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1. Introduction.

In a dynamic economy, the problem of estimating the wvalues
of durable assets (capital goods, inventories, and bonds) can
be extremely complex; and the efforts of economic agents to
solve this problem are a critical factor in the business cycle.
Leijonhufvud (198) has argued that the essential ideas of Keynes
must be understood in the context of a dynamic economic model in
which this problem is a central issue. Such-a model should be able
to show us how a shock in one sector of the economy can lead to
systematic misvaluations of assets in other sectors, and how these
misvaluations can endure for an extended period of time. The goal
of this paper is to develop a new model of this type.

To be most useful,a theoretical model must be simple enough
so that we can actually analyze or simulate interesting examples.
To achieve such simplicity, it is common in the theoretical
economic literature to assume either that there are no durable
goods, or that there is only one good, or that the economy is
in a steady state. Unfortunately, all of these assumptions
eliminate the whole question of how individuals learn the values
of durable intermediate goods. Thus, the main task of this paper
is to develop a new set of simplifying assumptions, to create
a tractable model of the dynamic economy with durable goods.

_ Our model will be a temporary equilibrium model in contihuous
time. The central assumption of temporary equilibrium (developed
by Hidks@ﬂéS); see Grandmont (977) for a survey of the literature)
is that, at every point in time, the individuals should plan
their current transactions so as to maximize their utility given
the current market prices and given their expectations about the
future, while the prices should always keep desired current sales

equal to desired current purchases. It is assumed that expectations



are some function of past experience, and may not prove to be

always correct.

Since we are studying a temporary equilibrium model, with
prices as the only market signals controlling individual behavior,
it follows that we are ruling out involuntary unemployment by
assumption, A more complicated model with quantity constraint
signals as well as price signals could give us a concept of mar-
ket'equilibrium with involuntary unemployment; for example, see
Barro and Grossman (1976), Dréze (197 5), and Myerson (1981).
However, involuntary underemployment can arise in
our model, depending on the state of expectations.

That is, our model may describe situations in which engineers are
driving taxicabs even though there is valuable engineering work
to be done. The key idea may be found in the suggestion of -
Leijonhufvud (1968, Chapter VI:1) that we distinguish between

the control and communication roles of prices. In our temporary

equilibrium approach, we assume that prices are flexible

enough to equalize desired sales with desired purchases at every
point in time, so prices do succeed in their role of controlling
the current balance of supply and demand. But we shall

see that, in a dynamic environment, prices may fail to
communicate to owners of durable intermediate goods how

these godds can best be used and how highly they should be
valued. This is the important fact which tends to be obscured

in static models and in dynamic models without durable goods.



The plan of this paper is as follows. In Section 2 we define
the basic parameters of our model, describing individuals, assets,
and the technology of production and exchange. In Section 3, ideas
from dynamic programming are used to show how an individual might
derivg, from his long-term objective function, a linear value
formula to guide his production and transactions decisions at a
given point in time. We then state our first main result: that
the there exists a unique market-clearing price for each actively
traded asset at any point in time. Section 4 develops a theory
of how individuals might actually compute their personal values
of assets, as they learn from past experiences; and Section 5
extends the theory from Section 4 to include the effect of in-
flation. In Section 6, we summarize our model, and we state
assumptions sufficient to guarantee existence of a temporary
equilibrium path for the economy, starting from given initial
conditions. Section 7 introduces the government
sector, In Section 8, we discuss the efficiency of stationary
equilibria. In Section 9, we discuss the dynamic behavior of our

model as a description of the business cycle. Section 10 contains
a simple example, illustrating how the model may be used. All

proofs are found in the Appendix.



2. Basic structures

We consider an economy with I individuals, numbered 1 to I.
Throughout this paper, we let i represent a typlcal 1nd1v1dua1.
To aV01d stockholder unanlmlty questlons, we ignore
firms in th1s model and assume that productlve actlvities
will be carried out by the 1nd1v1duals themselves using the capital

which they own. -

There are J+1 assets in our model, including money, goods,
and bonds. In our . notation scheme, money is asset number O.
The other J assets are numbered from 1 to J. Throughout this

paper, we let j represent a typical asset.

The flrst G assets are the {Phyacan goods, and the other J-G
assets are government bonds. Throughout, we let g represent a
typical : good, and we let b represent a typical class of
government bonds. Thus, g is always to be 1nterpreted as a varlable
ranging over g=1,2,...,G; and b is always to be interpreted as a
variable ranging over b=G+1,...,J.

aAll goods in our economy are assets, enduring througch time,
although some goods may have high rates of depreciation. For
31mpllclty, we assume that all goods depreciate according to a
simple exponentlal decay. We let cg be the rate of depreciation

for good g. We assume that cgzo for every g.

The bonds are denominated so that one unit of any bond gives
an income stream at the rate of one unit of money per unit of time.
For simplicity, we assume that each class of bonds is issued with
a constant redemption rate cb_O ‘"Equivalently, we could think of
C, an exponential depreciation rate for bonds of class b. If b is
a short-term bond then Sy should be a relatively high number; if
b is a long-term bond then y should be close to zero (equal to
zero for a perpetuity).

For any individual i and any asset j, we let xij(t) denote

the gquantity of asset j owned by i at time t. We write xi(t) to



denote the bundle of assets owned by i at time t, so

_ J+1
X (8) = (%5 (E) x4 (8) yenn,r x5 (E)) R .
We shall use a superscript-G to denote the subvector listing only
the components for the G physical goods, so

G _ G
xi(t) = (xi1(t)""’xiG(t)) eIE_.

Individuals may have a variety of production activities
available to them. We let yig(t) denote the net rate of production
of good g by individual i at time t. If i is consuming g (as a

productive input) then yig will be negative. The vector of net

production by i at time t is denoted

y,(t) = (yi1(t),...,in(t)).

The set of feasible production-rate vectors available to i at
any time t may depend on his current stock of capital goods.

Thus, to describe the production possibilities of any individual i,

f, there exists a

nonempty compact production possibility set Yi(xf), a subset of

IQG. Then i's production-rate vector yi(t) must always satisfy

the feasibility constraint:

we assume that, for every bundle of goods xg in R

(1) v, (6) e Yi(xf(t)).

Money and bonds are not produced by individuals in this model.
In Section 7 we will introduce the government sector, which can
introduce new guantities of money and bonds into the ecenomy. (Until
we introduce government monetary policy, it may be simplest to think
of our economy as having a fixed supply of perpetuities, and no
short~-term bonds.)

Notice that we speak only of rates of production at a point
in time. That is, we are assuming that in an infinitesimal period
of time only infinitesimal gquantities of assets can be produced,
so it is the rate of production per unit time which we must dis-

cuss.



Similarly, we shall assume that in an infinitesimal period
of time, an individual can only make infinitesimal sales or purchases
of durable assets. So at any moment, we can only speak of the rates
of sales and purchases per unit time. Foley ﬁ975) has also suggested

this assumption in continuous time models.

In most sectors of every modern economy, a sellér must hold
inventories in order to have a flow of sales. Similarly, in order
to make purchases, an individual must hold positive money balances
for some period of time. These basic facts are known to be important
in magroeconomic modelling, and yet they are usually neglected in
general equilibrium theory. The simplest way to introduce these
facts into our dynamic model is to assume that there exist velocity

constraints on the sales of assets and on the spending of money.

Thus, for every individual i and every asset j (including j=O0)
we assume that there exists a natural velocity constant, which we
shall call nij‘ For any nonmoney asset j, the constant nij is the

velocity of j-inventories for i. That is, the ratio of i's rate of

sales of j over i's inventories of j can never be higher than n; .o

even if there were unlimited demand. So, in order to sell asset j
at rate S, i would need to hold at least S/nij units of j in inven-

tories.

The constant n, is the velocity of money for i. That is,

0
the ratio of i's rate of spending over i's money-balances can never

be higher than n;ge

rate D, i would need to hold at least D/niO units of money, for

S0, in order to spend money for purchases at

liquidity.
For any nonmoney asset j, we let pj(t) denote the price of
" asset j at time t. (We shall ignore taxes until Section 7, so
buying prices and selling prices coincide.) We let Sij(t) denote

the rate at which individual i offers to sell asset j at time t,
and we let dij(t) denote the rate at which i demands asset j at
time t.



Given the velocity parameters,; the guantities sold and
demanded must satisfy the following constraints, for every indi-

vidual i, at every time t:

(2) sy (t) < myaxs(t) (3 =1,...,3),
J

(3) jil pj(t)dij(t) < nigX.q(t),

(4) s;5(8) 20, A5 (8) 20 (3 =1,...,3).

Condition (2) asserts that an individual's rate of sale of an

asset is limited by his current stock of the asset multiplied

by the inventory velocity factor. Condition (3) asserts that

an individual's total rate of spending for demand is limited by

his current stock of money multiplied by the velocity of money.
(Thus conditions (2) and (3) implicitly give us a transactions
demand for money and inventories. Clower (1967) has

proposed a constraint like (3) in his monetary model. Condition (4)

states the obvious nonnegativity constraints.

We have now described four ways in which an individual's
stocks may change: through production, depreciation, sales, and
purchases. Thus, the stocks of nonmoney assets change according

to the following differential equations:

(6) Xib(t) = -cbxib(t) - Sib(t) + dib(t)’
for all 4 = 1,...,I; g=1,...,G; b = G+1,...,J.

(Recall that, for bonds, the '"depreciation rate" cy is a

redemption rate.)
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Each individual i gets money flowing in from bond dividends and

from sales, while money flows out for purchases; so the differential

equation for X;g 1is
J J ()
(7) %, (t) = I x.(t) + I p.(t)S;:
1077 peger TP 3=1 ]
J
- I p.(t)d,.(t).

In a temporary equilibrium at any time t, two further conditions
must be satisfied. First, all individuals must choose their current
supply, demand, and production optimally with respect to their
preferences and expectations. Second, the individual transaction

flows must be in balance, so that total sales rates equal total
purchase rates:

I
(8) (E) = I 4d..(t) (3=1,...,J3).

S.
1 1J i=1  1J

o1 H

i

The market-clearing condition (8) gives us the J equations
which will determine the J prices at every point in time. But
first, the individuals' preferences and expectations must be
described, so that we can formalize the individual-optimality

condition. This task will occupy our next three sections.



3. Individual utility and values.

Let us suppose that, at any time t, each individual i
wants his long-term strategy of production and transactions

to maximize an objective function of the following form:
© -r.T G N

(9) \f e U. (x; (t+T1))drt
0 i Ticve

. G
" for some utility production function Ui:IZ++-IZ and some personal
discount rate r,.20. (e=2.718...). Notice that we assume that only
iz

pgasaEd goods can generate utility directly; endowments of money
G _
and bonds are not included in the vector x; = (Xi1""’XiG)’ so they

are desired only for their power to purchase G- J00dS .

(With some reinterpretation, our notation can accomodate the case

where utility is derived from consumption activities, as well as

from possession of goods. This can be done by introducing into

the model some artificial goods to represent recent recent consumption
activity. For example, if utility is derived from eating cake,

rather than from having it, then we could introduce an artificial

good to represent ''recently eaten cake': utility could be derived
from this artificial good, which in turn could only be produced

by destroying some cake. These artificial goods should have

zero transaction velocities (nig==0) and high depreciation ratesJ

For any t > T, and any ii in :mi+l, we let Vi(§i,t,T)
be the expected value of (9) if i uses an optimal (closed loop)
strategy of producfion and transactions from time t onwards,
subject to the constraints (1) - (7) and xi(t) = ii,
given i's expectations about future conditions as he

estimates them at time T.

Now let h be a small positive number, representing a short
time interval. Assuming Vi to be sufficiently smooth, the usual

dynamic-programming approach givés us the following:

(10) Vl (Xl(t) Eat)=

-r.h
= Ui(xf(t))h + maximum e ' -V, (x, (£)+%, (£)h, t+h,t)+o(h)
}.{' (t) . 1 1
1
= Ui(x(f(t))h+(1—rih)Vi(xi(t),t+h,t)
. _ ( g 3V, ,
maximum 1 . -
%, () 2o Bxij(Xl(t)’t+h’t)xij(t)h) + o(h).



The maximum in (1) is taken over all ii(t) = (iio(t),...,iij(t))
satisfying (1)- (7); and o(h) denotes terms going to zero faster
than h, so that oth)/h - 0 as h » O.

Equation (10) assures us that i can achieve an expected utility
payoff within o(h) of the optimum if he uses the following strategy:
between time t and t+h, choose production and transactions so as
to maximize

J BVi .
y s (%5 (£) ,t+h, t) xi.(t);

j=0  “%ij J

and after time t+h continue computing the optimal strategy (whatever
it may be) and use it. Thus, taking the limit as h + O, the opti-
mal strategy for i must be to choose production and transactions at

every time t so as to maximize

g BVi .
~— (x,(t),t,t) x..(t)
520 axij i ij

subject to (1)-(7).
We now define quantities vij(t) so that

v, .
_ 1 s
(ll) vij (t) e BX .(Xi(t)'t't) . (j - O,l,-.-,J)-

ij

We may call vij(t) the marginal value of asset j for individual i

at time t, since it is the per-unit increase in the long run objec-
tive function (9) which i could expect if he had slightly more of
asset j at time t. Using equations (5)-(7), we get:

J
(12) . _
z vig (t)xij (£) =

J
vig(t)yi () + z L. () (sij (t) - d; ()

i3 J

+
<&
‘—f.
~1
I 1y

xib(t)) -

vy (t)esx, . (£) .
b=G+1) j=1

1 3743
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The last two terms in (12) are constants which i cannot affect at

time t, since he only controls the yig’sij’
the optimal policy for i at any time t is to choose the Y;

and dij variables. So

S, .
. ' ' . g’ l]’
and dij guantities so as to maximize

G J

(13) gzl Vig(t)Yig(t) + jEl(vio(t)Pj(t) - vij(t))sij(t)
J

+ jZl(vij(t) - vio(t)pj(t))dij(t)

subject to conditions (1)-(4). Thus, to compute the optimal policy
for i, it is only necessary to know the J+1 marginal values vij(t).
It might be suggested that an individual at time t should
compute his marginal values from his subjective estimates of
future pricés. That is, for every asset j and every 1>0,
individual i at time t is supposed to assess some number or random
variable ﬁg(t+r), representing his estimate of what the price of
j will be at time t+t . Then i must solve the infinite-~horizon
optimization problem of maximizing (9) subject to the production
and transactions constraints described in the preceding section,
given his initial endowment xi(t) and given_his current
estimates of future prices. Using the methods of optimal control
theory or dynamic programming, this problem can (in principle)
be solved, giving i his marginal values and an optimal plan for
production and transactions. However, only the current recommen-
dations of this plan should actually be carried out, because at
any later time t+h individual i will generally have a new series
of future price estimates §§+h(t+h+1)° Thus he may have to solve
a different infinite-horizon optimal control problem at time

t+h, and at every other point in time!

This kind of analysis generally cannot give us a model of
the dynamic economy which is practically computable, and it is
doubtful whether the real individuals whom we want to describe
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can ever do these heroic computations either. But these computa-
tions are all based on subjective estimates of future prices, so

it is just as reasonable to assume that individuals form their
subjective estimates of the marginal wvalues directly.2 That is,
instead of assuming that individuals first estimate future prices
and then use these estimates to compute the marginal values, we

may simply assume that they estimate the marginal values vij(t)
directly, as some function of their past experience up to time t.
As situations change and as individuals learn from new experience,
individual i may update his estimated marginal values according

to some differential equation of the form

(14) ¥, (£) = Fy(x; (£), vy (€], p(t)),
where )
Vi(t) = (Vio(t), Vi1(t),...,viJ(t)),
p(t) = (py(t),...,ps(L)),
and Fi:I{iJ+2 +IzJ+1 is a function which is derived in some way

from i's objective function (9).

Once the Fi functions are specified, we will have a complete
medel of the dynamic economy. At any time t, individual i chooses
all sij(t),dij(t), and yij(t) quantities to maximize (13) subject
to (1)~(4), given xi(t),vi(t) and p(t). Equations (5)-(7) and (14)
describe how the endowments xi(t) and the values vi(t) evolve
through time. The prices p(t) are determined by the market-

clearing condition (8).

In fact, the market-clearing conditions uniquely determine

the prices, except possibly in inactive markets.

Theorem 1. Let t be fixed, and suppose that nonnegative

J+1

endowment vectors xi(t) in R and strictly positive value
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vectors vi(t) in I{iIT are given, for every individual i. Then
there exists a strictly positive price vector p(t) in I{i+ such
that the market clearing conditions (8) hold when all individuals
maximize (13) subject to (1)-(4). Furthermore, for any nonmoney
asset j such that i sij(t) # O (so that j 1is actually being
traded), the market-clearing price pj(t) is uniquely determined.
The price of an untraded asset may range over some closed inter-

val.

The proof of Theorem 1 can be found in the Appendix. However,
one key idea in the proof should be remarked here: it is the linear-
ity of the individuals' maximands (13) which makes our uniqueness
result possible. We have derived this linearity from the assumption
that only infinitesimal transactions are possible in an infinitesi-
mal time interval, which allowed us to consider only the linear
first-order local approximation to the value function Vi' Thus,
we have used the continuous time assumption in an essential way
here, even though Theorem 1 refers to market equilibria at only

a single point in time.

The problem of computing our market-clearing prices turns out
to be a linear complementarity problem. Myerson (1981) presented
an algorithm that computes these prices in finitely many iterations,

by solving a series of linear programming problems.
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4. Updating the values.

Equation (14) embodies the most important part of the dynamic
model, since it describes how individuals learn to evaluate
durable assets in terms of their contributions to utility maxi-
mization. If we only stated the general functional relationship
as in (14) then we would be evading the central problem of the
dynamic economy. On the other hand, to be more specific requires
some specific assumptions about learning behavior. In this section,
we examine one such set of assumptions, to get a specific form
for the Fi functions, based on the utility production functions
Ui and the personal discount rates r;. Hopefully, other alter-
native assumptions about learning behavior might be similarly

formalized in future research.

To devélop our value-update equations, it will be helpful
to begin with a discrete-time approximation to our model. So
suppose individual i makes his production and transaction decisions
in shdrt time intervals, which we may call "days," each day being
of length h > 0. On a typical day, at time t, individual i

begins the day with an endowment vector x.(t) in ]RJ+l and a re-

J+1
+ -
estimated marginal values was calculated on the previous day, so

we shall c3all it vi(t—h) to emphasize this fact. Individual i is

cently estimated marginal value vector in R This vector of

then confronted with the current price vector p(t), and in response
he must perform two tasks: he must plan his production and tran-

sactions, to determine the next day's endowment

x; (£ + h) = x,(£) + f{i(t)h,

as discussed above in Section 3; and he must somehow compute his

new vector of marginal values vi(t).




- 15 -

In this discrete-time approximation of the model, a natural
simplifying assumption'for us to make is that vi(t) should be computed
as a function of the previous day's value vector vi(t-h) and the
current price and endowment vectors p(t) and xi(t). This is a kind
of Markovian assumption. It asserts that all of i's information
about events up to time t-h 1is summarized by the sufficient
statistic vi(t-h), for the purposes of estimating the marginal
values of assets after time t. Equation (14) also implicitly

makes this assumption.

Now let us consider again the basic value equation
(15). Vv, (x(t),¢,t) =

G .
= Ui(xi(t))h + maximum(l - r.h)V. (x, (t+h) ,t+h,t) + o(h).
i1
xi(t+h)
To get an equation for the marginal value vij(t), we would like to
differentiate both sides of (15) (or (10)) with respect to xij(t)'
But this begs the question, how should i estimate the expected future
marginal value vy (x; (t+h) ,t+h,t)? 1In view of our Markovian assump-
Bxij

tion, we should look for some way to write the expected future marginal
values as functions of the most recent marginal values vij(t-h),
and of the current price and endowment vectors, p{(t) and xi(t).
In this context, the simplest assumption we could make is to sup-

pose that

oV,
i

(16).

57 (%3 (t¥h)  t+h,t) = v, (t-h)

ij
for all xi(t+h) in some open neighborhood of xi(t).

This assumption (16) is essentially an assumption of inelas-
tic expectations, since it asserts that today's expectations about
tomorrow's marginal values are independent of the new information
received today (p(t) and xi(t)). We can also think of (16) as a
no trend assumption. That is, if individual i believes that
his marginal values are fluctuating randomly around some long-run
stationary level, then any increase in the marginal value of an

asset from yesterday to today would lead 1 to expect a similar
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decrease in the future. Thus, he might expect tomorrow's marginal
values to be close to yesterday's marginal values, whatever today's
marglnal values might be. So let us investigate the implications
of assuming (16). We w1ll discuss some more sophisticated alter-
native assumptions later in this section and the next, but it is
easiest to start with (16).

To simplify our notation, we shall use the following abbrevia-
tion:

zt = max{0,z},

for any expression z. Also, we define a new function

G J+1
Wi.]R+ ><.1R+ -+~ TR such that

G .
(17) W. (x.,v.) = maximu ( 2 V. V. ).
e y.eY.(x. ) g=1 19719
That is, if the goods are evaluated using the v. ig values, then
W, (xl,v ) is the highest value of net production feasible for i
when x? is his stock of goods.

When assumption (16) is substituted into equation (10)
and the indicated maximization is carried out (using (1) - (7)),

it is straightforward to derive the following equation:

(18) V. (x,(t),t,t) =
= U, (x(l;(t))h+ (1-r;h)V, (x; (£) , t+h,t)
+ W, (x5 (£),v, (t=h))h
g +
+ jzl 1% (BB, (t—h)pj(t)-vij(t—hn
+ ?iiimumJ_(nioxio(t)h(v . (t- h)/p (t)-v (t -h)) )
J J
+ viole-h) () x (£)h - _Z vi4t-hleyx, (£)h+o(h).
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Now, assuming that the functions Vi, Ui’ and Wi are sufficiently

smooth, we can differentiate both sides of (18) with respect to

each guantity variable xij(t)' The results are as follows:
U, oW,
_ i G i G _
(19) Vig(t) = 5% (Xi(t))h-+§§f (Xi(t),Vi(t h))h
ig ig .

+ -—
+ nigh(vio(t_h)pg(t)-vig(t—h».+(l_(cg+ri)h)vig(t h) +o(h),

+
(20) vib(t) = vio(t-h)h-+nibh(vio(t-h)pb(t)-vib(t—h))

+ (l-(cb+ri)h)vib(t—h)-+o(h),

vij(t-h) N
(21) Vio(t) = max;:.mum (nioh (—?jﬂ)—— - Vio(t"h)) )

+ (l-rih)vio(t-h) + o(h),

for every good g and bond b.

Now we can return from our discrete-time story to our original
continuous~time model, by letting h go to zero. The (19)-(21)
equations become

. 3Ui c awi
(22) v. (t) = (x7(£)) + 5=
ig ig

G
ig 3%, (x5 (£) vy (£))

+
+Vnig(vio(t)pg(t)-vig(t)) -(cg+ri)vig(t),

(23) Vip () = vi (8) +n.y (v () py (£) - vy (207

(cb + ri)vib(t),
pj(t) io

v

(t) = maximum ( ( (t))+)-rivio(t),

j=1,...,d

(24) V. ;g

for every good g and every bond b. These value equations give us
a specific formulation of (14), as we had hoped for. Equation (22)
shows how an individual's value for a good derives from its direct

contribution to his personal utility, from its use in producing
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other goods, and from the sales income which it can provide. Equa-
tion (23) shows how an individual's value for a bond derives from
its power to provide dividend income and capital gains. And equa-
tion (24) shows how an individual's value for money derives from

its power to purchase goods and bonds.

More general versions of equation (l16) are straightforward to

analyze. For example, we might want to consider the assumption

V.
2 — = (1- (- .
(25) axij(x.l(t+h),t+h,t) (1 a)vij(t h) + oavlj(t),
for every xi(t+h) in an open neighborhood of xi(t). If we repeat

our analysis with (25) instead of (16), then we get the same
differential equations except that the left-hand sides
of (22)-(24) must be multiplied by (l-ai~

The case of o =2 might seem particularly interesting, since this

is the projected-trend case, with

vij(t+h) = vij(t) + (vij(t) - vij(t—h)).

When o > 1, however, the resulting differential equations
tend to be highly unstable.

In differentiating (18) with respéét to the xij(t) variables,
we were able to treat the vij(t—h) marginal values as constants
because (16) was assumed to hold in an open neighborhood around
xi(t), so that

5%V,

(26) SEIE%EEI(xi(t),t+h,h) = 0,

for any assets j and k. That is, we assumed that i's estimated
future marginal values are insensitive to small changes in his en-
dowment. This insensitivity assumption is technically necessary
as long as we make our simple first-order Markovian assumption:

- that the recently estimated marginal values vij(t-h) summarizes

for current purposes everything which i has learned about marginal
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‘values up to time t-h. In a more sophisticated learning model, we
might suppose that each individual at every point in‘time computes
estimates of all first and second derivatives of his value function;
then the natural analogue of (16) is to suppose, at time t, that
the expected value function at time t+h should be quadratic, with
first and second derivatives equal to those recently estimated

at time t-h. We leave further analysis of such second-order learn-

ing models to future research.

5. Effects of inflation.

In deriving the value-update equations (22)-(24), the essential
assumption was embodied in equation (16). We assumed there that,
on any "day", the individual uses the marginal values calculated
"yesterday" to estimate the value of the assets which he may
hold "tomorrow". In effect, this amounts-to assuming that indi-
viduals project their experiences from the recent past into the
near future, without considering any general trends which might
make the future different from the past. In this section, we re-
vise these formulas to account for the effect of perceived in-

flationary trends.

Let us suppose that at any point in time, there is some
number a(t) which is the expected inflation rate, based

on the rate of price changes throughout the economy in the recent
past. This expected inflation rate may affect individuals' wvalue °
estimates, especially for money and bonds. Thus, our value-update
equations should be revised to include a dependence on a(t), so

that our general equation (14) becomes:

(27) {zi(t) = F, (x; (£),v; (£),p(t),a(t))
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In the presence of a perdeivgd inflationary trend, it is
still reasonable for an individual to use the marginal value of
a physical good yesterday to estimate the value of that good
tomorrow. To see why this is so, observe that these values are in
terms of contribution to long-term utiiity maximization, so that

the marginal values are in units of personal utility per unit of

asset. When the asset is a physical good, there is no reason to
believe that the marginal value should vary systematically with

the price level.

However, the individuals must recognize that money and
bonds (which are denominated in money-units) ultimately contribute
to utility only through the power of money to purchase goods.
Thus, a general increase in the prices of goods should cause a
proportionate decline in the utility-values of money and bonds.
When the current infiation rate is a(t), then the price level
should be expected to increase by a factor of (1+2a(t)h) during
the interval between time t-h ("yesterday") and time t+h ("tomorrow"),
and the marginal values of money and bonds should be expected to

decline by the same factor. To account for inflation, therefore,

each individual i may use the following formulas to estimate "tomorrow's

marginal values:

3V,
1 = -
ig
V. v.., (t-h)
(29) : 1o(x, (t+h), t+h,t) = ib ,
%Xib 1+ 2a(t)h
V. v. . (t=h)
(30) axl (x (t+h), t+h,t) = 10 ,
i0Q . 1+ 2a(t)h

for any good g, any bond b, and any endowment vector xi(t+h) in some
open neighborhood of xi(t). That is, (19) should be revised divid-
ing the expected marginal values of money and bonds by (l+2a(t)h).
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It is now straightforward to repeat the analysis of Section 4,

replacing (16) by (28)-(30). The analysis is the same, except that
the marginal values for money and bonds at t-h must be multiplied
by a factor of .

(1+2a(t)h) "' = 1-2a(t)h + o(h)
throughout egquations (181—(2119'Then the final result is to give

us the following value-update equations, replacing (22)-(24) =:

3U. W,
. G i G
(31) ¥y (6) = g (xg (£)+ 5= (x5 (£, (£))

ig ig

+
- - . (t) ’
+ nig(vio(t)pg(t) vig(t)) (cg+ri)vlg

(32) v, (£) = vio(t)+nib(Vio(t)pb(t)—vib(t))+ - (cb+ri+2a(t))vib(t),
. . Vij(t) +

(33) vio(t) = ?iﬁlmumJ (nio( Pj(t) - vio(t)) ) - (ri + 2a(t))vio(t),

for all goods g=1,...,G and all bonds b=G+1,...,J.

Suppose that the individuals derive their inflation expec-
tations from some aggregate price level index published by some
government statisticians. Specifically, suppose that the statis-

ticians compute the cost of some standard bundle of goods

(Bl,...,BG), and they report their findings with some reporting lag

A > 0. Then, at time t, the statisticians report an aggregate
price level index, '

G
Q(e) = I Bgpg(t-h).

g=1

The simplest way to derive inflation expectations from Q(t) would
be by an adaptive expectations formula:

(34) a(t) = r (&) _ a(t)).
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where ry > O is the rate of adaptation of inflation expectations.
However, there is a mathematical difficulty here, because the
aggregate price level might not be a differentiable function of

time. Consider, therefore, the following pair of equations:

G B
(35)  a(t) = rga(t) (log( ] B_p (t=2)) - log(a(t))),
, TgR1 99
(36) al(t) = gl{t)/g(t).
(Here log is the natural logarithm, base e.) It is easy to check

that (35) and (36) do imply (34), when the aggregate price level
is a differentiable function of time. The guantity g(t) may be

interpreted as a kind of geometric mean of the recent price levels.

For the theoretical analysis of our model we shall use (35)
and (36) to determine the expected inflation rate. However, in
practical simulations it might be easier to use some discrete-

time approximation based on (34) instead.

We shall see that a positive lag A is needed to guarantee
that the differential equations in our madel do not diverge to
infinity in finite time. It might seem inconsistent to assume
that individuals respond directly to the current prices when they
plan their transactions, but that the individuals have a lagged
response to the price level when they form their estimates of
inflation. However, these assumptions can be justified without
inconsistency if we recall that our model is intended only as
an aggregated representation of a huge economy with great diversi-
ty of products and regions. In practice, any individual at any
point in time will only need to check a few local prices to select
his current transactions. On the other hand, he might also feel
that the general price index can give the best information about
overall inflationary trends, because this general index assimilates
information from all sectors of the economy. And since the general
index of prices depends on a broader data base, there might well
be some reporting lag for the general index, even though each

individual can check without lag the current prices most important
to him.
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Even with A > O, the economy may tend to get caught in accel-

erating inflationary or deflationary spirals, if Ty is too large.

To prevent such extreme instability in our models, the expecta-

tions adaptation rate r, should generally not be chosen much lar-

0]

ger than the individuals' discount rates r,. Choosing r. < r.
- 71

0
guarantees that the process of learning to perceive inflation (or
deflation) will not proceed faster than the other learning pro-

cesses embodied in the value-update equations (31)-(33).

6. Existence of temporary equilibrium paths.

One basic requirement which our model must satisfy is that
it should be logically consistent, in the sense that there do
generally exist solutions to the equations we have written down.
In this section, we summarize our mathematical model and we state
assumptions which are sufficient to guarantee existence of the

temporary equilibrium paths described by our equations.

The basic paremeters which have defined our economy

may be listed as follows:

- \J J I I
G
ro, (Bg)g=1 r>\) .
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At any time t, the state of the market is described by the

following quantities:

J J I
(38) (((Xl] (t)lvij (t))j=o’ (Sl] (t)’dij (t))]=1 4 (y (t))g—1)l 17’

(p (t)) , a(t),alt)),

For each i, the Yy (t), s: (t), and d (t) gquantities are .
chosen to maximize (13) subject to (l)-(4), given the

p (t), ] (t), and Xs (t) quantities. The prices p (t)

are impliCitly determined by the market-clearing equations (8)

(uniguely, according to Theorem 1). The X (t) Vi (t), and g (t)

. quantities are determined through time by the differential
equations (5)-(7), (31)-(33), and (35). The expected inflation -
rate a(t) is defined by (36).

Mathematically, it may be too much to ask for the differential
equations in our model to be satisfied at all t, because the right
hand sides may have jumps at some points in time. Thus, we can
only ask that the x,., v,., and g quantities should be absolutely

1] ij’
continuous functions of time, and that these differential equa-

tions should hold at almost all times t>0. With this one qualifi-

cations, we say that a temporary equilibrium path for the economy

E is any solution to the equations and maximizations described

above, over all t=0.

A set of initial conditions for the economy must specify

nonnegative values for all X, (O) and ] (O)'(for every i=1,...,1I
and j=0,...,J), for g(0), and for the recent aggregate price levels
G

z ngg(t) as a function of t in the interval -Xist<O.
g=1

We may now ask, when does there exist a temporary equilibrium path

satisfying given initial conditions?



In order to prove existence, we need to make several assump-
tions about the economy and the initial conditions. Our first
assumption guarantees that the Ui term in (31) will not cause vig
to diverge to infinity or below zero within finite time.

Assumption 1 For every i, Ui:IQE +R is continuously differen-

tiable, with bounded nonnegative derivatives.

Our second assumption guarantees that the Yy vectors are
always well-defined, and that they never cause xig to go below

Z2€Xxo.

Assumption 2 For every i, and every xG in IRG : the set

Y (x ) is nonempty, compact, and convex, and the point-to-set

correspondence Y (.) is continuous on:[R+ For every i and g, there

exists a constant X such that, for all xf in I{f and all Yy in

Yi(xi), ylg>-kx g° (That is, rates of input consumption are bounded

in proportion to the available stocks.)

Our third assumption also refers to production. It assures us
that the Wi term in (31) is well-defined, and cannot cause vy to
diverge to infinityor to zero. Furthermore, it also implies “that

the yig term in (5) cannot drive xig to infinity within finite
time.

Assumption 3 For every i and g, the derivative zW% is well-
i
defined and continuous on :R§+(J+1), and there exists soie bound
K such tgat, for every (x?,vi) in IRG+(J+1),
0 < sgi—(xf,vi) < K % Vlg'
ig g=1

Our fourth assumption refers to the initial conditions, and
guarantees that prices will be well-behaved.

Assumption 4 For every i=1,...,I and every j = 0,1,...,J,
.(O)>O and if n.j>O then x..(O)>O. ‘Furthermore, the recent
general price levels I B P (t) are bounded away from O and =

g-g
and are continuous on E&e 1nterval —) <t <O0.

7
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Finally, we require that the inflationary expectations

feedback must have some lag.

Assumption 5 A>O0.

Theorem 2 Given an economy and initial conditions satisfying
the five assumptions above, there exists a temporary equilibrium

path (over all t=0) satisfying the given initial conditions.

The proof uses a general existence theorem for multivalued
differential equations due to Lazota and Opial (1965) (see also Henry (’973)),
and is presented in the Appendix. The proof relies heavily on the

fact that, at any poin? in time, the xij(t) and Vij(t) deter-
mine an (essentially) unique equilibrium price vector and a con-
vex set of equilibrium supply and demand vectors, which depend
upper-semicontinuously on the xij(t) and vij(t) state variables.
This fact is necessary because the Lazota-Opial theorem re-
quires that the right-hand side of the multivalued differential
equation must be a convex-valued upper-semicontinuous corres-
pondence. The essential problem is that, if the set of market
equilibria were not convex, our economy might tend to chatter
with infinite frequency between two temporary equilibria.
Researchers who wish to investigate other ways to formulate
models of temporary equilibrium in continuous time should be
aware of this need for a convex set of market equilibria (given
endowments and expectations), if the Lazota-Opial existence
theorem is to guarantee that the model's differential equations

can be meaningfully solved.



7. The government sector.

The government can be introduced as one more individual into
our model, as individual i=0. However, the government is unlike
other individuals in that it can create new money and government
bonds. Furthermore, the government's spending and sale of bonds
are not determined by - any utility function, but rather must be

thought of as exogenously specified policy instruments.

In an economy with government, we let.doj(t) denote the govern-
ment's net rate of demand for asset j at time t (where j is any
nonmoney asset). In our simple model we may assume that the govern-
ment can buy or sell bonds, but can only buy goods. (We may ignore
public goods, which are not marketed.) Thus, for any good g and

bond b, we have

dog(t) > 0, (t) unconstrained.

dOb

When dOb is negative, _dob is the government's net rate of sales of new

bonds of class b. With government transactions, the market clearing
condition (8) becomes: -

I I
(8') i s;5(t) = i

i=1 i

. dij(t) + dgy (t) (j=1,...,J).

1 J

Obviously, (8') cannot be satisfied if the government demands
any asset faster than the maximum rate at which the private sector

can'supply the asset, so we must have

I
(39) doj(t) < .E nijxij(t)'
i=1
for every nonmoney asset j. If the government's demand rates are

given as continuous functions of time satisfying (39), then the
existence results in Theorems 1 and 2 can still be proven when

(8) is replaced by (8').
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The government could also introduce taxes or subsidies into
the transactions process. A tax or subsidy on a nonmoney asset

j can be described by a function 6.:R_ > R, such that Gj(pj)

J + _ _
is the price received by sellers when buyers are paying price pj
for j. So if the government puts a tax Gj on asset j, then we

should replace pj by ej(pj) throughout the supply side of our

model, that is, whenever pj is multiplied by nij or Sij’
Again, with appropriate assumptions about the tax functions ej '

our existence results can still be proven.

8. Efficiéncy of stationary equilibria

An important purpose of macroeconomic modelling is to help
us understand what kinds of problems the unguided economy can get
into. In this section, we consider the question of whether our
economy can become caught in a permanent state of depression or
Pareto inefficiency. We shall consider an economy with no govern-
ment taxes or spending, -fixed money supply, and no government

bonds. Thus G=J in this section.

Of course, questions of efficiency depend on what standards
of ideal efficiency are used for comparison. The simplest standard
to use for our current purposes is efficiency among feasible

stationary states. A real feasible stationary state for our

economy is any collection of vectors

G I I
((Xilyi))i=1 - ((xi1l°"IXiGIYi1I"‘Iin))i=1
such that
: G . :
(40) yieYi(xi) (for all i=1,...,I),
(41) i (yig—chig) =0 (for all g=1,..,G),
(42) vy (for all i and g).

ig %g*ig® ig¥ig
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As usual, x? is i's bundle of goods and Yy is i's vector of
production rates. Constraint (40) requires that each individual's
production must be feasible for him at his given endowment. Con=-
straint (41) requires that total production of each good must
equal total depreciation, so that the aggregate endowment can

be maintained. Constraint (42) derives from the inventory velocity
constraint, that deliveries of good g from i to other individuals

cannot be made at an average rate of more than n; . Presumably

X,
g 1ig
these inventory velocities are based on the need for inventories

in the delivery system, and do not depend on the form of the market

organization, whether our monetarized price system is used or some
other system of barter or centralized command. Then (42)_says that,
in a stationary state, an individual's net rate of production

minus depreciation cannot exceed his maximal rate of deliveries

to other individuals (otherwise his endowment would haveéto in-

crease over time).

An efficient stationary state is a real feasible stationary

state (x(i;,yi)i__1 such that there exists no other real feasible
. ) AG ~ I : AG G .
stationary state (xi,yi)i=1 such that Ui(xi)zUi(xi) for all i,

with at least one strict inequality.

A stationary equilibrium is any temporary equilibrium path,

as defined in Section 6, such that the state of the market,"as
described in (38), is constant over time. We say that a stationary

equilibrium is stationary-efficient if its xig and yig components

form an efficient stationary state. We can now present our basic

efficiency result.

Theorem 3 Suppose that, for all i, ri=O, Ui is a concave

funétion, and the set

G G
{(x{y) | vy €Y, (%))

is convex. Then any stationary equilibrium is stationary-efficient.
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Thus, Theorem 3 tells us that our economy cannot get
permanently trapped in an unchanging inefficient state, if

all individuals use negligibly small discount rates.3 So we

cannot hope to account for major depressions as stationary
equilibria in our dynamic model. But this is precisely the ar-
gument from Leijonhufvud (1968) which was cited at the beginning

of this paper: that we must try to understand depressions and
underemployment as part of a dynamic economic process or business
cycle. That is, we should be less concerned with the study of
stationary equilibria; instead we should ask: what can go wrong
in the changing dynamic economy, and how long are the natural
corrective adjustments likely to take? We discuss these qﬁestions

in terms of our model in the next section.

9. Dynamic adjustments and the business cycle.

To see what can go wrong in our dynamic economy, the best
place to start is by looking at the initial conditions. The
initial conditions in our model consist of the initial endow-
ments and marginal value estimates of goods, money, and bonds
for all individuals at time.zero, and some data about recent
price levels before time t=0. It is not fruitful for economists
to think of the initial endowments as "wrong," since these are
part of the physical realities with which the economy must cope.
However, we certainly can speak of misadjusted value estimates,
which may be either too high (bullish) or too low (bearish);
and the recent price levels may embody inflationary or deflation-

ary momentum.

For example, suppose that an economy has a unique efficient
stationary equilibrium path, for a given set of initial endow-

ments. Then we may say that an asset j is undervalued (or

.overvalued) by individual i if his marginal value vij is below
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(or above) the corresponding marginal-value in the stationary
eqguilibrium path. With arbitrarily'chosen initial values Vij(o)’
it is easy to construct examples with large initial -undervalua-
tions or overvaluations. The temporary equilibrium paths which
follow from such misadjusted initial value estimates may be

very inefficient, with too little production of goods which

are relatively undervalued, etc.

However, it is certainly not very deep to observe that
individuals may make serious economic mistakes if their expec-
tations about the future are wrong; what we want from our model
is to help us keep track of how such errors may develop and how
long they are likely to last in a complex economic system. So
we must consider the guestion of how guickly do individuals ad-
just their values, as they try to learn from their environment.
This is where prices play their communicative role, as we dis-
cussed in Section 1. So let us now consider the value-update

equations, which describe the learning processes in our model.

If pgvio>vig’ then equation (31) becomes
BUi BWi
. axi + X, + nigpgvi
(43) v, = (c_+r.+n. ) g 19 - v, .
19 g + 19 C_+r, +n 9
g i ig
If pgviosvig’ then equation (31) becomes
SUi SWi
. axig + axig
44 V. = (c_+r., - . .
4) vig = (ogtry) | — Vigl
g ~i

Thus, if i is selling good g, and if the inventory velocity n,
i

is high, then (43) tells us that vig should rapidly converge
towards

. U, oW,

) (e (x%) + —2 (xC,v.) + n. pv. ).
cg+ri+nig axig i axig i’'i lgpg lO)

(45) (
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If i is not selling good g, then (44) applies, and we see that

vy must converge towards

al, oW,
1 i G i G
—=) ( (x;) + (x.,V:)),
cg+ri axig i axig i’ i

(46) (

during any period in which this quantity is stable, and the rate

of convergence is proportional to (cg+ri). Thus, the slowest values
to adjust are those of durable goods which are not being offered
for sale, and their adjustment rates are as slow as the sum of
their depreciation rates plus the individual's discount rate.

For major capital goods, these rates could easily permit serious

misevaluations to last for years.

There are many cross—-effects between values in our dynamic
system. One individual's values can influence other individuals'
values, through the effect of his demand and supply decisions on
prices. And a particular individual's value for one good can
influence his value for other goods, through the iyi__(xG v.)

axig i’’i
terms. Thus, one individual's undervaluation of a durable good
can distort the stable values of (45) and (46) for other goods
and other individuals, so that even relatively nondurable goods
may also suffer prolonged undervaluation. These secondary under-
valuations cannot be corrected until the durable good's wvalue
adjusts first. Value estimates for durable capital goods thus
play ' a central role in our picture of the business cycle, just

as they do in the Keynesian model.

There cannot be involuntary unemployment in our model, since
we have assumed that prices always balance effective supply and
demand. However, when dﬁréble intermediate goods are undervalued,
then other resources may be underutilized because effiéient round-
about productive processes are not used. For example, architects
may be involuntarily underemployed as unskilled workers when the

buildings they could design are undervalued. Also, there may .
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be voluntary unemployment of resources if the suppliers of these
resources consider the current prices too low. For example, sup-
pose that individual i produces good g, but the good has no use for
him in either utility or production; that is,

BUi oW,

= 1 =
3% T 5% 0. 1If pg and Vio have been stable long enough, then

ig ig
we should find (approximately)

Vig = (n igPg lo)/ i +ri+cg).

Now if the price suddenly drops to ﬁg’ where

pg < nigpg/(nig4-ri+-cg)

then i will refuse to sell g until vig(t) falls below pgvio.
During this period when i does not sell g,

vlg(t) = —(cg%—ri)vig(t) .

If Vio is constant, then i will refuse to sell g for a period of
length

loq(pg/ﬁg)-log((nig+ri+cg)/nig)

. +c
rjteg

The lower cg is (or the more durable g is), the longer this

period of voluntary unemployment will be.

People often search for weeks or months looking for a job,
refusing to work at wages which they consider too low. This ob-.
servation suggests that labor should be thought of as a moderate-
ly durable good, in applications of our model. That is, it is
not daily labor which is sold on the labor market, but rather it
is labor service contracts expiring over a period of months which
are sold. Obviously, we cannot fit labor exactly into our ideal
of a perfectly divisible.good with exponential depreciation, but
the best approximation for macroeconomic modelling purposes may
be to assume that labor is sold in units which depreéiate over
the course of several months. |
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Voluntary unemployment of money can arise in the same way
as voluntary unemployment of goods, and represents a form of
liquidity trap in our model. That is, if an individual's marginal
value of money Vio is higher than vij/pj for all j, then he begins
to hoard his money (all dij=O), and (33) becomes

éiO = - (r;+2a)v, .
If prices are stable, then the required decline of Vip May be
quite slow, if ri is small. But matters can be even worse, be-
cause i's hoarding may tend to drive prices down, and the re-
sulting deflation makes a(t)<O, which further delays the downward

adjustment of Vin® So an overvaluation of money may endure

o)
for an extended period of time.

The problems of inflationary and deflationary momentum can
also be observed in our model. In equations (35) and (36) we
explicitly assume that individuals develop their perceptions of
inflation gradually, averaging the rates at which the price
level has changed over a broad period of recent history. The
lower r, is, the broader is the period considered. The result
is. that inflationary expectations take time to develop, but they
also take time to be extinguished. In the initial conditions,
if g(0) is chosen low enough then the economy will start with
an inflationary momentum, becauée a low q(O) represents a memory
of low prices in the past. Inflationary expectations interact
with the real sector of the economy through the effect of a(t)
in (33) on the estimated marginal value of money, which in turn
influences decisions to buy and sell.

In the real economy, there are technological changes and exo-
genous political events, etc., which can affect expectations and
create new misevaluations at any time (not just in the "initial
conditions"). To account for such phenomena, stochastic terms could
be added into our production functions and value-update equations.
With suitable random disturbances added in, our model could effec-
tively simulate the endless process of economic adjustment which
is the business cycle.
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10. Example

To illustrate the way in which our dynamic model may be used, let us consider

a simple example of an economy with two individuals (I=2), two goods, and no bonds
(J=G=2). In this example, the individuals produce goods at the following fixed

rates:

=20, vy =0,

12 Vo1 = 05 ¥y, = 1235

11
so that only individual 1 produces good 1, and only individual 2 produces good 2.

The individuals' utility functions are

G = 1.1x

G
U (x1 ) = .35x 9 ) 917

1 U

o (%

12°
so that each individual derives all his utility from consuming the other indivi-
dual's product. The individual discount rates, depreciation rates, and transaction

velocities are as follows:

r. =r, =.1,c. =1, ¢, = .25, and all nij =1,

Notice that good 2 is more durable than good 1, since good 2 has a lower depre-
ciation rate.
Suppose for now that the total supply of money in the economy is 20. Then

the economy .has one stationary equilibrium, which is as follows:

7 = = = = = ., =
47 X0 10, X1 10, X9 40, Vio .909, Vi1 433, Vi, 1,
x20 = 10, Xy = 10, Xy, = 10, v20 = .909, v21 =1, Voo = .673, -
Py = 1, S11 = d21 = 10, P, = 1, Syo = d12 = 10, a = 0.

That is, individual 1 sells good 1 to 2, individual 2 sells good 2 to 1, and both
individuals are selling and buying at the fastest transaction rates allowed by
the velocity constraints (2) and (3). To check that this equilibrium is indeed

stationary, observe that all derivatives in (5), (7), (31), (33) are zero. For
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example, (33) becomes
v

- 12 . =1L . =
Vio = i (p2 le) (r1 + 23) Vio = 1(1 .909) (.1+0).909 = 0
so that Vip = .909 is a stationary value.

Let us investigate how such an economy would respond to an increase in the

money supply, caused (perhaps) by an unexpected one-time cash grant from the
government to the individuals. To simulate such a shock, we let the initial
conditions Xij(o) and vij(O) be as in the stationary equilibrium above (47), ex-
cept that the initial endowments of money are changed to xlO(O) = xzo(O) = 20.

Initially, the expected inflation rate is set at a(0) = 0, and a(t) is updated

through time using equation (34), with rO =.1, A= 0, Bl = 82 =1,

Figures 1, 2, and 3 show the paths of adjustment to this doubled money supply.4
The quantity variables xij(t) are not shown because they remain constant at their

initial values Xij(o)’ as do the Si' and dij variables. Also, each individual's

value of his consumption good remains fixed at v

e 12(8) = vy (®) = L.

insert Figures 1-3 here

The process of adjustment to the doubled money supply can best be described
in terms of four stages. The first stage is the initial shock, at t = (0. The

prices of both goods immediately jump from 1.0 in (47) to pl(O) =p.(0) = 1.1,

2

These are the highest prices at which each individual is willing to buy his
consumption good. That is, these prices are determined by the equations

v v

P1V1o T V127 P2Vz0 T Vo’
so that each individual is indifferent between buying his consumption good and
saving his money. Thus, most of the new money is simply hoarded, and does not

affect supply and demand.
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During the second stage, fromt = 0 to t = 3.7, each individual gradually

learns to lower his estimated value of money Vlo(t). This decline in the wvalue of

money causes an increase in prices, which causes the estimated inflation rate
a(t) to increase, which in turn accelerates the fall of the estimated value of

money. Throughout this period, the equations plle = v and p2V'2o =v con-

12 21

tinue to hold, so that individuals are willing to hoard the excess money. These

excess cash balances, = 20 - 10p2 and n 20 - 10pl,

"10%10 ~ P2912 20%20 ~ P2d21 =
diminish to zero at t = 3.8, when prices reach Pp =Py = 2., During this period

of rising prices, each individual also becomes more optimistic about the value of

" the good which he sells, so that Vll(t) and vzz(t) both rise to a maximum of 10%
above their stationary equilibrium values. .

In the third stage, from t = 3.7 to t = 7.0, prices are constant at the new
"correct' level of Py = Py = 2, but the estimated values of money,.v10 and Vo0?
continue to fall. The stationary equilibrium value for money wogld be v g = vy
= .455 with our doubled money supply, but the values of money overshoot this level
and drop to a low of .421 at t = 7.0. This undervaluation of money occurs because
of the memory of past inflation, embodied in a(t), which causes individuals to be
more pessimistic about holding money than they would be in a stationary equilibrium,
The decline in the estimated value of money also leads each individual to become
more pessimiétic about the wvalue of the good he sells, so that Vll(t) and V22(t) drop
to a minimum value of about 77 below their '"correct" stationary equilibrium values.

During the fourth stage, after t = 7.0, the expected inflation rate decreases
slowly to zero (following an exponential decay curve with parameter ry = .1).

This decay of a(t) represents the gradual fading of memories of inflation. As

a(t) approaches zero; the estimated values of money and of goods sold gradually

rise to their stationary equilibrium levels.



- 38 -

Throughout this process of adjustment, there has been no real welfare effect,
because the xij(t) quantities have been constant at their stationary equilibrium
levels. However, this constancy is mainly due to the fact that individuals have
fixed production vectors. Suppose, for example, that we revised the example and
we allowed individual 1 to increase production of good 1 (making y11 > 20) but
at a High cost in terms of good 2 (so that Y19 < 0). Then, when vll(t) rises
above its stationary value, individual 1 would tend to increase his rate of
production y,;. Similarly, we could easily revise the example so that the later
decline in vll(t) would cause y11 to fall below the stationary-equilibrium rate.:
Thus, we should interpret the Vll(t) and v22(t) paths as suggesting that there may
be an initial period of overproduction followed by a later period of underproduction,
during the process of adjustment to an increase in the money supply.

Consider now the results of halving the money supply in our simple example,

as shown in Figures 4 - 7,

insert Figures 4-7 here

These results were computed using the same initial conditions and update formulas
as in the preceding case, except that the initial money balances are now xlO(O) =5

and x20(0) = 5. The variables not shown in the graphs, x s X

10° *20° *11° *21° V127
Vo1 and $11 d21, all remain constant over time at their initial levels.

In many ways, the response of our economy to halving the money supply .is
roughly a symmetric reflection of the doubling case, passing through four similar
stages. For example, Vll(t) first falls below and then later rises above its
stationary equilibrium level, simply reversing the sequence we saw in the doubling
case. (It may be worth noting that the amplitude of these variations is signi-
ficantly larger in the halving case, however.)

There is one important qualitative difference between the two cases. Unlike

the doubling case, we find real changes in supply rate Soo after halving the money
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supply, and these changes cause individual 1 to suffer real welfare losses.

To understand the S99 depression, observe first that, in the initial conditions,

individual 2 is unwilling to sell good 2 for less than VZZ(O)/VZO(O) = .740; by

contrast, individual 1 is initially willing to sell good 1 for any price down to
vll(O)/vlo(O) = .476. Thus, in the initial shock when the money supply is halved,
the price of good 2 can only drop to p2(0) = .74, while the price of good 1 can

drop immediately to its stationary equilibrium level of pl(O) = .5. At these prices,

individual 1 is only liquid enough to buy good 2 at rate

d,,(0)

12 ©).

= nloxlo(O)/Pz(O) = (1)(5)/(.74) = 6.8 = Sop

Thus, individual 2 has an unemployed excess supply capacity of equal to
n22x22(0) - 322(0) = (1)(10) - 6.8 = 3.2, which he is willing to keep off the mar-
ket because the market price p2(0) equals his personal reservation price v22(0)/v20(0).
In effect, the supplier of the more durable good 2 is unwilling to lower his prices
as fast as the supplier of the less durable good 1, because it is more attractive
to store good 2 in hopes of better prices in the future. Notice that this dis-
tinction between the price-flexibility of durable and nondurable goods appears

only in the deflationary case; in the inflation after doubling the money supply,

both prices rose at the same rate.

The price equation Py = v22/v20 and the excess supply inequality NypXys > Sy
continue to hold until t = .4. Then, at t = .4, the rise in Y50 and the fall in
Voo bring Py down to Py, = .47, at which price individual 1 can afford to demand

all of 2's supply of good 2. This price Py is below the stationary equilibrium
level of .5, because of the extra inventories of good 2 accumulated by individual
2 during the period of excess supply.

In the period after t = .4, the price p, converges quickly to the stationary
equilibrium level of p2 = .5. The individuals' marginal values converge more
slowly to their stationary equilibriuﬁ levels (with v, and vzovending up double

10

their initial values), after first overshooting the limits around t = 2.5,
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Reviewing these results, we may find some new insights into the dynamic
effects of inflationary and deflationary monetary shocks. We can see that the
two adjustment processes, although similar, are not completely symmetric phenomena.
For example, excess supply unemployment may occur during deflation but not infla-
tion; and downward price movements may be slower for durable goods than for non-
durable goods, while this distinction may not occur in upward price movements.
Notice, however, that we could not derive any such insights from an asymptotic
analysis, or from a rational expectation analysis. In such models, we could only

observe that prices must ultimately be proportional to the money supply.
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Appendix: Proofs

Proof of Theorem 1. First we prove existence, using a fixed

point argument. We shall use the variable Dij to denote the rate

at which i spends money for buying j. (So Dij=pjdij in our usual
notation.) We use the matrix notatlon A
D= (o7 )b -

i3’ 9=1"4=1 ' S Slj)j l)l 1

Let A1 be the set of all matrix-pairs (s,D) such that, for

all i and j:
OSSijS lj lj (t) ’
J
OsDij and j§= Dij,s nioxio(t).

Thén for every j, let

(48) n? = min (v, (£)/v;,(8)),

i
(49) n; = max (v;(£)/v;o(£)) .

Then let:

J O 1
< p. < 0.+1}.
215 < Py j

Nl-—-\

A2 = {peR

Let A = A1XA2,

subset of a finite dimensional vector space.

and observe that A is a nonempty compact convex

Given any p in A2, let 2
(s,D) in A

1(p) be the set of all matrix-pairs

’ which maximize



- 42 -

I J
(50) 151 jiT (PjViO(t)—vij(t))sij

I J .
+ I z v..\t V., t))D. .
LN 15 (8 /Py, o (£))D,

subject to the constraint (S,D)€A1.
Given any (s,D,p) in A, let Zz(s,D,p) be the one-point set

such that ﬁezz(s,D,p) if and only if f)eA2 and, for every j

1 0 1 I
D. = max{= I:, min{I.+1 4+ 3
pj {2 JI { J 4 pj .

2 @ysleg - syl

1]
Let Z(s,D,p) = Z1(p)xz2(s,D,p). It is straightforward to check
Z is an uppersemicontinuous correspondence from A to the non-
empty compact- convext subsets of A. Thus, by the Kakutani fixed-
.point theorem, there exists some (5,5,5) in A such that (5,5,5)
62(5,5,5).

For every j, 5622(5,5,5) implies that one of the following
must hold:

(51) 5 (D../pP. - s..) 0; or

S L B
1
. — —_ — C—_ 1
(52) i (Dij/pj - Sij) > O and Py = Hj + 1; or
(D../P. - 5;2) < O and b, = 21°
(53) & WP45/P5 7 Sij Py = 2%

If (52) were true, then we would have §.>vij(t)/vio(t) for all i,

so all Bij=0. (Recall (49) anda (50).) Thus (52) is impossible.
Similarly (53) would imply §.<vi.(t)/vio(t) and thus s,.=0, for

all i. (Recall (48) and (50), and observe that H?>%H?, because

the positivity of all vij(t) implies that H? is positive.)
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Thus (53) is also impossible, and (51) must be true.

Now let p.(t)=pj, si.j(t)=sij , and dij(t)=Dij/pj » for all i
and j. Then (51) gives us the market clearing conditions (8),
and (5,5)511 (p) implies that the s, (t) and d;,(t) do maximize
(13) subject to (2)-(4) (with the yij(t) chosen accordingly). Thus

we have proven the existence of market-clearing prices.

To prove uniqueness, suppose that p and p are two market-

clearing price vectors. Let di and Sy denote the individuals'

J J
demand and supply quantities for the p prices, and let aij and
§ij denote the corresponding quantities for p. Let H, denote

the set of all nonmoney assets j such that pj<§j

Observe that, for every j in HO and for every i,

(54) Sijsgij'

because raising the price of j increases the coefficient of sij

in (13) and the only constraint on s,. is O<s,.<x.. (t).
1] 13 1]

A comparison of (13) with constraint (3) shows that i will

budget his money for assets j such that

vij(t)/pj(t) = max (v,

: 50 (8) /P50 (£)) 2 vig (£),

and he will budget all his money if the last inequality is strict.
So if i buys any asset in HO at the P prices, then i must budget
all his money for assets in HO at the p prices, since the assets
in HO become strictly better bargains relative to the other assets

as we go from p to p. Thus, for every individual i,

(55) 'z pd;y = T BiA..

jeHO jeH
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Now suppose that, contrary to the theorem, there exists some

j in H_ such that Z.sij>0 or T §ij>0. Then we can apply
i i

(54), (55), and the market-clearing conditions to get:

I

I I  p.S.. <z ¥ P.§8,. =
P ij : 3215
i=1 JGHO i JEHO
= 7 bX f) ' e < z ) P

i jem I i jem 3 1

(o]

= I z p.s"l

i jeH 3+

(o]

which is impossible. So any asset which has a strictly higher price
in p than in p cannot be traded in either equilibrium. Then,
reversing the roles of p and §, we see that if pj>§j then j also
cannot be traded in either equilibrium. So the prices of traded
goods are uniquely determined.

Now let H1 be the set of nonmoney assets which have uniquely
determined market-clearing prices at time t. Suppose f is an
asset which is not in H1. Then f cannot be traded in any equi-

librium at time t. Since f is not supplied, we must have

(56)  po(t)<v, (£)/viq(8),

for all i such that n..x..(t)s>0.
1J 1]
" Since f is not demanded, we must have

(57) Vif(t)/pf(t)gmax{vio(t), ?2§ (Vij(t)/pj(t))},
1

for all i such that nioxio(t)>0.
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Inequalities (56) and (57) together determine a closed interval
for pf(t). As long as pf(t) is chosen anywhere in this interval,
it will be neither supplied nor demanded, and it will not disturb
the markets for assets in H1. This proves the last part of the

theorem.

Proof of Theorem 2. We prove first that a temporary equi-

librium path exists on the interval O<t<).

By Assumption 4, the recent general price levels are bounded
and continuous on the interval =-A<t<0, so the g equation (35) can
be integrated to give us g(t) and a(t) as continuous and bounded

‘functions of t in the interval between O and x.

We shall use matrix notation here, letting x (or x(t)) denote
the matrix of xij (or xij(t)) quantities, etc. Thus, we may say
that (p(t),y(t),s(t),d(t)) is a temporary equilibrium for (x(t),

v(t)) if:

J+IG+21J

(p(t),y(t),s(t),d(t))eRY FRREA

’ ‘(x(t) ,V(t))€IR+

the market clearing equation (8) holds for every nonmoney asset j,
and the linear functional (13) is maximized over (y,s,d) subject

to (1)-(4) for every individual 1i.

For any asset j, let Lj be the set of individuals for whom

j is ligquid, that is,

L. = {ijn,.>0}.

;= (ilng ;>0

Gi (x,v) in IizI(J+1) we say that (x,v) is reqular if, for
iven ’ + ’ Y ’ ’

every individual i and asset j, vij>0 and if ieLj then xij>0.

Theorem 1 assured us that market-clearing prices are essential
unique, except for the untraded assets. With regularity, we can con-

tinuously select a unique standard price, even for untraded assets.
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For any regular (x,v), we say that a temporary equilibrium
(p,s,d,y) is standard if, for every nonmoney asset j

(58) p. = minimum (v _ /v and

)y
ieL, ij’ 10

(59) 1if Lj=¢ then pj=maximum (V../v..).

i ij’ "io
Let T(x,v) be the set of standard temporary equilibria for (x,v).
Let P(x,v) be the standard equilibrium price vector p,

such that (p,s,d,y)eT(x,v) for some (s,d,y).

We must check that P(x,v) is uniquely defined. If Lj=¢,
then j is not traded and (59) is the lowest price for j which
prevents demand. If j is traded, then its equilibrium price is
unigue, and must satisfy (58) (or else no one would sell j).

If Lj#¢ and j is not traded, then (56) and (57) define the inter-
val of possible equilibrium prices, and (with regularity) (58)
tells us to pick the highest in this interval, that is pj=
miziﬁum (vij/vio). Thus P(x,v) is a well-defined function as long
as (x,v) is regular.

It is straightforward to check that T (x,v) is a nonempty
compact convext set for any regular (x,v), and that T is an
uppersemicontinuous correspondence. Nonemptiness follows from
the preceding paragraph. Compactness and convexity hold because
the market-clearing and maximization conditions are linear, and
constraints (1)-(4) define a compact and convex set given the
positive prices. All of the conditions defining our standard
temporary equilibria are continuous in all variables, so T is
uppersemicontinuous. Because T is uppersemicontinuous and its
price components P are unique at any regular (x,v), it follows

that P(x,v) is a continuous function on the set of regular (x,v).

14
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For any regular (x(t),v(t)), let R(x(t),v(t),a(t)) be the
set of all (xX(t),Vv(t)) satisfying (5)-(7) and (31)-(33) for some
(p(t),s(t),d(t),y(t)) in T(x(t),v(t)).

Since standard equilibrium prices are unique and since (5)-
(7) are linear in (s,d,y), R(x,v,a) is a nonempty compact convex
set, for any regular (x,v). Also R is an uppersemicontinuous
function at every (x,v,a) such that (x,v) is regular. (We use
Assumption 1 and 3 here to guarantee that Ui and Wi terms in (31)

are well-defined and continuous.)
Let k and K be as in Assumption 2 and 3, and let
Yig = Max {yiglyieYi(O,...,O)}.
Assumption 2 and 3 guarantee that, if yieYi(xg), then for all g
G

ig+K(fi1 xif).

-kxigsyigsy

(To derive the second inequality above, consider Gi=(o,..,o,1,o,..,0),
with a single 1 .in the g-component; and observe that

oW, .
(§§,§i) <K, for every good £ and bundle §§ .)

y sWi(xf,Gi) and

i
ig Bxif

The market clearing conditions (8), together with (2)-(4), imply
that

I
(60) d.. < i nhjxhj (for all j=1, ...,J), and

el
IA

I
.S.. z n, X ’
1 J 1] h=1 ho"ho

for every individual i; otherwise the other individuals would be

unable to balance i's demand and supply. Substituting these
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inequalities together with (2)-(4) into (5)-(7), we get

. - G I
(61) —(k+cg+nig)xigSXigSyig¢h K(fijxif) + hi1nhgxhg
. T
(62) _(cb+nib)xibsxibshi1 Nhb¥hb
Y I
(63) _niOXiOSkiOSbiG+1 Xipt hi1 "o*ho

whenever (x,V)eR(x,v,a).

. For any nonmoney asset j and any individual i in Lj .
if n,.(v,.p. - v..)>0 then i should offer all of his
. ij 103 ij

. endowment of j for sale, so (8) would imply

p.<(
17 n

™~

, "no*no’/ (M 3% )

(otherwise there would not be enough money to demand the j supplied
by i). This implies that '
: I

+
) < 3
h=1

i35 VioP37Vi5

(64) n Mho*hoVio/*i5 -

Also, i should always budget all his money for assets which achieve

the maximization in (33) (if it has a positive value) so

+y =

J
Jd
= ji1 Do (Vi3/P57V50)P4d; 5/(n;9%5 )
J I J
< I wv..d,./x. =z I N, . X, .V../X. .
j=1 11 1% i0 h=1 3=1 hj "hj 'i1j’7io
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(We used (60), at the last step.) Lef K' be the upper bound on
the partial derivatives of Uif mentioned in Assumption 1. When
(64) and (65) are substituted into (31)-(33) and Assumption 1

and 3 are applied, then (%,V)eR(x,v,a) implies the following:

(66) -(cg trov., SV,

1lg 1lg
G
S KU+ R(Z Vi) O Af idL;
£=1
, G ' I
< K!' +K(fE1V1f) +- hi,]nhOXhOle/xlb , if léle

(67) —(cp*r;+ 2[al)v,y < ¥, <

< vio+ 2)alvib ’ if 1¢Lj;

I
S V.ot 2|a|vib+ hi1 nhOXhOViO/Xib , 1if 1eLj;
(68) -(ri+ 2|a|)viO < viO <
< ZIaIViO, if i¢LO;
I J
< 2]alvio+ E 'E nhjxhjvij/xio' if i€Lgy-
h=1 j=1
For any number m>0, let M(x,v,a,m) = (%,¥V,8), where

ﬁij=max{0,min{m,xij}} , if i{Lj;

~ . l . . . -
xij—max{m, mln{m,xij}} , 1f 1eLj,

a 1 .
vij—max{ﬁ, mln{m,vif} ;
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& = max{-m,min{m,al}.

By the theorem of Lazota and Opial (1965) (see Henry(1973)), for any m>0,
there exists an absolutely continuous solution on the interval

o<t<)x to the multivalued differential equation
(69) (x(t),v(t))e RM(x(t),v(t),a(t),m))

satisfying the given initial conditions (x(0),v(0)). To see this,
observe that the range of M(.,.,.,m) is compact, and M gives us
(%,¥%) pairs which are always regular. The left-hand and right-
hand sides of (61)-(63) and (66)-(68) are continuous functions
on the range of M(.,.,.,m), and are therefore bounded on this
range. So the range of R(M(.,.,.m)) is also bounded. The set
R(M(x,v,a(t),m)) is always nonempty, compact and convex; and it
depends uppersemicontinuously on (x,v) and measurably on t.

(In fact, it is continuous in t.) Thus, all of the conditions

for the Lazota-Opial existence theorem are satisfied.

It now only remains to show that, if m is chosen large enough,

then our solution to (69) will also be a solution to (%X,V)eR(x,v,a).

We define matrices x*(t) and x*(t) so that

_ 1 * _
x*ij(o) = Exij(o)’xij( )—xij(o)+1.

and the following differential equations are satisfied:

x*ig(t) = -(k+cg+nig)x*ig(t),
xi0(8) = TRio%, 50 (E)s
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- G I
¥ (£) =y, + K(ZI xi.(t))+ T n,__ % _(t)
ig ig £=1 if h=1 hg “hg !
¥ (t) = ; X (t)
Xipb Lo Tpp *pp it
h=1
. J I
. () = b x..(t) + T n X (t).
10 b=G+1 1P p=1 DO "HO

for all i,j,g,b on the usual ranges. These equations are all
linear, and they have solutions which are continuous and non-
negative throughout the interval. Furthermore, for any j and any
(t) is an exponential decay function with

i in Lj r X*ij

x*ij(O)>Q, [=o) x*ij(t) is bounded away from O on the interval

O<t<). So we can choose some number 51 large enough so that, for

o

,,,,,

‘and every t in [0,21,
* - ) . -
(70) xij(t)sm1, and if 1eLj then x*ij(t)21/m1,
- Next we define matrices v*(t) and v_(t) so that (for all i,j,g,b)
. *
V*ij(Q) = vij(O)/Z, Vij(O)—vij(O)+1,

and the following differential equations are satisfied:

*ig(t) = -(cg + ri)v*ig(t)'
Veip (B) = —(eptri+2lale) v,y (£,
Veiolt) = —(xyF2lale) v, (8,
T () =K' y o . = 2 x
ig = + K(fi1vif(t)) + h:Z__1nho(m1) vio(t)
7t = v O v 0+ 1 m) 2yl ()
vib(t) = vio(t) + 2]af lvib hi1nho(m1) vio(t ’
* * 1 J - - 2 %
viogt) = 21a(t)lvio(t) + 3 T nhj(m1) vij(t).

h=1 j=T1
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Again, these differential equations are linear and have continuous
positive solutions on the interval O<t<). So we can choose some

ﬁz such that, for every i,j, and every t in [O,A],

1/m25v*ij(t), and v (t)<m2
Since a(t) is bounded on O<ts)\, we can choose some m
that -m3_a(t)<m3
m =. maximum. {m1,m2,m3}

3SO

for every t in [O,2] . Now let

Let (x(t),v(t)) solve (69) for this m, on the interval Ost<A.

Suppose that, at some t between O and » , we have
(71) x, (t)<x (t)<x (t) and v_ (t)<v (t)<v j(t)

for every i and j. Then our choice of m guarantees that
M(x(t),v(t),a(t),m) = (x(t),v(t),a(t)),
and so

(x(t),v(t))e R(x(t),v(t),alt)).

But then a comparison of the x*,i*,ﬁ*, and v” equations to
(61)-(63) and (66)-(68) (using (70) and (71)) shows us that

(72) x5 5(0) <k, () <k o (£) and ¥, (£)<¥y (t)<v 15 (8)

for every i and j.

At time t=0 (71) holds with all strict inequalities (except
that we may have x (O) = x,..(0) = O for somé i and j such that
1¢Lj). Thus, since (71) 1mplles (72), (71) must continue to hold
for all t between O and A, because the distances between the
components of (x(t), v(t)) and their respective upper-bound

and lower-bound functions never diminish. (For any i and jJ
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such that Xij(o)=x*ij(o) = 0, we get X*ij(t) = O for all t, and

X, .(t) can never go negative, since xij(t)<o and i¢L. would

ij
imply iij(t)zo in any solution to (69). So (71) holds in this

case too.) Thus our solution satisfies
(X(t),v(t))eR(x(t),v(t),alt))

for almost all t between O and X. So we have proven the existence

of a solution on the interval [O,Ar].

In this solution, for every i and j, vij(x)>O,and if nij>O
then xij(x)>o. Furthermore, the vector of standard prices pj(t) =
Pj(x(t)(v(t)) is a continuous function of (x(t),v(t)), so it is
also continuous and bounded as a function of t in the interval
from O to A. Thus, if we relabelled the time axis by subtracting
A (so that t=2 became t=0), then Assumption 4 would still be
satisfied at the new "initial conditions". So the preceding
argument also guarantees that our solution can be extended an
additional 2 units of time. Since 1>0, repeating this argument
inductively guarantees that our solution can be extended over all

t>0. This proves Theorem 2.

A A

Proof of Theorem 3. Let (xi,yi)i=1 be a feasible stationary

state; and let (x?,vi,yi)i___1 and p be the vectors of endowments,
values, production rates, and prices in a stationary equilibrium.
We shall prove that the stationary state cannot Pareto-dominate
the stationary equilibrium by showing that

73) I G I G
( 5 (Ui(xi)/vio)si (U, (x3) /v, ) -

i=1 i=1

Let us consider now a fixed individual i. In the

stationary equilibrium a=0 and 0i =0. So (33) implies that

o

(74) VioPg % Vig
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for every good g. (Recall ri=O.)
Because the set {(xf,yi)|yieYi(;§)} is convex, it follows

that the function Wi(gf,vi) is concave in if. (Recall (17).)

Since Uiis also concave, we get
-G G G
(75) U.(x YW, (RS, v, ) <UL () +W, (x7,V )+

-+

G oU. G BWi G
i ( T8 (xi)+ % (xi,vi)) (xig—xig).

g=1 ig ig

Substituting 6ig=0 into (31), and using (74) and r,=0, we get

Uy e M ¢
(x7) + (x:,v,) = c v, _  —-n, (v..p. —- Vv, ).
axig i a§igy i1 g'ig ig-"10%g ig
G _ s
Also, Wi(xi,vi) = 3z V. gylg’ because yi was chosen to maximize
g9
_~ AG
(13); and W, (x 'V )_é vlgylg because ¢;¢¥Y; (%]). Thus (75) becomes
AG - -~
(76) Ui(xi)+é vy (Ylg g Rig) * ;(vlop VigPigRig
< U (xG) + I v, *(y. J+Z (V. AP ~V, )N, X. .
- oTitTi g ig 1g g ig g i0¥g "ig’ig ig

By (42), we know that for all g

77 9. -c X. <n., %. .

71 954eqR 16" 1g01g

Also, if v, Opg>v ig then i must offer his entire endowment of g for sale
(s. j— ig lg) and demand no g (d. g=O) in the stationary egquilibrium,

So x. =0 implies that vy. =n, x. when the inequality in (74)

19 ig” g ig "igTig
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is strict. Thus, for all g,

(78) (viopg—v. ) (y )=(ViOpg_vig)nigxig'

. —C X.-
19 ig 9 19

Then substituting (77) and (78) into (76) gives us

AG -~ ~
(79) U, (%) + é VioPg (¥147Cg%1g)
< U (xG)+Z v, p. (y. -c x. ).
- Tig'7i’ g "i0¥g '*ig “gTig

Finally, if we divide (76) by Vio On both sides, sum
over i, and use the fact that (by (41))

= .= .
) : (ylg nglg

(? )=OI

ig” %g*ig

then we get (73), as desired. This proves the theorem.



Footnotes

lone might simply assume that nys = ﬁj for all j, where ﬁj

is the common velocity of asset j, measuring its intrinsic liquidity.
But allowing inventory velocities to depend on i enables us to
describe situations where some individuals cannot sell certain

goods. For example, if i is a farmer and j is penicillin then

n.. = 0. This flexibility will allow us to weaken Assumption 4
i;]Section 6.

’This idea is used in the model of Day and Cigno (1978, Chapter 12).

3 . . s . . .
When T > 0, some inefficiency can arise in our stationary

equilibria, due to the effect of monetary intermediation.
Grandmont and Younes (1473) have studied this effect in the context

of a simpler model, without durable goods.

To compute these results, all differential equations were approxi-

mated by discrete-time difference equations with a time interval

of At = fs . For example, equation (33) became
1. . 1 .
1 Vig (8 4
B | = Vio(t) +E[m§X(niO(Tj_(_t)—_viO(t)) )-(ri+2a(t)?vio(t)‘]__

Similarly, the derivative required in equation (34) was approximated by

O(t) o (0(£) = O(t-.1))/(-1) |
Qe .~ (oo F a(e=.1)/2 ¢+ Where 0(t) = py(t) + py(t).
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Figure 4
Price adjustments after
halving the money supply
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Figure 5

Sales and inventories of good 2
after halving the money supply
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Figure 6

Marginal value of money,

after halving the money supply

Figure 7
Marginal values of goods to their producers,
after halving the money supply




