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Predictions from Dinarw Jholle »ndels

Richard B. Westin1

1. Introduction

An important problem in econometrics arises when cross-sectional infor-
mation is used to estimate the probability that an individual or a firm
will take a particular action in a binary choice situation. Various models
have been proposed and used in such cases, including the linear probability
model and the probit, logistic, and Gompertz models.2 Most work to date
has been concerned with estimation of the structural parameters of these
models, but an important potential use of these models is to make pre-
dictions when the characteristics which determine the choices of individuals
change. An unresolved problem for prediction arises, however, because
binary choice wodels are designed to explain the behavior of individuals,
while the predictions we are typically interested in relate to the behavicr
of aggregates of individuals rather than of particular individuals.
Therefore, an important question in using binary choice models fcr pre-
dictions is how to aggregate predictions for individuals to give us
predictions for the population. To give some examples, we may have esti-
mated a model that explains when individuals are most likely to purchase
a durable good, but we would like to use this model to predict the total
change in duralles purchased if the demographic structure of the population
or the available finance rates change. Clogely allied with the prediction
problem is a model transferability problem; i.e., how can we use binary
choice models estimated on cne population to nake predictions about other

populations? To take a mode choice cxampie, the effect of introducing a



comnuter line into & new area can only be predicted by extrapolating models
estimated in other areas where such a choice existed. 1In this case,
however, the demographic and economic structure of the new area may
differ from the area for which the model was estimated, and these differ-
ences should be included in the predictions. If binary choice models are
to be useful in making predictions, it is important to investigate methods
of summarizing how changes in individual characteristics will affect
aggregaie behavior for the population.
Sippose we have estimated a binary choice mnodel,
p. = f(X, 1
Py %) (1)
A . ‘s .th . . . . .
where p; is the estimated probabiiity that the 1 individual will take
a given action and Xi is a row vector of economic and demographic charac-
N tho, Lo - . . )
teristics for the i individual. 1If we are interested in a particular
individual, we can predict the probability that he will take the action
being considered by calculating ﬁ{ for the vector of characteristics
corresponding to that individual. 1If we are predicting for a population,
however, we have a frequency distribution of characteristics over all
individuals, yielding a frequency distribution of predicted probabilities
for the population. 1In making aggregate predictions, it is important
that this frequency distribution of predicted probabilities be incorporated
into our predictions. To illustrate, we consider the logistic model
of binary choice discussed in the next section. If there is a small cluang~
. .th . s . ; . . .th . .
in the j characteristic controlling the binary choice of the i indi-
L3 : . 1 s . .th. s e -
vidual, the estimated change in the probability that the 1 individual
will take the action becing considered will be approvimately

A DAY, L, (2)
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where AXij is the change in the jth characteristic for the ith individual
and éj is an estimated constant. Iicw, even in the case where Axij is
constant for all individuals (such as a constant across-the-board fare
increase in a mode choice model), the predicted change in the probability
of action for individuals will not be constant but will depend on each
individual's original probability of action. This means that if we wish to
use equation 2 to predict the expected change in the aggregate number of
individuals taking the action being considered, we cannot merely extrapoles©e
the estimated change in probasbility for a representative individual but
instead must weight the prediction of equation 2 by the relative frequency
distribution of the ﬁi's across the population. Because of this, our
emphasis in this paper will be on the estimation and use of the relative
frequency distribution of probabilitics of action when making predictions
from binary choice models of individuzl bLioliavior.

In the remainder of this paper, we discuss the particular case of
a logistic model of binary choice for making predictions, and we illus-
trate our results with an example from transpcrtation planning., Section
2 of this paper considers the estimation of the relative frequency distri-
bution of probabilities for the population. Section 3 considers the usc
of this distribution in making aggregate predictions, and Section 4 dis-
cusses another use of the distribution in itesting models. Section S is
a short swmary.

2. The Relative Frequencv Distribution of Probobilities

Since the prediction foriuloe we digcuss in Sections 3 and 4 will
be based on a titted relative frequenecy distribution of probabilities

for the population, it is reasonzbic o iuposce some criteria that the



relative frequency distribution should satisfy. 1in this section, we will
be looking for a family of distributicns that satisfies the following
three crited a:

1. Flexibility. The family of distributions should be large encugh

to fit most reasonable relative frequency distributions of estimated
probabilities.

2. Preservation. Since w2 will be making predictions of the effect

of changes in the characteristics deteimining individual choices, we
should have a family of distributions feor individual probabilities
that is preserved under reasorable changes in the underlying charac-
teristics. This lets us base our prediction formulae on one family
of distributions; and more imvortantly, it implies that the family
of rel .tive frequency discributions we choose for the probabilities
will completely characterize the effects of changes in the charac-
teristics determining individual choice.

3. Parameterization. Since we will be examining changes affecting

the entire population of individvals, it will be convenient to repre-

sent changes in the characteristics determining individual choices

in terms of changes in the moments of the distribution of characteristics.

If the relative frequency distributicn of individual probabilities
can be parameterized in terms of the moments of the underlying dis-
tribution of characteristics determining individual choices, the

change in the relative frequency distribuiion of probabilities rc-

sulting f{rom a change in individual characteristics can be immediately

determined by changes in the parameters of the frequency distribution

of probabillities,.



In order to find a family of distribuiions that satisfies our three

criteria of flexibility,

preservation. and parameterization, we will
proceed by using our binary choice model teo derive the relative frequency
distribution of probabilities from an explicit assumption about the dis-
. . s L e . . 3
tribution of the characteristics deterrining individual choices. In
this section, we will consider expliicitly the problem of finding a family
of distributicns to represent the prchabilities generated by a logistic
model of binary choice; the Appenaix rriefly discusses extending the
results of this section to other mcdeis of binary choice behavior.

The logistic model of binary choice has been applied extensively in
estimation of biological models and somewhat less frequently in economic
applications. Estimation of the structural parameters of this model has
been discussed by Berkson (1955), Walker and Duncan (1967), and Thiel
(1970), among others. To define a logistic model, let Y; be a Bernoulli
random variable representinz the occu 'reiuce or non-occurrence of an action

.th . L = .
for the 1 individual, and let n[yi] = Ps> where p; is unobservable, We
. . e A . oLth o o .
see that p, is the 2 priori probability that the i individual will under-
take the given action. A logistic model is defined by postulating that

the natural logarithm of the odds that y; = 1 is a lincar function of the

Lth . . . R
i individual's observed characteristics, or

P.
____l_\ — 2
ln\l—pi/ B XiB’ ()

where B is a column vector of constants. The expression on the left hand
side of equation 3 is callcd the logit. 1If we estimate B as P, the

. . Lo .th . . . .
estimated a priori probability that the i~ iIndividuol will undertake



the given actiocen is

-1 .
. (4)

~ - ~
p; = (1 + exp;-Xiﬁ}\

The problem we are considering in this paper is how to infer the
relative frequency distribution of the vector of population probabilities,

P, if we know the relative frequency distribution of X, the matrix of

b
population characteristics., The derivation c¢f the distribution of P
involves two transformations cf variables, one from X to XB and one from
XB to P. If we assume the distributiocn of X8 is continuous and let
g(XB) be its probability density function, then the density function of
P is

- / p N7 1

= : ! ! . \
f (p) gi_ln\l_p/J S 0<p<1 (5)

To obtain analytic results, suppose X is distributed multivariate

. . .o b .
normal with the row vectcr of means Hy and covariance matrix . In this

case, X3 is distributed univariate normal with mean p = uXB and variance

0% - B'/ 8. By equation 5, we sec
£(p) = S i expt b 1n/ ) - 7 0<p<1 6)
P) =T p(opy ST 2L Ty Tl p<l. (

This equation defines the S, family of probability density functions
IS

derived and discussed by Johnson (1949).
In terms of the three critevia we proposed eariier, we first note
that the SB family of densities is very flexible and can take on most

reasonable unimodal or bimodal shapes uvn the interval (0,1). At the

endpoints of the interval, 0 and 1, S, densitics equal zero and have

3
one-sided derivatives of all orders equal to zero at these points. With

regard to our sccond criteria, preservaticn, we see from our derivation

that any trausformation of the population charccteristics that preserves



the normal distribution of X will yield a transfo.rmed distribution of
population pirohabilities, P, that is arain a member of the SB family.
Therefore, if we wish to examinec changes in the distribution of population
probabilities resulting from normality-preserving changes in the distri-
bution of individual characteristics, these eifects can be completely
characterized by changes in the member of the SB family of distributions
derived from the assumed distribution of individual characteristics.
Finally, with regard to paramcterizaticn, we see that the parameters
of the SB distribution are u and 62: vhich are, respectively, a linear
combination of the means of X and a linear combination of the variances
and covariances of X. Therefore, any transformation of the individual
characteristics that can be expressed in terms of these moments of X
(which are also the only transformationsthat preserve the normality of
X) can be ir:.~,niately summarized in terms of its effect on the parameters
of the distribution of population probabilities, P. To illustrate. if

the distribution of P is represcented by an S_ distribution with paraueters

B

2 A . th . .
,07), an additive change in the k component of X, say Xk+a, will yield

. . . . 2 ..
a transformed S, distribution for P with parameters (u+p, 2,5 ). Similarly,
B k ’

. qs . . th - )
a multiplicative change in the k component of X, say (1+a)Xk, will

yield a transformed SB distribution for P with paramcters

2
o and Oi are the

2 2 2. 2
o 0 ata”)o, °- o0 he ‘
) Frk (2a+a )Tk +2 Bin ...), where K

1, -2 >
ifk ik k k

mean, variance, and covariance of the corresponding components of X.

v+af, i, .
(erafypy
Since aggregate changes in X will be expressed as changes in the moments
of X, this parameterization will be very cunvenient when we discuss
changes in the distribution of population probabilities arising from

changes in the distribution of individual characteristics. We do caution,
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2 - ‘s . .
however, that p and ¢ should nct be ideutified with the mean and variance

of the SB distribution; the momeats of :he SB family of distributions can

be shown to be very complicated Iunctions cf these parameters.
Because the vector of probabilities, P, for our sample is unobservable,

direct maximum likelihood estimaticon cf the parameters of the SB distribu-

-

. . . 5 s s - .
tion is intractible. Instead, we resort to aun indirect method of estima-
tion that is quite strajghtforward. In the first step, we obtain consistent

~
and I, of o, and I freom the corresponding sample moments of

estimators, X
rs

~

TX
~

our observations X. We can also obtain consistent estimates, $, of P in

equation 3 by a number of different niethods. In the second step, we

?
ro

~ "

2 A N A VA
estimate p and 57 as p = . P and 7 = B'. B, respectively., By Slutsky's

«Q

theorem (see e.g., Goldberger (1954)),  and 32 are then consistent esti-
mators of the corresponding parameters of the SB distribution.6

It shoc:d pe observed that the problem we are considering in this
paper implies an extra restriction that must be placed on the required
data set. The paramecters of the SB dictribution are dependent on both
the structural paramcters, B, of the binary choice model and on the un-
known moments of X. This means that we require observations on individual
characteristics and outcomes with the additicaal reqguirement that the
population of individuals be randomly sampled; this last restriction is
unnecessary i1f we only wish to estimate the parameters of the binary
choice model, equation 3. Since it is typical, however, that data collected
for binary choice modcls is based on a random sample of individuals, this
requirement is not unduly restrictive for applied work.

Qur discussion to this point has been bascd on the assumption that
the distributicn of X is distributed rultivaricte normal. Although this

assunption may often be reasenable in epplicd work, other distributiors



of X are of course possible and would vield other distributions for P.
In the excreme case where X is discrete, as for example when X consists
of all dummy variables, the distribution of P is also discrete and has
positive probability for at most as many points as there are distinct
combinations of the possible values of X. In this case, our integral
prediction equations in the next two sections would be re-expressed as
sums. A more reasonable case, howesver, may be to assume X is multivariate
normal except r one or two dumny variable ccmponents. If Xik is a
dummy variable, equation 3 implies the effect of the dummy variable 1is
to shift the logit by Bk when Xik = 1. 1In the special case where the
durmy variables and the other individual chiaracteristics can be assumed
to be stochastically independent, the distribution of population charac-

teristics can then be represented by scparate S, density functions for each

B
combination of values of the dummy variables such that the SB densities
differ only in simple shifts of the parazmeter p. In general, however,
since the parameters of the SB distribution depends on all the moments
of the distribution of individual characteristics, if we cannot assume
stochastic independence betwecn the dumny variables and the other charac-
teristics, we would have to fit separate SB density functions to the
estimated moments of X stratified by distvinct combinations of
the dummy variables to allow for variations in the distribution of Zndi-
vidual characteristics. Our intcgral prediction equations in the next
section would then be replaced by weighted sums of integrals, where the
weights would be taken to be the rclative frequency of each ccmbination
of values of the dummy variables in the data set.

To sunenarize our discussion so far, we showed in the Introduction

that agzvegate predictions derived from binary chioice models must

DO



incorporate the relative frequency distribution ot probabilities for
individuals in the population. We have now shown that SB density func-
tions provide a method of summarizing this relative frequency distribution
that incorporates certain a priori criteria. We turn now to the object

of our paper, which is the use of ocur ficted SB frequency distribution in

making aggregate predictions.

3. Aceorccate Predictions

Although changes in the distribution or individual characteristics
can be represented by changes in the relative frequency distribution of
probabilities for the population, the major interest in prediction prob-
lems usually will not be on the distributim of unobservable probabilities
but rather on the distribution of outcomes of the binary choice problem
faced by eanl. "ndividual in the population. Since the outcome of the binary
choice problem for each individual is a Bernoulli random variable based
on his individual probability, Pss the distribution of outcomes fcx the
population must be inferred from the relative frequency distribution of
individual probabilities. Rather than examining the entire probability
distribution of outcomes, however, we usually will find it sufficient to
consider particular moments of this distribution, which can then be
inferred directly from various moments of f(p).

In particular, in binary choice problems, the most important pre-
diction problem will involve estimating the expected proportion of indi-
viduals in the population who will underiake the action being considered

(i.e., the expected preportion of individuals that will buy a durable, or

the expected proportion who will take the train rather than drive their



car). Since each individual, 1, will uviscrtale the action

being considered with probability o,, the expected proporticn of all
hl

individuals who will undertake the action can be found by aggregating
individual pi's by their relative frequency of occurrence in the popula-
1
tion to get E[p] = : pf(p)dp, where f(v) is the relative frequency distri-
U
bution of population probabilitics.

When the characteristics that dztermine the choices of individuals
change, the natural question then would be how does that change affect the
expected proportion of individuals taking the action being considered, which
we see 1s equivalent to asking how the change in individual characteristics
affects the mean, E[p], of the distribution of population probabilities.

In particular applications, the change in E[p] would depend on the particular
change in individual characteristics bteing considered; but in this section,
we can indiz2oce the way {(p) might be used for making predictions in typical
examples.

A convenient method of summarizing the sensitivity of E[p] to emalil
changes in the distributiocn of the characteristics determining choices
is to compute elasticitics of E[p] with respect to the moments of X. For
example, the elasticity of the ewpected propa-tion of individuals who will
take the action being considered with respect to a change in the mean of
the kth component of X is:

e = |SElpl e

&

|

K

b L Sky o Elp]
. . (7)
( : - .!
Elp]

Similarly, a change in X that affects the variance of XB will have

.. 7
elasticity —-




Flasticities are useful for indicating the effect of small changes
in moments of X; but if large chanpges in the moments of X are proposed,
first order approximations may be imprccise. In this case, if the magni-
tude of the proposed change in the moments of X is known, the new parameters
of the transformed SB dictribution of probabilities can be computed from

. e 2 . er s
the definition of uw and ¢ ; and the mcans of the two distributions can be
compared dircctly.

To illustrate the use of the procedures discussed in this paper,
we will derive aggregate predictions for an actual mode split study. The
data used in this example are 878 observations on the binary choice
between train (y.=1) and car (v,=0) for travelers taking business trips

i i
. . 8 . .
in the Edinburgh-Glasgow area of Scotland.  The particular model we used
for this paper is:
P.

In —— = 1.644 - 0.198X.. - 0.019X.. - 1.524X.. - 0.0833X. (9)
il i2 i3 i4

1-p.
Y (0.216) (0.040) (0.0053) (0.290) (0.123)

where

~ . A . th . .
p; = estimated probability that the 1 traveler will take the tvain,

Xl = difference in "journecy units" between train and car,

X2 = walking and veiting time for the train trip,

X3 = relative difference in time required for trip by each mode,
X4 = relative difference in cost of trip by ecach mode.

This nodel was fitted by the method of Walkeco and Duncan (1967).
In order to fit an SB funetion to repre<eat the population frequency

distribution of probabilitics, the proccdure we used was to determine the sample

P. N

. .. . O i i
mean and sample variance of the estimated logits e In E"W—i) for
cl-p,.!
i



the data used to fit cquation 9. for ou. sanplre, ve fpund ¢ = 0.248 and
'\2 [y I 1 1 . 1

and g = 1.435, which we took as the esrimates of the paramecteors
2 . - . s . . . .

and ¢ , respectively, for thec SB function. This fitted distribution

is illustrated in Figure 1. The calculation of the prediction for-

mulas derived in this section then reguirved a number of moments of the

function are extremely intrac-

wl

SB function. Since the moments oi the 3
table (sce Johnson (1949)), we resorted to numerical integration tech-
niques to calculate the prediction forrulas for our fitted SB function.
We first consider estimates of the elasticities of the proportion
of business travelers taking the train with respect to changes in the

moments of the independent varialbles. These elasticities are given

in Table 1. To interpret them, conszider ¢ , the elasticity of E[p]

2
with respect to the mean of walking-waiting time. The estimated value
of ¢ = =0,17 which implies that if walking-waiting time for travelers

Mo

is increased by one percent of the current mean value, expocted tetal
train vidership will fall by 0.17%.

We have stressed that the value of the approach to aggregate predic-
tions outlined in this paper is that it incorporates the entire relative
frequency distribution of individual probabi’ities into the prediction
process. It is infteresting to note at this point what the effect on our
results would be if we neglected the relative frequency distribution and
extrapolatad our results from the behavior of a representative indi-
vidual. 1If we follow the common procedure of working with the mean
individual, we would estimate the elasticity of his probability of
taking tne train with respect to a change in che characteristics deter-

mining his choice as ¢ = [Blu Yip] A~E{p])I/E[p]. If we take this
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€ -0.30
€ -0.1i7
)
€ -0.14
!
€ -0.12
o,
€ -0.01
(@)
Table 1

Estimated elasticities of E[p] with respect to the moments of X.
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elasticity as representative of all individuals, the difference bet.een
the estimated aggregate elasticities computed both ways will be deter-
mined by the ratio of E[p] (1-Efp]) to Elp(l-p)j. For the data used
to estimate equation 9, this ratio is 1.285, implying that elasticities
computed by extrapolating the behavior of the mean individual will
over-estimate the aggregate elasticities computed by equation 7 by
28.5% in absolute terms.9 As an example, the elasticity of the propor-
tion of business travelers taking the train with respect to a chanze
in walking-waiting time is comptted to be -0.22 if we extrapolate
the behavior of the mean individual, a significant overestimation
relative to the correct answer of -0.17 based on the entire frequency
distribution of probabilities.

Although elasticities ave useful for u.>dictions of the effects
of small changes in the distribution of individual characteristics,
an alternative procedure if the magnitude of the changes being con-
sidered is known is to examine the mean of the transformed SB distri-
bution of probabilities directly. To illustvate, we consider both a
five-minute decrease in walking-waiting time and a ten minute decrease
in the travel time by train. The change in walking-waiting time 1is
simpler to consider as it involves only a cnange in u; but since the
effect of travel time is modeled in c¢cuation 9 as depending on the
difference in journcy time betwcen the two modes relative to the
average of the times, the change in train travel time will affect both

1

the mean, variance, and covarionces of tho population characteristics

- - . 10
and therefove alCfeost both o and .

Por the five minute decreare fu wallidug-weiting tiane, the parawcters
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of the troastfoved & density fvncoion are Go5,-5,07 ) vhich we csti-
mate as (0.343, 1.435). This chanze in the population characteristi:cs
changes E{p] from 0.5481 to 0.365%4, implying an expected change of 1.&3%
in percentage mode split, or alternatively an expected increase of 3.3%4%
in the expected number of business travelers taking the train. To com-
pare this result with the result based on the first-order approximation
of the elasticity, we note that a five minute decrease in walking-waiting
time is a 19.3% decrease in mean walking-waiting time, implying a 3.35%
increase in the expected number of business travelers taking the tirain i we would
extrapolate the elasticity, which gives only a very slight over-estimation.

To examine the effect of a ten-minute decrease in the time required
for the train trip, we need the estimated mean and covariance matrices

of the population characteristics after the indicated change. Letting
o 2

~ o . . - ol
Hy and % be the estimated nean and covar'~nce matrix of X after the

decrease in train-travel time, we want to compare the means of two SB

distributious with estimated paramcters (QXQ,S'

A~

p) before the change and

estimated parameters (ﬁxa,f'ia) efter the change. These two density
functions are compared in Figure ?. Because of the decrease in train
travel time, E[p] increases frem 0.548 to 0.577, implying an increase
of 2.97 in expected percentage rmade split, for an increase in cxpected
train ridership by business travelers of 5.20..

Sumnarizing this section, we havo shown how to use the relative
frequency distribution of probabilities discussed in Section 2 to aggre-
gate individual binary citoice behavior inte a prediction for the aggre-
gate population of individuals., Ve turn now to another use of the SB
frequency distributicn of probabilities, which is in evaluating the fore-

of our wodels,

In addition to apcrecate prodictions. theve are also cases vhere
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1 .

e weuld TITe o ovalunte ody o om ceor onosradictiag tho outcon of
individual events over time. Mcdels where this evaluation is of intzrcst
are competitive bidding models, weathcer forecasting models, and other
models where predictions of a sequence of individual events is imporiant.
We would also like to use thesc mecasures as predictive tests to test our model's
represcntation of the determination of irdividual probabilitices. These
tests are particularly valuable if we wish to use our model to make pre-
dictions for other populatiocns, and we have a small set of data to use to
test whether the model is transferable.

In a recent paper, Morrison (1972) has discussed the problen of
using observed outcomes to evaluate the performance of probability
predictors. In particular, Morriscn shows that if we consider the sample
coefficient of determination (Rz) betwcen outcomes and predicted proba-
biiities, the 2xpected value of R2 is marimum when the predicted proba-
bilities are chosen equal to the true probabilities of the events.
Furtheraowe, 1f we predict an outcorme as O or 1 depending on whether
the predicted probability of the event is less than or greater than 0.5,
Morrison derives the expected proportion of correct predictions we will
make if wo base our predictions of the outcomes on the true probabilities
of the events. Analytic results are given for these measures by Morrison
under the asswnption that the true distribution of probabilities is known
and is distributed beta. If the fregucuey dickribution of probabilities

1
t

is gencrated from a logistic bivary chrica mode?, howover, we have showm

that the assumption of a bera dictribution for tho probabilities is
unattractive and a morce plaugible essutntion is Lo use an SF distribution.
bl

Yollowing Morrison, then, but assuming the distribution of preobabilitics

2
is distributed as S tho masimun cxpecied value of D7 that can be obtaived

e
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by correlating binary outcomes and probabilistic predictions is

. (10)

Furthermore, ii we predict y; as 0 or 1 depending on whether the predicted

probability of the event is less than or greater than .5, we find:
.5 1

P(C) = fo (1-p)E(z)dp + | pf(p)dp, (11)
.5

where P(C) is the maximum expected proportion of correct classificatjons of

outcomes. If we calculate these measures based on an SB distribution

fitted by the method of Section 2, we would have a base for evaluating
ocur forecasting performance on new data under the assumption that our

fitted distribution correctly represents the true distribution of probabi-

CS.

i

1it
~0

Unfortunately, R™ and P{C) are only cxpressions for the expected
value of the coefficient of determination and the expected proportion of
correct predictions of outcomes assuming we calculate them using the true

. . . cqa s 12 .
distribution of probabilitics. In erder to use them as effective tests
on our model's performance, we also need the sompling distribution of
A . . R 2, Cece 1,

these statistics. Although the sampling distribution of R dis difficult
to obtain in this model, the sampling distribution of the observed pro-
portion of correct predictions of cutcomes if easy to obtain and can
be used to evaluate our predictions. In particular, 1if wc define a

new random variable as zi:] if we predict an outceme correctly and z, =0
i

if we predict incorrectly, 75 is distributcd Bernoulli with E[zi] = P(C)

4.
1

under the assumpirion that the true distribution of probabilities is used

in equation 11 to calculate P(C)., Under this assumption, the actual

nuriber of correct predictions in n ovents is distributed binomial with

parameter P(C), and the sowmpling distriboution ol tha proportion of correat
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predictions (assumirg large n) is appreosinantely normal with mean P(C)

)

and varizuce P(C)[1-P(C)]/n. A 857 confidence interval for the propor-
tion of correct predicticns of outcorecs is then P(C) £1.96/P{C)[L-P(C)|/n.
An important attribute of this confidence inzarval for testing our model
is that it embodies within it the assvwption that the SB distribution
fitted to our data by the method of Seciion 2 is equal to the true distri-
bution of probabilities for the data we predict on. Therefore, if the
actual proportion of correct predictio.s on new data lies outside this
confidence interval, it would be an indication that our fitted SB distri-
bution deces not adequatecl v represent the true distriobution of probabilities
for the population, either because of sampling variability in the fitting
of the SB distribution or because cur model of binary choice or our
assumption that X is normally distributed is aot adequate to describe
the data.13 Since any of these oceurrences is sufficient to cast doubc
on the aggregate predictions derived in Section 3, this test would be
very useful as a check on the validity of our assumptions.

To 1llustrate the use of the results of this section, we randomly
split our data sct in the approximate proportions of 4:1, refitted equation
9 on the larger set of data, and uscd the rcestimated equation to predict

the smaller set. Our new estimated equation, based on 692 observations

randomly selected fraa our data set, was:

P.
i .
——— = 06 - 0,196X., -~ 0.015X,, ~ 1.330x,, - 0.842X, 2)
lnl—p, 06 0.19 i1 0 25y, 1.330 i3 0.8 2\14 (12)

1.5
*(0.235) (0.04%4) (0.005) (0.307) (0.139)

This cquation implied an S, density function with estimated paramcters

N

(.306,1.,247). VUsing cquations 10 and 11 for the S, distribution fitted

B

>

~9
to this data, we calculated RT = 0.201, P(C) = 0,700, and the 957



confidence interval for the number of correct predictions was (0.634%,
0.766), To test thesc measures, we uscd equaticn 12 to calculate ﬁi
for 186 observaticns not used to fit eguation 12 and found an actual
sample R2 of 0.286 and a correct prediction percentage of 0.731. Although
both the sample statistics exceeded the maximum expected values of these
statistics based on the assumption thait the fitted SB distribution equals
the true distribution of probabilities for the sample, the actual propor-
tion of correct predictions lies within the 95% confidence interval for
14 .

this prediction.”  We would thevefore tentatively accept the fitted
SB distribution as an adcquate description of the true relative frequency
distribution of probabilities nccessary for our prcdiction formulae in
Section 3.
2. _Summary

In this paper, we have considered the prodblem of using models of
individual bineary choice behavior to nake predictions for porulations.
Since binary choice models applied to individuals are an efficient method
of determining what characteristics dcteruine individual choices, it is
important to be able to use this infornation to predict what will happen
to aggregate behavior when the distribution of characteristics determining
individual choices changes. We have shown that for a specific wodel of
binary cheice, changes in the distributlion of individual characteristics
can be characterized by their effect on the relative frequency distributien
of probabilitics of action for the population; and this rclative frequeucy
distribucion can thon be used to male predictions on aggregate behavior.
In addition, we have formulated prodictive tests to check on the accuracy

of our fitted rclative frveguency distcribucion.



There are, of course, unfinisi.cd cuestions iy this paper. Of par-
ticular impeortance is the cuestion cof tiz sampling distribution of the
paramcter estimates of the SB distribution described in Section 2 and
the effects of sampling variability on the predictions in Section 3.
Another question we have not addressad 1s the extension of our procedure
to choices involving more than two alternatives. ©Nevertheless, we feel
that the procedure discussed in this puper can be valuably applied in
many situations to extend the uscfulness of '“inary choice models from

individual behavior ito describing agzregate behavior.



Apvormdis

Section 2 of this paper derives prediction formulas for a logistic binary
choice model. This appendix briefly considers the extension of the formulas

in Section 2 to other models of binary chcice.

1. Linear Probabilitv Function

The linear probability function is defined by assuming

p, = X (A1)

As is well known, the probabilities estimated from fitting Al may fail

to lie in the interval [0,1]. 1In the context of this paper, this means

that if we begin by assuming an explicit distribution of X, our possible
choices are very limited because of the need that at least the theoretical
distribution of P be bounded. Furthermore, :¥ we transform X to make pre-
dictions, we would generally expect the distribution of P to be shifted so
that it violated tune bounds of {0,171, 7The alternative of truncating the
distribution of P appears artificial and vwias not pursued. Another possibility
involves fitting a bounded distributicn such as a beta function directly to
the P but this distributicen will not in general be preserved under transfior-
mations of X. We therefore feel the specification of Al 1s incompatible

with the methods of this paper.

2. Probit todel

The probit model is defined by assuming:

¢

where F ois the cumulative distribution funciicorn of the ctandard nonmeal dis-
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tribution. If we let h(X3) be the probab’lity density functicn cf X2, the

probability density function of p is

£(p) = h(E (p)) | j—p ). (A3)

Since equation A3 involves the invercse cumulative normal distribution function,
it has no closed form. The function £(p) can be numerically approximated,

but in gencral the moments required in ‘.c prediction formulas will be diffi-
cult to obtain. Note that the assumption used in Section 2 that X was
normally distributed has no connection with the argument usually used to
justify equation A2. Equation A2 is typically justified by assuming the
existence of an unobservable index that is normally distributed, but it

requires no a.contion on the distribution of X.

3. Gompit lModel

The Gompit model is defined by assuming:

1n 1n (1—) = X8 (AL)
P, i

If we assume X is distributed multivariate normal, the density function

of P is
1 1 c 1 1 2
e et o vy = o (] in =2) - .1 3
£ NZi o p lns B 952((An 0 P) ) (45)
0< p< i.

To evaluate the moments of f(p), we note that if we make the change of variable

aN

Vo= an; , the prebability density fuaction of » 1s lognormal with paramcters
t 7

2 . th L . - .
poand <. The &k womert about the orizin of I[(p) is then equal to the value



of the moment generating function of v evaluated with the indicator variable

of the moment generating function equal to -k. A briet check of the litera-

ture, however, failed to find an analytic expression for the moment generating

function of the lognormal distribution.



Footnotes

T

Assistant Professor at Northwestern Uriversity. T would like to thank
Peter Watson for loaning me the data used i this paper and for discussing the
ideas with me. Susan Westin and Thomas Cocley alse provided helpful discussior,
but all responsibility Tor error is of ccurse mine. An earlier version of this
paper was presented at the meetings of the Leonometric Society in Toronto, Canada,
on December 30, 1972

2
These models are surveyed in Zellner and Lee (1965).

3The alternative of directly specifvinz a familv of distributions to
represcnt the relative frequency distribution of _robabilitics will not in
general vield a family of distributions thiat satisfies the three criteria we
have specified. Tor example, since we are looking for a family of distributions
to represent a relative frgquencv distributicen of prchabilities, an attractive
possibility 1is the family of beta distributions. It is pessible to show, heuoever,
that 1f probabilities are generated bv =z logistic model of binaryv choice, then
even a simple additive shift in one of the characteristics detenuining individual
choices would preduce a frequency distribution of probabilitics that is not
distributed bcta, viclating the second criterien of preservation. In addition,
the paramcters of the beta distributicn ave not easily aexpressed in teris cof the
mements of the urderlving characteristics, violating the third criterion; aud
finallv, for cerr=1. ranges of the parameters of the beta family of distribu
a well-defined distribution of characteristics mar net even exist.

L1008,

In most applications, the data matrix will include a constant colurn so
that one component of X will have a degenerate distribution. This will not
affect the results of this papcr, and we have suppresscd the constant term for
notaticnal convenience.

One can form a likelihood function independent of the unobservable P,
by remembering that the conditional distribution of Vi ziven Py is
Bernoulli with parameter Py The preoduct of this dis Lrluutlon and equation 6
is then the joint density fulCthH of Y5 and D, By integrating this joint
density with respect to p,, onc gets the marginal density function of the cutcomes
as distributed Bernoulli with parameter equal to the mean of equation €. The
mean of equation 6, however, is an extreomely iutractible function of y and ¢ 2,
so this approach isc aot attractive.

2
In actuality, the estimates of 1 and - reported in chis paper wvere
found by a stightly diifcrent procedure. Since X s assumed multivariate norerl.
equation 3 implies the Jogits are distributed univariate normal with wean



2
and variance ~ . Therefore, if we have a randen sawple of the populatiorn
characteristics and we estimate equation 2 Ly siandard methods on all our data,

- D

. . [B: ) o n
the sample mean and variance of the estimated logits, In {2 )= KiB , will
1-p.
Py
. 2
be estimators of y and -~ , respectivelw. It can be shown by Slutsky's Theorem

that these estimators are consistent als

In general, a change that aficcts the variance of one of the components
of X will also affect the covarianccs between the componentz of X, so this

elasticity cannot be expressed simply in terms of particular moments of X.

8. . - . .
Fer a fuller description of this study, see Watson (1972). This study
was financed by the U.K. Mlnlstry of Transport (ncw Department of the Environment).

9 . . ~ . 1 . .. . . N
Since p(l-p) is a concave function, Jenscn's inequality implies that

E rp(l-p)] .: E(n)L 1-E(p) !-
L

[

b}

Strictly speaking. the change consider.d will not preserve the normality
of the distribution of relative travel times. “ince the esphasis in this paver
is on illustrating the use of the prediction methods, we numerically approximated

the effect of a ten minute decrease in train travel time on the estimated menn 2nd
variance of relative travel time and coun the estimalted covariances. Since these arc

the moments thaet would be relevant to changes t
population cl:z cteristics, it was telt that th
good predictions

11

A natural question at this point would be to ask for a confidence interval
for this prediction and the previous predicticns.  There are twe tvpes of randomness
that we would have to account for in this confidence interveil. The {irst tvpe
arises because the choices of individuzis arve wendom variables, so that even If

h t preserved the normality of the
is procedure was sufficient to yield

we knew the relative frequency distribtuticn of rrobabilities for the population,
11 a random variable. However, since we

the actual percentasze wode split is sti
are estimating the proportion of husiicss travelcers who will take the train rather
than the absclutc nounber, the variance in cur estimate becavse of random bchavior
of individuals will be small if the popula=ieon is large. Oa the other hand, we
would 2also have randewm variation in our prediccicn bocause of csampling variation
in the estimates of the paramcters of the S, distritution. Although this is
liable to be important, we have not boen able to rreat this problem becouse our
two step cstimation does not yicld a traciable sampling distribution forhonr o
estinotors; and cven if ve could deieodine the sanniing distribution of o und -7,
the integral prodiction equations of (his section are very compliceted functions
of these estirmaiers.



2

,
1 o . e - ) )
Goldberger ¢ bas parcicularliy stressed this fact and notes thetl

J S
Morrison's description of R“ as an "upper bound"” is misleading, since the only
absolute upper bound on the sample R~ is cnea.

3This test might be criticized on the basis that sufficient observations
in the prediction set will certainly reject the $§, distribution as inadequate
because of sawpling variabilitv in the origiunai fitting. However, with a largc
number of observaticns, some obscrvations can be used to improve the fit of the
SB distribution, so we feel this objecticn is not crucial.

In other experiments not reported here, it was found using this test
that the fitting of the SB distributiocon is sensitive to data outliers in the
sample. Care in checking over the data set is therefore urged, or alternatively
one might wish to use estimatcers that are less scensitive to data outliers than

the ones used in Scction 2.
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