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INTRODUCTTON

Since voting schemes do induce strategical manipulation (by the
Gibbard-Satterthwaite result) a natural but obscure question is -- what
kind of manipulation? To answer this question amounts to describing the
strategical behaviour of the agents, that is to select an equilibrium concept
for games in strategical form. Most of the literature devoted to this problem
(see [1), [5], [6]}, [8], [11]) has dealt with non-cooperative behaviour of
the agents. This is because the major concern has been the implementation
problem which is stated as follows: Given any social choice function (or
correspondence) that is, a particular collectice decision making, is it
possible to distribute privately the decision power among the agents in such
a way that by exercising (mon-cooperatively) this power, the agents eventually
select the very outcome(s) recommended by the social choice function (corres-
pondence). Any answer to this problem throws some light on the collective
implications of non-cooperative behaviour, a question underlying most of the

economic literature on collective decision mechanisms (see [4] and [3] for a
survey gf the literature).

In this paper we assume that the agents behave non-cooperatively. This
assumption alone is not enough to determine unambiguously the outcome elected

by the agents. Given a particular voting scheme and a particular preference

profile of the agents, there are in general several Nash equilibriums in the
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corresponding game and accordingly several different outcomes are the
possible result of an equilibtrium vote of the agents. 1/ In order to make
the behaviour of the agents well-defined we have to make specific assumptions
about the information that the agents have on each other's preferences. 1In
this paper we investigate the consequences of two extreme assumptions. At
one extreme we assume that every agent has no information about any other
agents' preference. This leads him to a prudent behaviour of the maximin
type. At the other extreme we assume that every agent has full information

about the preference profile; then, non-cooperation results in the sophisticated

behaviour where the agents mutually anticipate their strategy by successively
eliminating dominated strategies [see [2], [8]1, [9]).

To assume that everybody knows everybody elses utility does not avoid the
implementation problem. The central legislator does not know the profile
(at least when he must a priori choose a voting scheme that works for every
profile); therefore in a world where no coercive device can prevent the
individual agents from lying 2/ decentralization must cope with the traditional
incentive compatibility requirement, even if information about utility profile
is complete.

The paper is organized as follows. In Section 1 we define prudent and
sophisticated voting behaviour and the corresponding implementation of social
choice functions (correspondences). 1In Section 2 we illustrate these concepts
on a particular class of voting schemes, namely voting by veto, in which we

compare the prudent and sophisticated voting behaviours. The results stated

i/ Actually Maskin did prove in [7] that only dictatorial voting schemes and
voting schemes among two alternatives are such that for every profile the
same outcome results from every Nash equilibrium of the associated game.

2/

If the freedom-of-speech principle prevails then lying becomes even an
individual right.
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in Section 2 are preliminary results for the next section. The main result
is presented in Section 3. Namely, we exhibit a voting scheme, shortly

described as voting by alternating veto, where both the prudent and the

sophisticated voting of the agents yield the selection of the same alternative.

The dictatorial voting schemes also share the property that the sophisticated
voting and the prudent voting can not be distinguished. Thus, our result

is worthwhile because voting by alternating veto in general is nearly
anonymous (symmetrical among the players) and actually implements an exactly
anonymous social choice function in some significant cases. These highly
remarkable strategical properties of voting by veto makes from this familiar
procedure a decision mechanism that can be defended on strong theoretical
grounds, (see also reference [10}). Finally Section &4 is devoted to some

open problems and concluding remarks.

1. PRUBENT AND SOPHISTICATED VOTING

Throughout the paper we will consider a collective decision problem of

t he following form: the set A of alternatives is finite with cardinality

Each of the n agents has a preference ordering on A (we assume that no agent

is indifferent between any two alternatives; this assumption is of crucial
technical importance). Let U be the set of strict ordering on A. TFor the
sake of convenience we denote the current element u of U as a utility
function -- actually a one-to-one mapping from A into IR. All concepts
and results will be purely ordinal.

A profile u 1is an n-tuple u = (ul,...,un) € i specifying the

particular utility function of each agent.

P.



Definition 1

An n-person voting scheme among A is a (n+1)-tuple o = (Xi,...,Xn,ﬂ)
where the strategy space, Xl""’Xn are finite and . 1is a mapping from

X Lo X X i .
1 ¥ X n into A

Definition 2

To every profile u ¢ Un, the n-person voting scheme 9% among A

associates the game in strategic form.

>ru) = (Xl,...Xn; Up o mMreeesly o )

n

In game 7% (u) we define now the prodent and sophisticated behaviour of

the agents.

Notation
If z = (ZI’ZK) is a vector of ]ﬂi we denote by §(z) the vector

obtained by reordering the coordinatesof 2z 1in increasing order:
z) = (z cees2 where is a permutation of
B( ) ( O'(l), s O'(K)) o} P 1 o

{l,...,K} and 23(1) S'ZU(Z) < .. S'ZG(K).

Definition 3

Let 9 be an n-person voting scheme among A and u ¢ " be a particular
profile. 1In the associated game 9 (u) we define the set Pi(ui) of prudent
strategies of agent 1 as the set of those X € Xi which lexicographically

maximize over X; the vector G{ui(xi)} = 8 {u; (x;, X;)XE c X;}

In particular a prudent strategy x; € Pi(ui) is a maximin strategy of player i.



min u, (x,,x}) = max min u.(yi,x;)

~ 1”1 P 7
XXy ViEXy  x8Ky

The prudent behaviour of an agent is a decentralized one which is relevant
when this agent has no information at all about the other agent's utility

and consequently about their strategical choice. In many familiar voting
schemes, like the plurality voting and the Borda count, the prudent behaviour
is nothing else but the sincere voting (to announce his true peak alternmative
in plurality voting or his true preference ordering in the Borda procedure.
The proof of these claims is left as an elementary exercise to the reader).
In some other usual voting, like voting by binary choice, the notion of
sincerity would not be enough to determine the prudent behaviour. Consider

for instance the voting by successive amendments:

) 43 gp-1
Ay .

By majority voting the agents decide first to elect a; or to reject it.

if a, is rejected then the election of a, is proposed. And so on...

2
th
At (p-1) round of voting (if any) the agents select, again by majority

voting ap or ap-l'

to vote for a at the kth round unless he prefers a, less than every

Clearly the prudent strategy of agent i requires him

following alternative ak+l,...,ap. This behaviour very much favors the

first ranked alternatives! On the other hand, we must be aware that there are
‘'some voting schemes where the agents have several prudent strategies that lead
ito the election of different alternatives. Consider for instance the

following voting by veto procedure:
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Player 1 vetoes first one alternative, next player 2 vetoes one
of the remaining alternatives, next player 1 vetoes again one of the
remaining alternatives, next player 3 is a dictator to select ome of
the remaining alternatives.
In any of his prudent strategies, player 1 must decide to eliminate for sure
his two least preferred alternatives. But he has two prudent strategies:
one is to eliminate first his least preferred alternatives and next --
after player 2's move -- his least preferred among the (p-2) remaining
alternatives. The other prudent strategy is to eliminate first the alternative
he ranks (p-1) . and next, after player 2's move, his least preferred
among the (p~2) remaining alternatives. One checks that the corresponding
vectors e(ul(xl)) coincide, so that player 1 can not distinguish these
strategies in terms of prudence. However, these two strategies may clearly

yield the election of distinct alternatives.

Definition &

Let % be an n-person voting scheme among A. We will say that
9 p - implements (p stands for prudence) the following social choice

correspondence SP
"3 u — SP(w) = m(Py(uy) x ..o XP (u)) C A

We turn now to the sophisticated behaviour of the agents.

Notation
Let 7 = (Xl,...,Xn;ﬂ) be an n-person voting scheme among A and
let u = (ul""’un) € " be a fixed preference profile. The associated

successive elimination of dominated strategies if the decreasing sequence
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(%ys---X0) defined inductively as follows:

o _ o _
Xl = Xl""’Xn Xn
s t+1
for every t = 0,1,2,... and every 1ic¢ {1,...,n],Xi is the set of

undominated strategies of agent 1 in the normal form game

t t .
(Xl,...,Xn;u1 o TresesU o ). That is to say

¥x; € X'i*: u (x.,x3)<u (v,,%3)
t+1_ t, ¢ t | VR A Bie i Fy )Yy e mlyy Xy
Xg o= = €X /Ay €%y -

t ~
H xl;i. E X’iui° T\'(Xi’xi) < ui° T\'(yi’x,i)

By definition, the sequence (Xt is decreasing for every i,

t=1,2,...
hence by the finitness of Xi the sequence (X;,...,XE) is stationary for

t large enough.

Definition 5

We say that 9 is dominant solvable if for every profile

n . . . . :
u = (ul,...,un) € U~ the associated successive elimination of dominated

strategies satisfies:
t t . . .
(1) for some t , ﬂ(Xi KeooX Xn) contains a single alternative.
In this case we will say that Xi is the set of sophisticated strategies of player i

and denote it by Soi(u). Moreover we say that 9 d-implements (where d

stands for dominance) the following social choice function 8D
U 3 u —s SD(u) = (50,(8) X ... x SO_(w)) € A

Let us briefly comment on the concept of dominance-solvable voting schemes

(introduced first by Farqgharson [2] and next studied in [8], [9] ).

This concept is intended to describe the voting behaviour of the agent
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being both completely informed of the utility profile and unable to
cooperate in any way. Therefore, they mutually anticipate their behaviour
by successively eliminating dominated strategies. The set 507(u) x...xson(u)
of sophisticated n-tuples of strategies (if it exists, that is if (1)
holds true) is a subset of the Nash equilibrium set and contains every
equilibrium made up of dominating strategies (if any). Roughly speaking,
the alternative selected by sophisticated voting of the players is a single-
valued selection among the alternative selected by the wvarious Nash equilibriums.
The class of dominance-solvable voting schemes is large. Essentially
every voting scheme defined as a game in extensive form with perfect informa-
tion is d-solvable, and the sophisticated voting is simply the perfect
equilibrium of the game. Thus voting by binary choice, voting by veto, and
the king-maker procedure are d-solvable, whereas plurality voting or the
Borda procedure are not. Given a particular d-solvable voting scheme, it p-
implements a social choice correspondence SP and it d-implements a social
choice function SD. To compare SD and SP amounts to comparing the
sophisticated and prudent behaviour of the agents. This will throw some
light on the kind of manipulation involved in a particular voting scheme.
In Section 2 we describe SD and SP. in the particular class of voting by
veto procedure where these two social choice functions are different and in
some sense symnetrical. Next in Section 3 we concentrate on voting schemes
where the social choice function SD 1is a selection of the social choice
correspondence SP; that is to say where the sophisticated voting can not

be distinguished from a prudent behaviour.



2 SOPHISTICATED AND PRUDENT VOTING BY VETO

Definition 6.

Let PyseeePy be non negative integers such that pl+...+pn =p -1
(remember that p is the cardinality of A). We denote by?r[pl,...,pn] the
n-person voting schems among A defined as follows:

- First player 1 vetoes any Py alternatives he wishes among A. Denote
Al C A the set of alternatives that he vetoes.

1 Denote A2

- Next player 2 vetoes any P, alternatives among A \ A
the set of alternatives he vetoes.

~ Then player 3 vetoes any Py alternatives among A \ {Al U Az}.

And so on. If we denote by Ak the Py alternatives vetoed by player
k then the selected alternative is the single element of A \'{Al U
U An}.

Lemma 1.

In the voting scheme WTpl,...,pn] the prudent behavior of the players
selects an unambiguous alternative: in other words, the social choice
correspondence SP[pl,...,pn] that this voting scheme p-implements actually
is single valued. To prove Lemma 1 it suffices to describe the
prudent strategies of the game WIpl,...,pn](u) for every profile u € Un.

Clearly player 1l's unique prudent strategy is to veto his 1 least
preferred alternatives: it is actually his unique maximin strategy.
Similarly, player 2's unique prudent strategy is to veto his P, Jeast

preferred alternatives among the (p—pl) remaining ones.

Thus the algorithm describing SP[pl,...,pn] is as follows:

Let u be given and define inductively the subsets Al""’Ah of A by:
A, = the p., least preferred alternatives of u, among A,
(2) 1 1 1
Ak = the Py least preferred alternatives of u, among

AN (o UL Ua
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Then we have:
SP[Pl"“’Pn](u) = a@ {a} = A \{Al U... U An}.
Lemma 2.
In voting scheme W{pl,...,pn] the sophisticated behavior of the players
selects the same alternative as the prudent behavior of the players does in

the voting scheme ?Tpn,pn_l,...,pl]. That is to say, we have the formula:

(3) SD[plapz""aPn] = SP[Pn’Pn-_1’°°°’P1]-

The above Lemma claims that given the profile u = (ul,...,un) the

sophisticated voting of the players is defined by the following algorithm:

( Player n vetoes the set Bn of the P, least preferred
alternatives of u_ ~among A.

(4) | For k = n-1,n-2,...,1, player k vetoes the set Bk of

the Py least preferred alternatives of u, among

\ AN{B UB ,U...UBg_ .}

k

Then we have

SDIpy,---»p 1(u) =a ¢ {a}=AN\N{B UB . U...UB.

The sophisticated voting of player 1 when the profile is u is to veto

the alternatives of B,: in order to compute B

1 he must then compute the

1
whole sequence Bn,Bn_l,...,Bz, thus using his complete knowledge of the
other players' preferences. This illustrates the high complexity of
sophisticated voting.
Proof of Lemma 2.

We prove by induction on n, the number of players, that the sophisti-
cated voting in game?f[pl,...,pn](u) is described by algorithm (4). This

claim is trivial for n = 1. We assume it holds true up to (n-1). We com-

pute now the sophisticated strategy of player 1. If he vetoes some set
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¢

the (n-1) other players will successively veto the subset C C of A

R n

defined inductively as:

Cn is the set of the 12 least preferred alternatives of u

among A \ Cl.

(5) For k = (n-1),(n-2),...,2, Ck is the set of the pk least pre-
ferred alternatives of u, among A1 \ {Cl 3] Cn U Cn—l U ...
U Cppql

The selected alternative is finally c¢ defined by

{e} = A\ {ClU c,uc U -..u cz}.

We must now prove that ¢ is not preferred by u, to a defined by (4).

1

s .+« and Cn’ Cn—l’ e

by which a and ¢ have been successively defined. We remark that if B and

For that purpose we compare the sequences Bn’ Bn—l

C are any two subsets of A such that BC C and if we set

B

the Py least preferred alternatives of u, among A \ B

k

([ K1
[

the Py least preferred alternatives of u, among A \ C

k
then we have B < C {J C.
Applying this remark to B = ¢ C.Cl = C and k = n we obtain:
B,cC UC.

Applying the remark again to the above inclusion and k = (n-1), we obtain:

Bn—l C:cl U CnU Cn--l = BnU Bn—l < Cl U Cn U Cn—l'

Clearly we can apply the remark inductively for decreasing k, so that for

every k we obtain:

of Py alternatives, then he can (by the inductive assumption) assume that
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Bn UWeeo U Bkc Cl U Cn ... U Ck'

And finally:

B (... \le c C. ) Cn ... ¢

2’

that is to say:

c€ AN\N{B U...UB,} =B Uf{al.

By definition of B1 we have:

Va'e Bl U {al, ul(a) = ul(a').

Therefore ul(a) = ul(c), which was to be proved. By Lemmas 1 and 2 the
sophisticated and prudent behaviors of the players in [pl,...,pn] are both
deterministic and are deduced from one another by simply reversing the

ordering of the players.
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3. Voting by Alternating Veto

Voting by veto procedures introduce a strong dissymmetry among

agents: even if the veto powers Py -ee> pn are all equal, or nearly
equal, the ordering of the agents has a strong influence on the outcome of
both the sophisticatéd and the prudent voting (this obvious intuition is
made clear by the two algorithms above, (2) and (4) ).

To reduce and sometimes avoid this dissymmetry we will replicate the
alternatives and at the same time alternate the strategical vetoes of

the players.

Definition 7

Let r and, for every alternative a , ka be non-negative integers
such that:
(6) n-.-1r={(Z ka) -1
acA
To every r , ka , verifying (6) , we associate a family of procedures
defined as follows:

Each agent is endowed with r token . There are r rounds of
vetoing. At each round the agents are successively asked (the ordering
of the agents can change at each round, but the agents cannot influence
it) to throw one token over one of the alternatives, a , on which at
most (ka - 1) tokens have already been thrown. The elected alternative

is the alternative -a which after r rounds received only (ka - 1)



1b-

tokens (every other alternative b having in view of (6) received exactly
kb tokens). We will call these procedures voting by alternating veto.
This terminology is made clear by the following interpretation of the
above procedure: each alternative is replicated, a certain number of times,
alternative a being replicated ka times. At each round the players
must successively veto one replica of one of the remaining alternatives.

The basic property of voting by alternating veto is that if we order

carefully the successive vetoes by the agents, then the sophisticated

behaviour of the agents cannot be distinguished from a prudent one.

Definition 8

Let ‘V=(Xl, ceay Xn,ﬂ) be a d - solvable n person voting scheme
among A . We say that ¥ is exactly solvable if for every profile
u e Un', the sophisticated voting of the players also is a prudent voting.

That is to say:
(7) v ue U SD(u) € SP(u)

If (7) holds true we say that V exactly implements the social choice
function SD .

This terminology is derived from Peleg's concept of an exactly consis-
tent voting scheme (see [I1]) . 1In an exactly consisteng voting scheme,
there exists for every profile an equilibrium n=- uple which cannot be
distinguished from the 'tell-the-truth' strategy. However, there is no
obvious comparison of the two concepts.

A strategy proof voting scheme is in particular exactly solvable since
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both the sophisticated and the prudent behaviour of a player amount to
selecting a dominant strategy. In general exact-solvability is a weakening
of strategy-proofness which amounts to saying that the completely informed,
non-cooperative agents eventually select the same alternative as

completely uninformed risk-averse agents. The next theorem displays a

family of exactly solvable voting schemes:
Theorem 1

Suppose r 1is an even integer and ka , @ £ A are non-negative

integers verifying (6) . Then the following associated voting by veto
procedure is exactly solvable: During the first % rounds, the
ordering of the players is fixed, say 1, ..., n . During the last

% rounds this ordering is simply reversed, say n,{(n-1), ..., 1
Proof

We first introduce a useful notation: for every finite sequence

il, ceny iq-l with values in the set fl, ..., n} of agents, we denote

by W[il, e iq_l] the n ~ person voting scheme among ¢q alternatives
(where q will be in fact much greater than p ) in which the players
successively veto one of the remaining alternatives. More precisely the

procedure works as follows: player il vetoes first one alternative,

say a;; the next player i, vetoes one alternative, say a, among

2 2

A-fal} ; and soon...; at stage t , player it vetoes one alterna-



-16-

tive, say a_, among A-{al, ey at-ll ; because a contains q elements,
there is exactly one alternative aq in A- {al, o aq-l} : this is the
elected alternative.

For instance, the voting scheme 2f[pl, cees pn] is now equivalently

written as:

Wwil, ..., 1,2, ...,2, ..., n,...,n |
pltlmes p2t1mes pntlmes

In the voting scheme described in the statement of Theorem 1 there are

q = Z k_  alternatives: alternative a 1is replicated ka- times. The

acA

procedure is then:

(8 wil2,...,n,1,...,n,y .e., 1, cv.y,n, n(n-1),...,1,0,404,1, oo, ny...,1]

e et v o st s ——————
[ It

1 2 r/2 1 2 r/2

——

In order to prove the theorem we must describe the sophisticated voting of
the players in (8) and check that it coincides with a prudent behaviour.
In view of algorithm (4) describing the sophisticated voting in the

voting scheme W[pl,...,pn] we obtain easily the sophisticated voting in
w[il""iq-l] . Denote by B the set of gq (different) alternatives,
apd u = (ul, cees un) a particular profile. Then SD(u) is described

by the following algorithm:
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Let bq-l be the least preferred alternative of u, among B
q-1

Let bq-Z be the least preferred alternative of u, among B\‘{bq-l}
q-2

(9

Let bk be the least preferred alternative of uik among B\‘{bq-f""bk+l}

Then b = SD(u) & {b} =B\ {bq_l,...,bl}

Remark that in order that each alternative bk is well defined we
have assumed that each utility function is one-to-one over B . Actually
we can weaken this assumption and still give sense to algorithm (6).

For instance, suppose that if one agent is indifferent between two alter-

natives of B , then every other agent also is indifferent:
(10) vi,j€ {1,...,n} ¥V a,b€gB(u,(a) =u (b)) o (uj(a) = uj(b) )

Then two alternatives a,b such that every agent is indifferent between them
can be identified so that algorithm (9) yields undiscernable alternatives.

In the case of voting scheme (8) , the set B has the form:

B={a,...,a,b,...0b, ....7
times times
ks K
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By assumption the utility functions u, are one~to-one on A so that on
B property (10) holds. Therefore a straightforward application of algo-
rithm (9) yields the sophisticated voting in scheme (8)

On the other hand, we remark that in voting scheme W(il’ ..,iq_l) it
is a prudent behaviour for any player to veto his least preferred alterna-
tive among the remaining ones whenever he has to veto some alternative.
Thus the following algorithm defines a selection of the social choice
correspondence p - implemented by w(il, R |

q-l)

Let b1 be the least-preferred alternative of u, among B .
1

L t b b 1y " 1" .
e , be ui2 among B\‘{bl}
¢BY)
1 " 1"
Let b, uik among B\ {bl,...bk_l}
‘Then if {b} =.B\\fbi‘..u., bﬁul} > we have b € SP(u)

Comparing algorithm (9) and (11) it is clear that W(il, ces iq-l) is

exactly solvable if the two sequences {il,iz,...,iq_l} and

{iq_l,iq_z,...,iz,il} coincide. It is clearly the case for the voting scheme

(8); this completes the proof of Theorem 1
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The property of exaét-solvability is not by itself sufficient to
make a voting scheme ethically attractive. An exactly solvable voting scheme
is nothing but a procedure wherein the collective implications of non-
cooperation are easily predictable, just as they are in a strategy-proof
dictatorial voting scheme. To make the voting scheme more attractive, we would like
that the social choice function that it exactly implements shares some
additional properties. Among these, the three most usually desired are
efficiency, anonymity and neutrality. We say that the social choice
fupnction S is
-- efficient if S(u) 1is a Pareto optimum alternative of the profile u ;
-- anonymous if S(ul, coey un) is a symmetrical function of (ul, ceey un)
(S does not discriminate among players) ;
-~ neutral if S does not discriminate among alternatives, which is
formalized as follows: £for every one-to-one mapping o from A into
itself, and every profile (ul, ceny un):

o(S(uloc s eees unc)o)) = S(ul,...,un)

Lemma 3

For every r , ka (a€ A) verifying (6) every associated voting by

alternating veto d-implements an efficient social choice function.

Proof

It suffices to show that in any voting scheme of the form W[il,...,iq_l]

the alternative b selected by algorithm (9) is efficient. By (9) every
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alternative other than b is one of the b s and therefore is less

k

preferred than b by at least one utility function u . Therefore it
k
cannot dominate b .

Lemma 4

The social choice function exactly implemented by the voting by
alternating veto (8) is neutral if and only if ka =k does not depend
on a , This is possible only if p 1is odd and relatively prime with re-

spect to n .

Suppose r , ka (a € A) are given such that ka does depend on a
Then we fix a,b € A such that ka < kb . In this case we prove that
any corresponding voting by alternating veto implements a non-neutral
social choice function. Suppose that the profile (ul, cvey un) is such

that:
YVi=1l], ..., n ¥Yc€A c #a,b= ui(c) < inf {ui(a),ui(b)} .

Then we set k = ka + kb - 1 and we develop our particular voting by al-

ternating veto which can be written as:

Wliys eees dps Bpyqs wees 4]

In view of the profile that we consider, the sophisticated voting of the
players, described by algorithm (9) , guarantees that every player after

stage k+1 will veto one replica of one alternative of A\ {a,b} . Since
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n.r -k = z kc we deduce that at every stage before stage
ceA\ {a,b}
k (including stage k ) the players will veto one replica either of a

or of b . We can then select a profile such that from i to ik , the

1
players who prefer a more than b are as many as the players who prefert

b more than a , or these two numbers differ at most by one:

(12) | #{j=b, ,k/U; (@>U; B} - #{j=1,...,k/U; B>V, (@D}] <1
J J J J

Then one checks easily that alternative a 1is selected by the sophisticated
voting of the players. If we consider the permutation o :
c(@ =Db ;0() =a; s(c) =c otherwise, then property (12) still holds
true for the profile (ult)c,...,uno<7) so that alternative a 1is
again selected by sophisticated players. This contradicts the neutrality
of the social choice function implemented by this voting by alternating
veto procedure.

Conversely, if ka does not depend on a , it is obvious that the
corresponding voting by alternating veto are neutral procedures. Coming
back to equation r -n = Y7 k -1 this yields:

a€gA
(13) r *n=k-p-1.
An elementary result of arithmetic (known as the Bezout identity) yields

the following statement: if n and p are given, then there exist non-

negative integers r,k with r even, verifying (13) if and only if
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p 1s odd and relatively prime with respect to n .

We come now to the anonymity property: in our context it is the most
desirable since the dictatorial social choice functions are bad only with
respect to anonymity arguments. At this point the use of a rather complex
procedure like the one we considered becomes fully justified. Notice first
that voting by alternating veto procedures are essentially anonymous because
every agent is endowed with the same number of tokens, that is to say the
same 'veto powerJ]' Moreover, when r , the number of rounds , becomes
large, intuition suggests that the ordering of the players becomes less
relevant so that the implemented social choice function becomes nearly
anonymous. This intuition actually is a rigorous statement for some value

of n :

Lemma 5
Let n be a prime integer greater than p . Let r and k be non-

negative integers such that

(14) r-n=k-p-1.

Then for r,k large enough verifying (14) , the voting by alternating
veto procedures where ka =k for every a d-implement an anonymous social
choice function. The proof of this Lemma, which is by no means trivial,
can be found in [9] .

Gathering the results of the three above Lemmas, we obtain the following

1. .
Notice that when r < k, i.e. when p « n, no agent can alone veto even one
alternative



-23-

theorem which summarizes the desirable properties of voting by alternating

veto.

Theorem 2
Let n be a prime integer, let p be odd and strictly smaller
than n . Then there exists a pair r, k of non-negative integers

verifying

and an associated voting by alternating veto procedure, which exactly
implements an' efficient, anonymous and neutral social choice function.

The arithmetic condition ( n should be prime and greater than p ) is

very natural since there does not exist an efficient anonymous and neutral
social choice function unless every prime factor of n is greater than p .
Let us mention finally that the social choice function exactly implemented
by alternating veto is also a monotonic social choice function (¥his is
obvious in view of algorithm (9) ), a property shared by most of the social

choice functions implemented by dominance solvable voting schemes.
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4., Conclusion and Open Problems

The very concept of exact implementation should be hopefully
strengthened to make its strategical interpretation more convincing.
Instead of requiring that SD(u) , the alternative selected by the
sophisticated voting of the agents, should be a member of SP(u), the
possibly numerous alternatives that can be selected by their prudent
behaviour, it would be undoubtedly more convincing to demand SD{(u)=SP(u) ,
which entails the additional requirement that the prudent behaviour actually
is non-ambiguous. This is not satisfied by voting by alternating
veto since the prudent behaviour might be ambiguous, even for large values
of r .

Suppose for instance p = 3 and n = 5 , and choose a pair of (large)

integers r,k such that

Suppose agent 1 's preferences are:

ul(a) >'u1(b) >-u1(c)

Because r < k player 1 cannot a priori prevent c¢ from being elected.
Therefore his prudent behaviour during the first rounds of vetoing is to
systematically veto one replica of alternative c¢ . Suppose now that after

t rounds of vetoing, (k-r+t+1) tokens have been thrown on c¢ by player 1
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himself as well as by the other players. Because player 1 is left with
r - t tokens he has now the power to prevent the election of alternative

c and still being left with one token; namely:

(r-t) +(k-r+t+1) =k+1 ,

Accordingly he has several options within his very prudent behaviour: he

can decide to throw first one token over b and then his (r-t-1)

remaining tokens over ¢ 1ifnobody else contributes to the elimination of

¢ ; alternatively he can decide to prevent as soon as possible the election

of ¢ . These two options are not equivalent and this explains why SP(u)

is not in general single~-valued. The author failed to determine whether

or not Theorem 1 (as well as Theorem 2) still hold true for some reasonable

family of voting procedures, if we use the stronger version of exact implementation
mentioned above. We feel however that Theorem 2 allows us to support

voting by alternating veto as a highly valuable voting scheme both with

respect to its strategical and equity properties.
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