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Introduction

In this study we consider center location problems on un-~
directed tree networks. Suppose that an undirected tree T = T(N,A),
with N and A denoting the set of all nodes and the set of all
arcs respectively, is given. Each arc of T is associated with
a positive number called the length of the arc. By a point on T
we mean a point along any edge of T. 1In particular the nodes
are points on T. Using the arcs lengths, we define the distance
between two points x and y on T as the length of the unique path
connecting x and y. This distance is denoted by d(x,y).

In addition, a set, D, of points on T is specified. D which
may be finite or infinite, represents the set of demand points.
Assume that supply centers can be located anywhere on the tree.
Given a number, P, the objective is to find locations for P
supply points on T, such that the supremum of the distances of
the demand points in D to their respective nearest supply centers
is minimized.

Two special cases of the above model have been treated in
the literature. The first corresponds to the case where demand
occurs only at the nodes of T, i.e. D=N. Whenever |D| < = one
can also associate weights with the demand points and talk about
minimizing the maximum of the weighted distances to the nearest
supply centers. Efficient, polynomially bounded algorithms when
D =N whatever be P are given in [11,3], while the further speciali-

zation to the case where P < 2 is discussed in [4,6,7,8,9,12],.



The second special case of the general model is the continuous
case when D=T, i.e. each point of the tree is a demand point. This

model is studied in [ 2], where it is solved in polynomial time .

The general model introduced above is related to the
following P-center dispersion problem. A set, S, of points on
the tree T is specified. Given an integer P, the objective is
to locate P facilities at points in S such that theée P facilities
are as far from each other as possible.

The next theorem shows that the P-center dispersion problem
is, in a sense, dual to the location problem introduced before,
provided the two corresponding sets S and D are identical. Let D
be a subset of T. Then it is convenient for the statement of the
theorem to let Up = {ul,...,ub}and Vp+1 = {vl,.o.,vp+1} denote

finite subsets of T, and to define

fD(U ) = sup {min d(x,u.)} and
P x€D uiEup L

g(Vpy) = min [d(v;,vy)/2 : 1 2i<j<p+1

Theorem 1:

For any subset D of a tree T,

min {fD(Up) : Up S T} = sup {g(Vp+1) : Vp+1 < D} .

The: specialization of the theorem where D is a finite set

is proved in [ 3], using the equality of the maximum anticlique



and the minimum cardinality clique cover in perfect graphs. The
continuous case where D is the entire tree is proved in [12].
In fact the proof of the above theorem is very similar to the
one given in [12] for the case D=T, and we therefore omit
the proof.

In this paper we focus on the case when D, the set of
demand points is the entire tree. We show that for a given P
the minimum value of the objective function of the P-center
location problem is equal to d(i,j)/2k,where d(i,j) is a
distance between some pair of nodes, i and j, of T, and k is
an integer satisfying 1 € k < P. This result is then used
to improve the algorithm of [2 ], yielding the bound of
O((nlogfﬂz) for the continuous P-center location problem,
i.e. D=T,on a tree T(N,A) with n nodes. We also indicate how
to improve the O(nzlogrl) bound of the algorithms of [l1,3 ] for
the discrete P-center problem, i.e. D=N, to obtain an O(nz) time

algorithm.

The Continuoue P-center Problem

In this section we consider the problem of locating P
facilities on a tree network in order to minimize the maximum
of the distances of the points on the network to their respective
nearest facility. Using the notation presented above we want to

find r(P) such that

r(P) = min {fT(UP) ; Up S T} (1)
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Given a point x on T and r > 0, we define Nr(x), the
r- neighborhood of x, by Nr(x) = [yET:d(x,y)jﬂr}. The location
problem is then to find the minimum r sﬁch‘that P
r~ neighborhoods will cover the entire T. Similarly, given
r > 0 we consider the reverse problem of covering the tree with
minimum number of r- neighborhoods. This number is denoted by
M(r). It is clear that M(r) is a monotone, nonincreasing,
stepwise function, which is continuous from the right. r(P)
is, therefore, the smallest r such that M(r) < P,

The algorithm of [ 2] for finding r(P) is ULased on an
0(n) subroutine for finding M(r) for an arbitrary r > 0.
(n is the number of nodes in T.)

In this section we show that r(P) = d(i,j)/2k where
d(i,j) is a distance between some pair of tips, i and j, of
T and k is an integer satisfying 1 < k < P. The latter combined
with the monotonicity of M(r) will imply that the 0(n) routine

for finding M(x) is to be applied at most 1og(n2P) times,

before r(P) is found.

To prove our claim on r(P) we will need the algorithm
of [ 2] for finding M(r). Thus, for the sake of completeness

we describe it here as well.

Algorithm 1

Suppose that the tree is rooted at some node and arranged
in levels. The level of a node is defined as the number of arcs
in the unique path connecting the node with the root. We start

with the tips of the highest level and consider a maximal set of
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such tips having the same immediate predecessor, say nede.s. We
will call such a set a cluster and denote it by C(s). Let {(s,i)}
be the set of arcs connecting those tips to s. It is clear that
if the length of any arc (s,i) is greater than or equal to 2r,

a facility may be located at a point on (s,i) whose distance

from the tip i is r, and the length of this arc is reduced by 2r.
Thus we may assume that this has occurred, if necessary (and

that C(s) has been suitably reduced) and that the lengths of

these arcs are at most 2r.

Let
= min {d(i,s) :d(i,s)>r} = E(i;,s)
i€C(s)
B = max {d(i,s) :E(i,s)ir} = E(iz,s),

ieC(s)

where d(i,s) is the reduced length of the arc (i,s). (If o or B

are defined on empty sets they are set equal to ® and 0, respectively).
If « + B > 2r, then locate a facility on (s,i) at a distance

r from each tip i (of the reduced cluster) for which E(i,s) >r,

remove each spoke (s,i) in C(s) except.(s,iZ), and remove

node s so that we have the case shown in Figure 1.
If « + 8 < 2r, thenvlocate a facility on (s,i) at a distance

r from each tip i for which d(i,s) > r, except i;, remove all

the spokes (s,i) except (s,ii) and remove node s like in Figure 1.

The process is then continued by considering a cluster of the

highest level in the remaining tree.

It is clear that the above process will find M(r) in

O0(n) time.
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Theorem 2

Let r(P) be the solution to the continuous P-center problem,
i.e. r(P) is defined by (1). Then r(P) = d(i,j)/2k, where d(i,j)
is a distance between a pair of tips, .i .and j, of the tree T,

and k is an integer, 1 < k < P,

Proof

r(P) is the minimum radius r, such that P r- neighborhoods
will cover the entire tree T. We apply Algorithm 1 with r = r(P)
and show that if there is no integer multiple of 2r(P) which is
equal to a distance between two tips of the tree then r(P) is
not minimal,

Assuming that T is rooted now and applying Algorithm 1,
we see that at each step any tip of the reduced tree is at a
distance of 2r(P) m from some tip of the original tree, with
m being integer bounded by P. Therefore, if at some step the

length of a pair of spokes from the same cluster is equal to

2r(P) the proof is complete. Hence, suppose that the latter has
not occurred while applying the algorithm. For each point x on

T, we define Tx as the tree rooted at x and consisting of all
points y in T, such that x is on the unique simple path connecting
y with the root of T. Let A be an arbitrary facility located
during the application of the algorithm. (Observe that A is

not necessarily an original node of T.) Let I(A) be the set of

nodes of T which are immediate sons of A on TA’ and consider the
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set of rooted trees [Ti],iEI(A). Then by our supposition there
exists atmost one node, i(A), in I(A) such that the distance from
A to a facility in Ti(A) is exactly 2r. The latter property
holds for an arbitrary facility located by the algorithm. Thus,
we can perturb the location of each facility A down towards Ti(A)
to obtain a cover of the tree T by the same number of neighbor-

hoods, each having a radius smaller than r(P). This contradicts

the minimality of r(P).

The above theorem implies that r(P), the solution to the
P-center problem can be found by applying Algorithm 1 O(n2P) times,
thus yielding an 0(n3P) bound for solving the model. Next we show
a reduction of this bound which is based on the nature of the
O(nzP) possible values for r(P).

Due to the monotonicity property of M(r), found by Algorithm 1,

it is clear that if M(r) < P then r(P) < r, and one can ignore all

values of r greater than r. Similarly, if M(T) > P we have

r(P) > T. Let R be the set of possible values for r(P) as speci-
fied by Theorem 2. We start by finding the median of R, say rys
and then apply Algorithm 1 to find M(rl). Comparing M(rl) and P
we then eliminate half of the members of R from further disgcussion,
remaihiné wifh the subset Ry- We then continue by finding the
median of Rl’ say r,, computing M(r2), and so on. It is clear

that Algorithm 1 is applied in this process 0(10g(n2P)) times.
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We now show that the total effort of evaluating the sequence
of medians {rl,rz,...,} is 0((n10g£02).

First, an effort of O(nz) yields the distances between
all tips of T. For each such distance d(i,j) the sequence
{d(i,j)/2k}, k=1,...,P is a monotone sequence. One can then
apply the methods of [5,10] to find ry in O(nzlogE’) time.
Successive applications of those methods for q=1log P times will
yield rl,rz,...,rq. By that time the remaining set of possible
values, Rq, will contain O(nz) elements. Therefore, the
remaining medians in the sequence are found in total effort of
O(nz) using the linear time algorithm of [1]. By that we have
demonstrated that the total effort of our procedure to find r(P)
is of order 0((nlog P)z).

Finally, using the duélity result presented in the intro-
duction we observe that the P-center dispersion problem is also

solvable in 0((nlogP)2) time.

Remarks

1) The bound 0(0110gP)2) given above for the continuous

P-center problem can be further improved to O(nz-min(log11,1og]ﬁﬂogP).
To achieve the latter bound we have replaced the general algo-

rithms of [5,10] by a special method that utilizes the structure

of the set {d(i,j)/2k}, and finds the median of R; in

O(nz-min(logrx,logP)) .
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2) The discrete P~-center problem, i.e. the model where
demand occurs only at the nodes of T, ié solved in [11, 3]

by an O(nzlogxl) algorithm. We indicate that this bound can be
reduced to O(nz) for the method in [1l1l]. The set R, of possible
values for r(P) for the discrete problem is known to contain
O(nz) elements. All these elements are computed in 0(n2)

total effort. Then, for each given r, an 0(n) routine finding
M(r), the minimum number of facilities covering all nodes, is
given.

As was done above for the continuous P-center problem,
one éan generate the sequence of medians {rl,rz,...} and apply
the procedure to find M(r) O(log(nz)) = 0(logn) times. Since
each time the cardinality of the remaining set R, is cut by
half, the linear time algorithm of [l ] will generate the entire
sequence of medians in total effort of O(nz)° This latter
term is then the dominating term yielding the bound 0(n2) for

the effort to find r(P).
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