

Notice that by assumption 3.7 T, > 0, for all i, so that <o,

It is sufficient to prove the following.
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7.30) kin(al, ceey an) < 3., for all i, for all histories a1y eees @)

and for n=1, ..., N.

I prove (7.30§'by backwards induction on n. First of all, (7.30) is

true if n=N. To see that this is so, fix a,, ..., a_and let i be such that

1’ N
MiN(P’ X;3 ps eees aN) > 0. Then Py (7.13), KiN(al’ ceey aN) = 1., Also,

aiN(al’ ceny aN) < xiN(al’ ceey aN) = 1. Hence by lemma 6.3 ajN(al’ cens 2)
<b, for all j. But then by (7.12), ij(al, ceos aN) < max(b,1) = b, for all

j. Finally by (7.28), b < A . This proves (7.30) for n=N.

Suppose by induction that (7.30) is true for n+l, ..., N and that for

some i and 315 eees 2, xin(al, ooy an) > XN . Without loss of generality,

I may assume that i=1, so that
7.31) xln(al’ coas an) > AN
I will prove that (7.31) implies the following.

7.32) There exist i and a history a .+., 2 following a_ such that

+l’ nt+T

U CHU S R Y¢S A S NI R Y

i,obt 1 (Brxy5 2, oo 2,0

y It -t

- - - - - (Lt - :
>r l‘l'i - A 1 bz(‘!'w) Z (1+r)k 1) s for t=0, ..., T, where
= . =1

T = min(K, N-n).

(7.32) leads to a contradiction. First of all, suppose that T = N-n.

Then, (7.28) and (7.32) imply that MiN(p, x5 a .oy aN) > 0. But then

1)

xiN(al’ cees aN) = 1. However by (7.28) and (7.32), KiN(al’ cees aN)

1AV}

(éi(L+r))n‘Nb-li > b-li > 1, which is a contradiction.

]
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Suppose that T = K. Then, (7.29) and (7.32) imply that X\, n+K(al’ ceey an+K)

> (6i(1+r))-Kb-1i >N\, which confradicts the inductioﬁ hypothesis. This proves

that (7.32) leads to a contradiction and hence that (7.31) is impossible. Heﬁce,

the induction step in the proof of (7.30) will be completed once (7.32) is proved.
I now prove (7.32). Llet i be such that rMi n(P, X3 805 e, an) > Tos

s i i

where a., ..., a are as in (7.31). Such an i exists by assumption 3.7

1
. -1- - .
I first show that xin(al, ooy an) > b "X\ . Observe that \ < Kln(al’ ceey an)
= max@zln(al, ceey an), 61(1+r)E(A.1,n+1(a1, cees 3; sn+1)|sn = an))

WA

maxQzln(al, ceey an), 61(1+r) A) = aln(al, eens an). The second inequality

follows from the induction hypothesis on n (regarding (7.30)). Hence by lemma

-1 -1 -
6.3, Kin(al’ ceay an) > uin(al, cae an) > b aln(al, caey an) >b AN, I

have now proved that i exists such that the inequalities of (7.32) are satis-

fied for t = 0.

I now prove by induction on t that a exist as in (7.32).

n+l’ C it

Suppose that the conditions of (7.32) are satisfied for t no larger than some

non-negative integer, call it t again. I may suppose that t < T. Then,

. ‘l - / k 1)

last inequality follows from (7.28). Hence by (7.13), Ki,n+t(a1’ ey an+t)

= §, (1+r)E[x = a ], so that for some

@15 veesr 3 00 Soper)) ‘Sn-i-t ot

i, oFt+l

) 2 (6, (1+1)) L. a

A (al’ e qniesl ,n+t T n+t)

b’ i, nrt+l
-(t#l), -1~ . , . .
> (6i(1+r)) b "A. The last inequality follows from the induction

hypothesis on t.

-1 =-1,2 -
I now show that M, ,n+t+1(p’ xi, al, Ceey an+t+l) 2 T, - N b (qew)

<1<El(l+r) ) o mer1Cr o Poer)) M men1Gr o7 Fnpenn)

then by (7.14) x, ) = 0, so that M

n+t+1(a1’ vees @

nFt+1 e (P Xy 3geee®ety)
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e ) t -
) -1 <-12, - f k-1\
2 DM (B x5 A, e AL ) -T2 (L+r)[r T (@ 2 () )]
1 =12 -t k-1
T,z T TS T NDb (q-w)( Z (1+1) ) . The third inequality follows from
- k=1

the induction hypothesis on t.

Suppose now that ay . an+t+1) = xi,n+t+1(al’ A

) > b-li . 1t follows

s n+t+1(al’ )

Then, by the choice of & erl’ ai,n+t+1(al’ R
. -2 -
.3 .o
from lemma 6.3 that mﬁn aj,n+t+1(a1’ ) > b “\, so that by lemma
) < bzi -li . Hence, p

a
ottt

.2 a
625 Pores1 Pl 00 Bnresl

2--1- - ,
xi,n+t+l(al’ cees an+t+1) < b XN (q-w). It follows that Mi,n+t+2(p’xi’ ayeees

(al, ceey @) o

n+t+1 =+t

) 2 (M, (®, x5 a

2--1,- -
fntt+l’ = 1, mHt+l ) =Ty - bA (e

- - -12-- t - 221 - - -
(lI+r)(r lTi - A 1b (qew) 2 (1+r)k 1] - T b A 1(q-w) =T lTi
k=1

PR a
1’ 7 Tmt+l

nv

. . . t+l -
A 1 b2(q-w) z (1+r)k 1,
k=1

This completes the proof that the two inequalities of (7.32) are satisfied
for t+1, and so completes the induction step in the proof of (7.32).

This completes the proof of lemma 7.27.

Passage to the Limit

I now apply a Cantor diagonal argument to the N-period equilibria in order
to obtain a monetary equilibrium in the limit.

Let § beas in lemma 7.15 and suppose thatéﬁ:éi < (1+r)-1, for all i. TFor
each positive integer N, let (pN, (x?)) be an N-period monetary equilibrium
and let (%.?) be the vector of associated marginal utilities of money. By lemmas
7.14 and 7.27, p < pi(al, ey a) € Pamd ) g x?n(al, ey a) < K, for

. . . N -
all i, n, N and a; ey 2. Similarly, O < xiéal, evsy 8 ) < w, for all

n =

i, n, N and 815 eeey 2 Hence, the components of the vectors (pN, (x?)) and

3
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(xg) are uniformly bounded. There are countably many of these components.
There exists a subsequence of N such that one of those components converges.
There exists a subsequence of this subsequence such that another component
converges. Continuing in this way, I choose a sequence of subsequences, one
. th th )

for each component. Taking the k= member of the k=~ subsequence, I obtain
a subsequence of N such that all components converge, Let p = (pn(al, seay an)),
x, = (%, (a
i ( 1n( 1’

Cantor subsequence, I c¢laim that (p,(xi)) is a monetary equilibrium with

ey an)) and xi = (xin(al, ceey an)) be the limits of this

associated marginal utilities of money (xi).

Clearly, P S pn(al’ ceey a ) < 5, for all n and a a. Hence,

n = 1’ LIRS )

condition 2.5 of the definition of a monetary equilibrium is satisfied.

. I N . . . .
Since iEl(xin(al, ooy an) - mi(an)) = 0, the same is true in the limit

and so (xi) is a feasible allocation. This is condition 2.4 of the definition
of equilibrium.
I now show that X, -€ §i(p), for all i and so verify the last condition,
(2.6).
First of all, M, (p", x; a
) i’n ) i’

1’ o 3gap)

N N X
- + pn(al, ey an)-(mi(an) - xin(al’ ceey an)) >0, for all N. Passing

N N
. an) = (L+r)Mi’n_1(p ) X5 @

to the limit in these expressions and using the fact that Mi is given, 1

0

obtain that Min(p’ X5 855 ey an) >0, for all i, n and a a . Hence,

1; ° ey

X, satisfies the constraints of the consumer maximization problem (2.3).

I now prove that (p,(xi)) and (xi> satisfy conditions (2.8)-(2.10),

(2.13), and (2.14). First of all, it should be clear that M, (p,x.ja,,...,a )
I in i’71 n
= =

j Mjn(p,xj;al,...,an) =1, for all i,n and AT This is condition

1
(2.13). (2.14) follows by passage to the limit in the inequalities

N —
NS Kin(al;---,an) = N . It remains to verify conditions (2.8) - (2.10).
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Let (a?) be the vector of marginal utilities of expenditure associated

with the N - period monetary equiliBrium (pN,(xf». The convergence of the sub-

sequence of (pN,(xﬁ)) implies that the corresponding subsequence of (a?) con-

verges to (ai), where (ai) is the vector of marginal utilities of ex-

penditure associated wit?}ﬁp,{xi)). (The (ui) are defined by (2.7).)

(pN,(xf)), (xf) and (a?) together satisfy (7.12) - (7.14) . Passage to

the limit in these inequalities gives (2.8) - (2.10).

It now follows by definition that X, € §i(p) , when éi =1 . I must

now show X, = §i(p) , when 51 <1l . 1f X # §i(p) , then there exists x € Bi(p)

® n-1

- ® n-1
such that E[ ¥ 51 ui(xn(sl,...,sn),sn)]>>E[ Zai; ui(xin(sl,...,sn),sn)] +¢e,

n=1 n=1
where ¢ > 0 . Choose N such that 6N-1 < (25:)-13 and E[ aZg 69-llu (x (s s ),s ),
i LI e B\ A
® n-1 .
< e/4 and E[ Z 8. ,u.(x. (s4,...58),s )| < e/t . (It is easy to see
n=p+l I i*int71 n n
that these series converge.). X, solves the problem.
N on-1 N-1
7.33) max {E[niléi ui(xn(sl,...,sn),sn)-i-éi KiN(sl,...,sn)Min(p,xi;sl,...,sn)]l
x € Bi(P) } p)
. N n-1 —
since p, x; and A, satisfy (2.8) - (2.10). However, E[niiﬁi‘ ui(xn(sl,...,sn),sn)
+ 8l (s s M, (Pr 58 s TZELZ 807y B (sp, -0 08) 58] - /b
N § Ak B e 1 N S R e s A
S 4n-1 | N n-1
> E| _Z_ai ui(xn(sl,..-,sn),sn)].Jr 3e/4>E] § 8 ui(xn(sl,---,sn),sn)
n=1 n=1
N-1

+ 6i xiN(sl,...,sn)MiN(p,xi;sl,...,sN)]. The last inequality follows from the fact that
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gsh L 1
1

contradicted the fact that X, solves the problem 7.33. This proves that

N.._.
KiN(sl,...,sN)MiN(p,xi,sl,...,sN)] < 61 AN< ¢/2 . Hence, I have

x; = §;(p)

I have now completed the verification of condition (2.6) and so have proved

theorem 4.1.

Q.E.D.



53

8) Proof of Theorem 4.2

First of all, I observe that

8.1) xin(al,...,a ) = ain(al,...,an) for all i, n and  ERRREL

n n

where (ai) is the vector of marginal utilities of expenditure associated
with the monetary equilibrium (p,(xi)). (8.1) follows from (2.8), (2.10),

and the assumption that xin(al,...,an) #0 , for all i,n and SERREFLEE

Next, I observe that if the allocation (xi) is Pareto optimal, then

8.2) N, (a

RCE ..,an) = 5i(l-+r)E[K

i,n+1(alyo..,an,sn+l)}sn = an], for all

i, n and a a8,

1°°""""n

where (Ki) is the vector of marginal utilities of money associated with"
the monetary equilibrium (p,(xi)).
By (2.8), the left hand side of (8.2) is at 'least as great as the right

hand side. Suppose that for some i,n and a_,...,a , xin(al,...,an)

1’ n

> éi(l-kr)E[xi =an]. Then by (2.9), Min(al,...,an)==0 s

,n+1(a1,...,an,sn+l)lsn

so that for some j #1 , Mjn(al,...,an) >0 . Again by (2.9), an(ak,...,an)

= 6j(1-+r)E[Xj = an]. Now, I use (8.1) and find that

,n+1(a1,...,an,sn+l)lsn
ain(al,...,an) >‘gi(l-+r)E[ui,n+1(al,...,an,sn+1)‘sn = an] and ajn(al,...,an)

=an] . A standard argument now shows tha

= 5J_(1+r)E[cx.J.’n+1(a1,...,an,sn_l_l)]sn

a Pareto improvement could be made. Roughly speaking, consumer i should

spend ¢ units of money more in period n (and when history a_,...,a

1 n

occurs), where ¢ >0 1is very small. He should spend (l+r)e¢ units less
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in the next period. Consumer j should spend ¢ 1less units of money in
period n and (L+r)e¢ more in the following period. Thus, I have contra-
dicted the assumption that (xi) is Pareto optimal. This proves (8.2).

17" Q,an ,

)

It follows from (8.2) that for each n and each history a

there exists a following a such that A

n+l 1,n+1("“1’ REAT |

-1
= (61(1+r)) kln(al,...,an). Hence, there exists an infinite sequence

-n+1

R YRRRE such that Kln(al,...,an) = (5l(l+r)) ) >0 . Since

M1y

61(1+r) < 1, it follows that 1lim )\ln(al,...,an) =@ . This contradicts
e

(2.12), so’ that (xi) cannot be Pareto optimal.

Q.E.D.



55

9) A Lemma
In this section I prove a lemma which is in turn used in the next section
to prove theorem 4.3. The statement of this lemma involves the concept of

stationary equilibrium with transfer payments. Such an equilibrium is of the

form (p,(xi)),where P 1is a stationary price system and (xi) is a station-
ary allocation. Each x; must solve the problem.
L
(9.1) max { } 7 u (y(a),a)|y:a>R] and ] 7 _p(a)-(y(a) - x,(a)) g O},
ail + a i
acA acA

where (ﬂa) is the stationary distribution on A. The transfer payment of
consumer 1 is agATTap(a)~(wi(a) - xi(a)).

Given a stationary equilibrium with transfer payments (p,(xi)), money
holdings are defined as before. That is, Min(p,xi;al,...,an) = (l+r)Mi,n-l(P’xi;

al,...,an_l) + p(an)~(wi(an) - xi(an)) - T I now allow the initial holdings,

: 1 I
M.., to be arbitrary, though I continue to assume that z M, =1 and z T, = k.
i0 : i=1 i0 =1 1

9.2) Lemma For almost every w € 2, the following is true. Let (p,(xi)) be
any stationary equilibrium for g(w) with transfer payments. Then for any
distribution of initial money balances and for any ay € A,Min(p,xi;al,...,an)

< 0, for some i and some history a2,...,an following aj-.

The proof of this lemma involves the marginal utilities of money associ-
ated with a stationary equilibrium (p,(xi)). These are the Lagrange multi-
pliers associated with the constrained maximization problems (9.1). The
marginal utility of money of consumer i is as number ki.

Stationary equilibrium with transfer payments may be thought of as a func-
tion of the associated marginal utilities of momney. This fact is expressed by

the following lemma, which I do not prove. Its proof is contained in [8].
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9.3) Lemma To each (Ki) > > 0, there corresponds a unique statiomary
equilibrium with transfer payments such that (Ki) is the corresponding vector

of marginal utilities of money.

The proof of lemma 9.2 depends on the fact that the relation between

stationary equilibrium and marginal utilities of money is nearly differentiable.

In order to express this fact, I drop a € A from the notation, for the moment.

Let u, Rﬁ + (-w,@) satisfy (3.5) and (3.6), for i =1, ..., I. Given

A>0 and »p € Ri such that p>>0, Xi(p,K) denotes the unique vector in

Ri which satisfies the following (if such a vector exists).

du, (X, (P, )

(9.4) azk

= kpk ; for k=1, ..., L with equality if Xik(p,k) >0 .
Xi(p,k) is consumer 1i's demand as a function of prices and his marginal utility
of money. Xi(p,K) may not be defined if some price is too low relative to A . I
let G = {(p,A) € int Ri X int Ri [Xi(p,Ai) is defined for all i }. It is
easy to see that G 1is an open set and that each of the functions Xi is
continuous on G .

Now let o € Ri be such that @ >0 . Think of w as the total initial
endowment of the economy. Given ) = (Al,...,AI) € int Ri, P(p) denotes
the unique vector p € int Ri such that .Z Xi(p’Ai) =w. P(p) is a market

i=1
clearing price vector, given the demand functions Xi(p,\). Clearly, P(p) >> 0.

I prove in [8] that P 1is a continuous function.
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Observe that P()) 1is homogeneous of degree minus one with respect to A

That is, P(tp) = t-lP(A), for all t> 0 . Hence, I may restrict A to

I
. I-.1 s I =
int A = {A € int R+‘.Z Ay =1 1
i=1
. I-1 . s . I-1
(9.5) Lemma int A is the union of finitely many sets, closed in int A 7,

on each of which the function P(jp) 1is continuously differentiable. Similarly,
G is the union of finitely many sets, closed in G , on each of which all of the

functions Xi(p,Ai) are continuously differentiable.

Proof First of all, I deal with the functions Xi(p,Ai) .
Let o/ be the set of all subsets of {1,...,L}. For each S € /4, let

. aui(xi(P:K))
CS.i_ ={(,N €6C l T = >‘Pk 5 for k€ S and Xik(P’K) =0, for k € s}.

Clearly, Cg; is closed in G and G = LJ{CSiIS € #/} . I show that X, is

continuously differentiable on each set CSi

Let XSi(p,K) be the function defined by

aui (XSi(p’ N)

19.6) azk

M » if k€S

g1 (PsN) =0, if k€S .

Clearly, if (p,N) € CSi , then XSi(p,K) is well-defined and equals Xi(p,K).

Recall that a function ~~ defined on a closed set C C:Rn is said to be



N
20

A

differentiable if it has a differentiable extension, £ , defined on an open neigh-

borhood of C . Hence, I must show that XSi has a continuously differentiable

extension to an open neighborhood of CSi

Since wu, : Ri-» (==,®) 1is continuously differentiable, it has a continuously
i

differentiable extension ui:V-+ (~m,=), where V is an open neighborhood of Ri .

I now apply the implicit function theorem to the equation (9.6) with Gi

substituted for u, - By the implicit function theorem, XSi is defined and dif-

ferentiable on an open neighborhood of CS if the matrix of partial derivatives

i

of the left hand side of (9.6) . with respect to the components of X_. is invertible,

Si
these partial derivatives being evaluated at an arbitrary point XSi(p,K) for
(p,N\) € CSi' This matrix of partial derivatives is given below, where I

have assumed that S = {1,...,K}. u; appears in the matrix rather than u, 5 for

the derivatives are evaluated at a point in the domain of u, .

/ azui %y Bzui
Szlszl quazl 5;K+lazl
.75 Ooxd2 %% O%49%
0 0 1 0 .
) 0 1
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This matrix is invertible. For by assumption (3.6) the matrix Dzui(x)
3%,
= 5;—?§}——— is negative definite. Hence, the submatrix in the upper left
k m
hand corner of (9.7) 1is negative definite and so is invertible. It follows at

once that the whole matrix is invertible. This completes the proof that Xi is

differentiable on CSi . Since the matrix (9.7) depends continuously on the com-

ponents of XSi’ it follows that Xi is continuously differentiable on CSi .

I now turn to the function P(p). Let ;JI = {(Sl,...,SI)ISi € »# , for all i }

If s ¢ QJ, let CS = {A € int AI—II(P(A),Ai) € CS ;2 for all i} . Since P

i
is a continuous function, CS is closed in 1int AI-l . Clearly, into AI-I
. I
=Ufcg|s € 1} .
Now let S Gjylh be such that CS is not empty. Recall that P(A) satisfies
I .
the equation Z Xi(P(A)’Ai) =y>> 0 . Essentially, what I do is to apply the
oi=l
implicit function theorem to this equation. In order to do so, I let
I th
f.(p,n) = 2 X, .(p,A.), where X_, . 1is defined by (9.6) and S, is the i
S . S.1 i S.i i
i=1 i i
component of S . Let E be the matrix of partial derivatives of f(p,A) with

respect to the components of p , these derivatives being evaluated at (P(A),p) .
I must show that E 1is invertible.

Let DPXS i(P(A),Ai) denote the matrix of partial derivatives of the function
i

XS i(p,?x) with respect to the components of p , these derivatives being evaluated
i

at (p,A\) = (P(A),Ai). It is easy to see that DPXS i(P(A),Ai) is of the form AiEi’
i

. . 2
where E, is defined as follows. Let DSiui(XSii(P(A)’Ai)) be the |Si| X ]Si[

matrix of second order partial derivatives of u, with respect to variables with
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indices in Si . This matrix is negative definite. If k and m belong to

S., then the (k,m)th entry of Ei is that entry of the inverse of

[N

DS ui(XS i(P(A),Ai)) which corresponds to kth and th commodities. The rest of
i i

N

the entries of Ei are zero.
Let ) € CS . For each k =1,...,L, Xik(P(A)’Ai) >0, for some i . This

I
statement follows from the fact that =2 Xi(P(A)’Ai) =p>> 0 . Therefore, for
i=1

th . . .
each k , the k row of Ei is non-zero, for some i . Hence, since the Ai

I
are all positive, every row and column of E = Z AiEi is non-zero. It now
i=1

follows from the nature of the matrices Ei that E 1is negative definite.
Hence, E 1is non-singular, as was to be proved.
Q.E.D.
For each a ¢ A , let Xi(p,x,a) be defined from ui(-,a) by (9.4)
Similarly, if A € int Ri and @ € int Ri , let P(p,w,a) be the unique vector

I
p € int Ri such that =2 Xi(p,A,a) =4 . For each a and ¢ , lemma 9.5 applies

i=1
to the functions Xi(p,x,a) and P(A,w,a). Also, it is easy to see that P(j,w,a)
is a céntinuous function of ¢ . (In fact, P 1is just as differentiable with respect
to @ as it is with respect to 4.)
I "now turn to the proof of lemma 9.2 Throughout the proof, if y € Q ,

1
then mT = (u)T(a))ae A is defined by wT(a) = 2 wi(a) . wT is the total
. i:l

initial endowment of the economy.

Proof of lemma 9.2 I first prove the lemma for r =0
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By assumption 3.10, I may choose a, ¢ A for which there are two histories
going from ay to itself. Also, each of these histories contains an element
which is distinct from a, and does not appear in the other history. For nota-

tional simplicitly, I assume that these distinct element occur just after a

1

. . . 1 1 2 2 . ]

in the histories. Let 3158550058y and 8158550005 be the two histories,
2
1 2 _ 1 R 2

vhere aNl = aN2 =a,. Then, a, does not appear in a2,...,aN2 and a,
does not appear in a;,...,a; . Also, I may assume that ag does not appear in

. X 1
a%,...,aé s for j=1,2 for I may eliminate closed loops beginning with

i i
a; -

Let (p,(xi)) be a stationmary equilibrium with transfer payments for
4 (w), where g € 0. Let , = (Ai) be the vector of associated marginal
utilities of money. Then, p(a) = P(A,wT(a),a) and xi(a) = Xi(P(A,wT(a),a),Ai,a)
for all i and a. I now simplify the notation by writing P(A,wT(a),a) as
P(A,wT,a) and by writing Xi(P(A,wT(a),a),Ai,a) as Xi(A,wT,a).

The net expenditure of consumer i during the course of the cycle

ag',...,ag is ni:p(ai) . (xi(ag) - ‘”i(arjx))’ for j = 1,2. 1f this quantity

is not zero, for j = 1,2, then the money balances of some consumers must be
negative at some time and for some hist;ry. For with positive probability,
ag,...,ag. could be repeated an arbitrarily large number of times in successionm.
In this cise, consumer i would accumulate or lose an arbitrarily large quantity

of money. 1In either case, someone would eventually hold a negative quantity of

money. Therefore, in order that lemma 9.2 be true, it is enough that

N,
] h| J j
9.8) for almost every w € Q, nzz p(an) (Xi(an) - wi(an)) # 0,

for j = 1 or 2 and for some 1.
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N

The equation z p(a ) (x (a ) - w, (a )) = 0 holds if and only if

n=
N

w (&) = @)™ 22 p(ag) (xy(ad)-v, ) + py(aDuy; a])|, vhere wy, (a)

is the first component of wi(a) and pl(a) is the first component of p(a).

Substituting the appropriate functions of A and wT, I obtain

9.9) <aJ> = (2, (4, W'

N.
1) v T 3. ] 3
ngz P(A,0°,a0) - (X(4,w,a0)-u (a)))
+P (A w ,a )m (a )

Notice that the right hand side of (9.9) does not depend on either mil(a;)

I
or (a ), provided that Z w, l(a ) 1is held constant. Here, I use the
assumption that for each j, ag does not appear in a%,...,a% and does not
h|

appear in ag,...,a§k, for k # j. I now parameterize w by (ma,w ), where

. 1 1 2 2 .
w, is the vector (wll(az),...,mI_l’l(az),mll(az),...,wI_l’l(az)). Wo is the vector

E “1 (a ) j=l 2 ( ( )) ’~ao,I;k=2’o~o’L;j'—'l’Z}(m’i(a)) i=1""’I;a#al

24,
’az
Clearly, (wa,wB) is simply a coordinate system for Q.

The right hand side of (9.9) depends only on A and w Denote this right

8"
hand side by fji(A,wB), where j =1,2 and 1i=1,...,I. (9.8) may now be

rewritten as

h| .
9.10) for almost every w€ @, fji(A,wB) # mil(az), for j=1or 2

and for some i = 1,...,I-1.

In order that lemma 9.2 be true, it is sufficient that (9.10) be true for every

A £int Ri. More precisely, it is sufficient to prové the next statement.

9.11) For almost every w € @, the following is true. For every A gint Ri,

j 1 = i = -
fJi(A,mB) # wil(az), for j 1l or 2 and for some 1i=1,...,I-1.



63

The functions fji are continuous, so that the set of w in & for which
(9.11) is true is measurable. It follows from the Fubini theorem that it is
enough to prove (9.11) for w with wo constant. More precisely, it is suffi-

cient to prove the following.

9.12) For each fixed EE, the following is true for almost every W,
_ 1 2 . I — 3
= (wll(az)""’wI—l,l(aZ))' For every A ¢ int R, fji(A,wB) # wil(az),

for j=1or 2 and for some i, i = 1,...,I-1.

I now prove (9.12). Since w, is constant, I may write fji(A’Bé) as

B
fji(A). Notice that fji is homogeneous of degree zero. That is, fji(tA)
= fji(A), for all t > 0. Hence, I may restrict A to int AI-l. Consider
X . I-1 2I-2 .
the function F: int A + R defined by F(A) = (fll(A),...,f1 I_1(!\),
b

f21(A),...,f2 I_1(A)). (9.12) is simply the assertion that almost every W, does
3

not belong to the range of F. Hence, it is sufficient to prove the following.
9.13) The range of F 1is of measure zero.

By lemma 9.5, F is continuously differentiable on each of a finite number of
sets closed in int AI-l, the union of which is int AI_l. dim AI_l =1-1
<'2I - 2, since I > 2. Therefore, the range of F 1is of measure zero.

This completes the proof of lemma 9.2 for the case r = 0. I now turn

to the case r > 0. The proof is quite similar.

I now use assumption 3.10 to obtain three histories, as ag,...,aé., where
. ‘ . J
j=1,2,3 and aé. = a, for all j. Also for each j, ag does not appear in
J

j j . . k k .
ag,...,aéj and does not appear in either sequence az,...,aNk, for k # j.

Let (p,(xi)) be a stationary equilibrium. Suppose that consumer i

is in state a, during the period one and has Mi units of money at the end

1
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of the period. Suppose that he then passes through the cycle az,...,aN
Then, at the end of period Nj’ he has Mi(1+r) J + z (1+1) J [p(ai)

°(wi(ai)—xi(a3))—rj] units of money. This sum must equal Mi’ for all j,
if it is to be true that no consumer ever holds negative money balances.
I now proceed as before. If wé€ ©, then 0, and wB are defined as

_ 1 1 2 2 3
follows. w, = (wll(az)""’wI-l,l(aZ)’wll(aZ)""’wI—l,l(aZ)’wll(az Ysoens

I
3 = J J
wr_1,1(8)) and w, izl 9310890 | 521,2,3; @1 (@501, L isk=2, ... 15551, 2, 35
(wi(a))i JIs a#a % ag . M= (Mi) denotes the vector of initial holdings
of money, held at the end of period one in state a,. M varies over AI-l

1

= {Me Ri[ ¥ M, = 1}. It is sufficient to prove the next statement.

9.14) For each fixed wB, the following is true, for almost every w, .
For every (M,A) € AI-l X int Ri -1 (M Ao ) # w; (aJ), for

j =1,2, or 3 and for some 1i = 1,...,I-1,
— 2N T =1 N.-1 Nj N.-n
where f..,(M,A,w ) = —-(1l+r) J,(A,w ,a7)) T{M.((Q+x) ] -1 + ,z (1+r) J
ji B 1 2 i n=2
[P(A wT aj)-(w (aj)—X (A wT aj))-r -(1+r)Nj -2 (A, w a )w (aJ)]} In this
iR A A A IS F1 g

formula, wT is the total initial endowment determined by ws.

Now let F: AT™T x int R};‘l +>R°173 be defined by F(M,p) = (fll(M,A,ZEB),
"fl,I-l(M’A’wB)’fZI(M’A‘”B)""’f3,I-1(M’A’wB))' (9.14) is implied by the

next statement.

9.15) For each w_, the range of F has measure zero.

B

The dimension of the domain of F 1is 2I-2. The dimension of its range
is 3I-3, which exceeds 2I-2 since I > 2. By lemma 9.5, F 1is con-
. I-1 . I-1
tinuously differentiable on each of finitely many sets closed in A x int R+ .

These facts imply (9.15).



This completes the proof of lemma 9.2 and hence of theorem 4.6.

Q.E.D.
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10) Proof of Theorem 4.3

Let @ € @ be such that

10.1) if (p,(xi)) is a stationary equilibrium for & (y)

with  transfer ~“payments, then for any distri-

bution of initial money balances and for any

ay € A,Min(p,xi;al,...,an) < 0, for some i and some history

8gs-eesd following a;-
By lemma 9.2, it is enough to prove that if 5, = (1+ r)'l, then g(p) has no
monetary equilibrium.

The outline of the proof that g(p) has no monetary equilibrium is as
follows. If g(y) had a monetary equilibrium, then the associated marginal
utilities of money for each consumer would form a supermartingale. Hence by
the supermartingale convergence theorem, they would converge, so that they
would eventually be nearly comnstant. If they were nearly constant, then
some consumer would eventually exhaust his holdings of money. This contradiction
establishes that g(yp) has no monetary equilibrium. The idea that a consumer

would exhaust his money holdings is used to prove the following lemma.

10.2  Lemma Let ) and X be positive sumbers and that A < \. Then,
there exists a positive integer K, depending on A and x , such that the
following is true. Let (p,(xi)) be any monetary equilibrium and let (Ki)
be the vector of associated marginal utilities of money. Suppose that

= A (al,...,an) = X, for all n and a

< c,a_. a i
s Ao 8, Then for any history

177"

215...,2 the following must hold for some i and for some history

n,



A

S FRRPVL SR following a_, where 1= k Kf ‘xi,n+k(ai""’an+k) -

-1
- xin(ai,...,an)\ >K .

Proof Suppose that the lemma were false. Then, there would exist

XK , K .
a sequence of monetary equilibria (p ,(xi)) such that for some history
K K K K ' _ Kk K
aysee.sd s | xi’ i nK,a FRERRRPL +k) Ki (al,...

for all histories a following a~, where 1< k< K.

K -1
(alf,...,a ,anK)‘g_K s

.sa

nK+1"' ntk

Since there are only finitely many points in A, I may assume that

aﬁ = ileA, for all K. Also I may assume that e = 1, for all K. For I
K
. K K . . . K K .
may restrict (p ,(xi Y)to histories following ayyeees That is, I may
K
K K K

define (p, (x;)) by p (3),3,,...,2) = p_ .

. (al,...,a ,a2,...,an) and so

on. (5,(xi)) is defined only for histories starting with a but this is

1}
sufficient for my purposes. I use (pK,(xi)) again to denote (P,(Xi)). In

summary, I may assume that

K = K ,- -1 . .
10.3) I Kik(al,az,...,ak) - xil(al) | =K 7, for all histories

El’aZ’ Peesdy beginning with a where 1= k= K.

1)
By a Cantor diagonal argument, I may obtain a subsequence of monetary

‘ K . K K K

equilibria, call it (p ,(x?)) again, such that (p',(x;)) and (r)) all

converge. The limit, (p,(xi)), forms a2 monetary equilibrium (restricted

to histories beginning with 31). In proving this fact, one proceeds as in the

last section of the proof of theorem 4.1. The limit marginal utilities of
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money (Xi) are the marginal utilities of money corresponding to (p,(xi)).
By passage to the limit in (10.3), I obtain that kin(zl;az,...,an) = xi(zl),

for all i and for all histories El,az,... beginning with El.

By lemma 9.3 there is a unique stationary equilibrium (p,(;i)) with

marginal utilities of money (xi(al)). Hence, gin(il,az,...,an) = xi(an) and

pn(il,az,...,an) = p(an), for all histories 31589500052 It now follows

from (10.1)  that Min(p,xi;al,az,...,an) < 0, for some i and some

a s This contradicts the fact that (p,(xi)) is a monetary equili-

27"

brium. This completes the proof of lemma 10,2
Q.E.D.

I may now prove theorem 4.3,

Proof of theorem 4.3 Let Q;(xi)) be a monetary equilibrium and let
(ki) be the associated marginal utilities of monmey. Since 5i(1_+ r) = 1,

( 2.8) implies that

10.4) xin(al,...,an) ZE [A (al,...,an,s ) ] s = an], for all

i, o+l o+l

i,nand a,,...,a .
7 1) 2 a

(10.4) says that the random variables xin(sl,...,sn) form a supermartin-
gale. Since the'xin(sl,...,sn) are non-negative, I may apply the super-
martingale convergence theorem (Doob [22], p. 324). This theorem implies
that the xin(sl,...,sn) converge almost surely. Let xim(sl,sz,....) be the

limit random variable , for i =1,...,I.
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By (2.12) or (2.14), the components of the )x.i are bounded away from
zero and infinity,so that I may apply lemma 10.2. Let K be as in the lemma.

Since nlimw xin(sl, eeey sn) = xiw(sl, 52, ...) almost surely, there exists

-1 '
N such that Prob [ | kin(sl,...,sn) - kiw(sl,sz,...) | =2 (2k) 7, for some i
K .
and some n = N] < ¢ , where ¢ = min {Pab | a,bes, Py > 0} and the P, are
the transition probabilities of the Markov chain {sn}. It follows that

there exists a history a ..,aN such that Prob | l %.in(al, RRTE e SN+1’ ...,sn)

1
- AL (a a =x ! £ >SN | s.=a]c< X t f hi
in(3p e N) l = , for some n ] L. e . But for any history

a

TR LERRTL N following 2 with n N + K, Prob [(s

N+1""’sn) = (aN+1,...,an) |

K
= 2 -
sy aN] ze. 'I'her.efore | Nin(8p7 s d a1 esa) )\iN(al,...,aN) l

-1 .
<K ', for all n such'that N<n =N+ K and for all aN+l,...,anlfollow1ng ay

This statement contradicts lemma 10.2 This completes the proof of theorem 4.3.

Q.E.D.
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11) ©Proof of Theorem 4.4

The rough idea of the argument is as follows. If the price systems
pk did not converge to zero, then the sequence (pk,(xi)) would have a
limit point, (p,(xi)), which would be much like a monetary equilibrium
with interest rate equal to 5-1- 1. An argument similar to the proof of
theorem 4.3 shows that no such limit equilibrium exists, almost surely.

There is a snag in this argument. Prices in a monetary equilibria are
uniformly bounded away from zero and they need not be so in (p,(xi)). However,
prices in (P’(xi)) are bounded above and this fact makes it possible to
imitate the proof of theorem 4.3.

The limit equilibrium (p,(xi)) is what I call a pseudo monetary

equilibrium.

A pseudo monetary equilibrium is a vector (p,(xi),(xi)). p==(pn(a1,...,an))

is a price system. (xi) is an allocation in the usual sense. ki is a vector of
marginal utilities of momey, as before, except that I allow some or all of the

numbers xin(al, caay an) to be infinite. (p,(xi),(ki)) must satisfy the

following conditions.

11.1) (xi) is a feasible allocation.
11.2) For some A > 0, Xin(al’ ...,_an) 2N, forall i, n, and
S TARERTIL S

For all i,n and 815 cees8
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11.3) Kin(al,...,an) = max [ain(al}""an)’E(Ki,n+1(a1’""an’sn+lnsn.=an)] s
11.4) Kin(al,...,an) >-E[Ki,n+1(al,...,an,sn+1)]sn:=an] ,
only if M a veey @) =0
y i,n+1( 1’ » & )
11.5) Kin(al,...,an):> ain(al,...,an), only if xin(al""’an) =0, and
I
- 11.6) Min(p,xi;al,...,an)g() and iilMin(P’xi;al""’an) =1 .
1 =

Notice that (11.2) and lemma 6.4 imply that pn(al,...,an)é bA " q °,

for all n and a a . Also, if Kin(al,...,an) <o for some i , then

1,..
by lemma 6.4 Pn(al""’an) >0 . If Pn(al""’an ) >0 and

Kin(al,...,an) = o , then xin(al,...,an) =0

I say that a pseudo monetary equilibrium is non-trivial if
1,...,an'

In order to show that non-trivial pseudo-monetary equilibria do not

Kin(al""’an) <o for some i, n and a

exist almost surely, I introduce the concept of pseudo stationary equilibrium
with transfer payments.

A pseudo statiomary equilibrium with transfer payments is a vector
(p, (x4)> (%)), where p and the x; are functions from A to Ri and each

»; belongs to (0,0]. Notice that the A, may be infinite. (ps (%5), ()

i

must satisfy the following conditioms.
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11.7) (xi) is a feasible statiomary allocation.
a‘ui<xi (a))a)
11.8) for all i and a, sz = Kipk(a)5 for k=1,...,L,

with equality if xik(a) > 0.

I say that a pseudo stationary equilibrium with transfer payments,
(py(x4)5(;)), is nmon-trivial if N <@, for some i. Then, p(a) >> 0,
for a1l i. 1f (p,(xi),(ki)) is non-trivial and ‘Ki = o, then xi(a) =0,
for all a.

The lemma. before simply says that lemma 9.2 applies to pseudo-statiomary

equilibrium.

11.9) " lemma For almost every o € 3, the following is true. Let
(p,(xi)),(xi)) be any non-trivial pseudo stationary equilibrium for 34 (y)

with transfer payments. Then for any distribution of initial

money balancgﬁ‘ and for any a; € A’Min(p’xi;al""’an) <0,
for some i and some history Bpseecsd following
aq-

The proof of this lemma differs from that of (9.2) only in detail.

Since there are only finitely many subsets of {1,...,11, one

may fix the subset of consumers for whom Ki = . Those consumers
consume nothing. The rest of the argument is as 1in

section 9.



74

11.12) - Lemma Let si = 8§< 1, for all i. There exist p € R_I; > 0 and
r>0 with 0< < 5-1- 1 such that the following are true. Let (p, (xi))

be any monetary equilibrium with interest rate r  and let (ki) be the

1

vector of associated marginal utilities of money. If r < r< 5- -1, then

pn(al,...,an) = p and /\in(al,...,an) = A, for all i, n and all histories

Proof It is sufficient to prove that A and r exist as in the lemma.

For by lemma 6.4, I may let P ='b§-16: .

Let ¢ > 0 be as in the proof of lemma 7.15 and let )\ = ¢(1+ e)-l and

= 5-1(1+ 32)-1(1+2-132) - 1. By choosing ¢ sufficiently small, I may

assure that r > 0. C(Clearly, r< 5-1 - 1. Note that A 1is as in lemma 7.15.

Suppose that r= r< 5-1 -1 and let (p, (xi)) be a monetary equilibrium
with interest rate. r. Also, let (xi) be the vector of marginal utilities of
money associated with (p, (xi)). "By (2.12) or (2.14) there exists A > 0
such that .‘.in(al,...,an) = A, for all i,n and S AR Suppose that

A< M. I will show that

' .1 .k .
11.13) ,\in(al,...,an)g,\(1+4 ¢) , for all i, n and S ERRETLN

and for all positive integers k such that >\(1+2'1€2)k"1 <A

Clearly, (11.13) implies the lemma. For let k be such that

-1 2. k-1,
A

(1+2 7¢) <X and (1+27°%7)7 3 » A, By (11.13),
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-1 2.k .
ain(al,...,an) = (1+2 “¢") Az A, for all i,n and a5...,8,, as

is to be proved. i

I prove (11.13) by induction on k. (11.13) 1is true for k = 0, by

-12.k
the definition of A. Suppose that k is such that A(1+2 "¢) < A and
-1 2.k .
assume by induction that xin(al,...,an) = AM1+2 “¢7)7, for all i,n
-12.k
and a;;...,a . The proof of (7.26) proves that kin(al,...,an) = (L+e)(1+2 13 YN,

if wik(an) = §, for all k. But.then, as in the proof of lemma 7.15,

M@ a) 2 s DI1-0) + (141 A+271eH % = aa+271H M,

This
completes the induction step in the proof of (11.13) and hence proves the

lemma.

Q.E.D.

I now turn to the proof of theorem 4.4,

Proof of Theorem 4.4 By lemma 11.9, I may assume that (11.10) applies

to &(w). Let (pk,(xi)) be a sequence of monetary equilibria for #(y), the

kth having interest rate - By lemma 6.4, it is sufficient to show that

_ k '
11.14) if (p ,(xg)) is as in the theorem, then lim KF (a;;...,8 ) ==
1 e D 1 n

uniformly,

Ky . . .
where (mi) is the vector of marginal utilities of money associated with

(" ).
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Suppose that (11.14) were false. Then, there would exist a subsequence of

(pk,(xik)), call it (pk,(x?)) again, with the following property. There is
n < @ such that for each k , k k .ak ) = ~ , for some i and

N, (a ,..
1, 1 o k
a;,-..a . Since there are finitely many indices i and a , I may assume

that ik =i and a:k = ;1 , for all k . Also, (pk,(xik)) forms an equi-

librium when restricted to histories following alf,...,ak . Therefore, I

may assume that o = 1, for all k . In summary, I may assume that for

some i and 21, %%1(31) = XN, for all k . Without loss of generality, I may
assume that i =1 , so that k?l(zl) s N, for all k .

By a Cantor diagonal argument, I can prove that there exists a subsequence of

k k k ~ k — k -
(p {(xi)) such that pn(al,az,...,an), xin(al,az,...,an) and xin(al,az,...,an) all
converge for all i,n and for all histories L YRERFLN following 31. Let (p,(xi))

and (ki) denote the vectors of limits. It is easy to see that (p(xi),(xi)) is a géeudo

monetary equilibrium, except that it is definéd only for histories beginning
with Zl . (11.2) follows from lemma 11.12. (11.2) and (11.4) follow from the

fact that lim(l1+r )8 =1 .
ke k

I now show that I may assume the following.

11.15) For every i , either kin(Si,az,...,an) =@ , for alln= 1 and

f . . - -
or all histories al,az,...,an, or kin(al,az,...,an) < = , for all
2 I ] —_—

n =1 and for all histories al’a2’°"’an .

Clearly, (11.3) implies that the following is true.
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11.16) If xil(il) < «, then xin(El,az,...an) < o, for all 1i,n

- .
and 32; %

I now proceed by induction on i. Since xll(Zl) = X < o, (11.16) dimplies
that (11.15) 1is true for i = 1, Suppose by induction that (11.15) is
true for i =1,...,j-1< I. 1If kjl(zl) < @, then (11.16) implies that

(11.15)_ is true for . If A, (3,3),...53)) =a, forall n and

al’a2’°"’an’ then (11.15) 4is true for j. Suppose that le(zl) = » and
that xjn(El,az,...,an) < », for some n and IR Then (p,(xi),(Xi)) forms

a pseudo monetary equilibrium when restricted to histories beginning with

1

true for i = 1,...,j. This completes the induction step, and so I may assume

(Zl,az,...,an). Hence, I may relabel a_ as a, and I have that (11.15) is

that (11.15) 1is satisfied.

Now I proceed more or less as in the proof of theorem 4.3. Let
J = {i=1,...,I\.K11(31) < »}. By assumption, 1l ¢ J. For all ieg J, the
random variaﬁles xin(il,sz,...,sn) form a superma;tingalé. Hence, they
converge almost surely.

Now let K be as in lemma 11.11 where the A in lemma 11.11 is the
same as the X\ in lemma 11.12. Let the A of lemma 11.11 be such that
x> 2 M1 (51). Finally, let 7 = min {P_, | P, > 0, a,b, € A}.

Since the random variables kin(zl,sz,...sn) converge almost surely, there

exists N such that Prob [‘kin(zl,sz,...,sN,sN+1,...,sn)-kiN(El,sz,...,sN) |> K-l,

for some 1i¢ J and for some n > N] s, = 51] < 2-an . Next, observe

that Prob[xlN(al,sz,...,sN) = | s; = al] 2 1/2, since A >'2k11(a1) and

the random variables kln(sl,s ,...,sn) form a non-negative supermartingale.

2

These two inequalities imply that there exist a ..;a,. with the property

27" N
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that XIN(aI,aZ,...,aN) s %.. and Prob []kin(al,az,...,aN,sN_l_l,...,sn)

- -1 . = K
- xiN(al,az,...,aN)f > K ~, for some i€ J and some n> N | sy = ayl<T

, - - -1
Hence by the choice of 17 , fkin(al,az,...,aN,aN+1,...,an)-kin(al,az,...,aN)léK s
for all i € J and for all aN+1""’an following aN such that
N=ns= N+K . This contradicts lemma 11.11. This completes the proof

of theorem 4.4.

Q.E.D.
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12) Proof of Theorem 4.5

What follows is largely a reinterpretation of the argument given
by Arrow in his pinoeering paper [1].

I first prove that a stationary equilibrium exists. 1In order to do
so, I define a pure trade economy, @&, which represents, roughly speaking,
a cross section of the aconomy at one moment in time. The commodity

space of & 1is RLlA‘, where ‘A} is the number of points in A. I

LiA|

write x € R as x = (x(a)LIFA,Where x(a) ¢ RL. The initial

— .th . .
endowment of the 1 consumer is w; = (wi(a))aeA’ i=1,...,I. The

.th .
utility function of the i consumer is 2 ﬂaui(xi(a),a), where (ﬁa)
agA
is the stationary distributiomn on A.

By Debreu [21], p. 83, 4 has an equilibrium, (p,(xi)). By the
strict monotonicity of the function ui(- ,a), p(a) > 0, for all a.
Let p = (p(a)), where 7p(a) = Tr;lp(a). p(a) is well-defined, since

Ta > 0, for all a (see assumption 3.2). I claim that (p, 5-1 -1,(xi))

is a stationary equilibrium with deflation rate § ~-1. First of all,

z ﬁaﬁ(a)° x(a) = Iz p(a)-x(a) =p.x, for all x ¢ RL]Al. Hence , the
acA acA

fact that (p,(xi)) is an Arrow-Debreu equilibrium implies that for each

i, x4 solves the problem,

12.1) max { 2 ﬂaui(X)a)j X € RE‘A‘ and 3 ﬂ#ﬁ(a) c(x(a) ~gw. (@) = 0.
ag A ’ agA l

Clearly, p 1is a stationary price system and (xi) is a feasible

- -1 . .  q st
stationary allocation. Hence, (p, § - 1,(xi)) is a stationary equilibrium

with deflation rate § ~ -~ 1.



Suppose that § =1 and that (p,O,(xi)) is a statiomary
equilibrium with deflation rate zero. I prove that (xi) is Pareto
optimal. Let Ki > 0 be the Lagrange multiplier associated with the
maximization problem 12.1. Recall that the consumption program
;1 is defined by ;in(al,...,an) = x,(a), forall i, n and
al,...,an. I must show that (;i) is Pareto optimal in the sense of

~

(2.1). (xi) solves the first order conditions of the social maximization

problem,

KilE [ 2 ui(yin(sl,...,sn),sn)] | (yi) is a

I
12.2) max | I
i=1 n=1

feasible allocation},

for all values of N. For by the definition of Ki,

12.3) aui (xi(an)}an)
= Aipk(an), for all k, i, n and a

sz =

with equality if the xik(an) > 0.

(12.3) gives the first order conditions for a solution to (12.2). Since
the objective function of (12.2) 1is concave, it is sufficient to satisfy
the first order conditions. Hence, (;i) solves (12.2). This proves
that (xi) is Pareto optimal.

Suppose now that § < 1 and that (p,5-1- 1’(xi)) is a stationary
equilibrium (with deflation rate 5-1- 1). The proof that (xi) 1s Pareto

optimal is exactly as in the previous paragraph, except that (12.2) and

(12.3) become the two formulas below.



T

max { 2 A, E [
i

i=1 n=1

8

5% N, (7, (5y5-0058. 008 )] | (7)) is

I ra

a feasible allocation}.

n-1 - n-1 .
5 8ui(xi(an),an) = A8 pk(an), for all k,i,n and a_,

azk

with equality if 'xik(an) > 0.




13) An Example

The following example illustrates why special assumptions are needed in
theorems 4.2, 4.3 and 4.4. 1In the example, the Markov chain {sn} is c¢cyclic
and has two states. There are two consumers. One consumer has a relatively
high preference for consumption in one state, and the other consumer prefers
consumption in the other state. Therefore, there is a Pareto optimal allocation
in which each consumer consumes the entire endowment of both consumers when his
preferred state occurs. I call this allocation the alternating allocation.

I assume that no interest is paid on money. At first, I assume that the
consumers' rates of time preference zre positive and show that the alternating
Pareto optimal allocation is the allocation of a monetary equilibrium. Thus,
theorem 4.2 does not hold, and the example justifies the assumption made in
theorem 4.2 that each consumer always consumes something.

I next assume that each consumer's rate of time preference is equal to
the interest rate, which is zero. 1In this case, the alternating Pareto optimal
allocation is still that of a monetary equilibrium, so that the optimum quantity
of money is finite. This is so, even if the endowment functions are allowed to
vary over an open set. Hence, theorems 4.3 and 4.4 do not hold, and the
example shows need for assumption 3.10 in these theorems.

I now describe the example. A = {é,b}. The traasition probabilities are

defined by Pa’™ Pbb =0 and Pab = Pba = 1. Thus, the stochastic process

fsp} alternaties between a and b. The process starts at time 1 in

state a with probability 1/2 and in state b with probability 1/2. There
are two consumers and one good. The endowments are defined by _wl(a) = wl(b) =
wz(a) = wz(b) = 1. The utility functions are defined as follows.

ul(x,a) = uz(x,l) = 12 log (1+x), where =x is the quantity consumed of the

r

good. uy(x,b) = uy(x,a) = 3 log (1+x). The initial holdings of money are
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Mg = Mg = 1/2. Money earns no interest. That is, r = 0.
Suppose that 1/2 < 8 <1, for i =1,2. I claim the following is a
monetary equilibrium. The price system, p, is defined by pl(a) = pl(b) = 1/2
and pn(al""’an) =1, for alln>1 and for all ajs;--.,a . The allocation,

}a)

(Xl’XZ)’ is defined as follows. For all n and ayseeesa

2, if a = a
n

x (al,...,an)

in

0, if a_ = a

x2n(a1""’an)
2, if a_ = b.

It should be clear for n=> 1,

My (@pse.esa)

1, if a =Db, and

1, if a = a

M2n(a1""’an)

In order to verify that the above is an equilibrium, it is enough to
verify that each consumer satisfies the first order conditions for his optimization
problem. Since the consumers are symmetric, I need only deal with consumer 1.
It is easy to see that his marginal utility of expenditure, @ = (aln(al,...,an)),

is as follows. cgll(a) = B, Ccll(b) =2, If n>1, then
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]
o

It follows easily that his marginal utility of money is as foliows.

Ap(@) = 8. A (B) =4s . If n>1, then

4, if a = a
n

xln(al,...,a )Y =

]
o

451, if a

Finally,

E(Kl,n+1(al”"’an’sﬁ+1)] a = a)

It is easy to see that ay and kl satisfy conditions (2.8) - (2.10). TFor

2
instance, xll(a) =8> 48 = 51E[K12(a1,52) lal = a], and Mll(a) = 0. Also,

qll(b) =2<4 81 All(b) and xll(b) = 0.

It should be clear that the allocation (xl,xz) is Pareto optimal, even
though the rate of interest is less than the rate of time preference., Hence,
some special condition is needed in theorem 4.2

Now suppose that 51 = 8y = 1., Let the initial endowments satisfy the
condition 3/4 < wi(c) < 5/4, for ¢ =a,b and i = 1,2, Let the endowment
of money and the utility functions be as before. I claim that (p,(xl,xz)) is

a monetary equilibrium, where (p,(xl,xz)) is defined as follows.

p1(@) = Quy @), py(B) = Quy BN If n> 1,
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(@)™, if a_=a

Pn(aly"';a ) = 1
((Dl(b)) 5 if an =b

wya ) +wy(a ), if a =a
xin(al""’an) -
0, if a_=b
n
0, 1if an = a
xzn(al,...,an) =
ml(an) + mz(an), if a = b

It is easy to verify that this allocation is Pareto optimal in the sense

(2.1). Hence, theorems 4.3 and 4.4 do not apply.
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