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I. Introduction

A variety of indices have been developed for measuring power on
the class 1 of simple n-person games. While it seems clear that no
one index will serve to model powzr effectively over all of (2, wvarious
indices h;ve been important for their practical and theoretical contribu-
tions. However, the fact that simple games cannot take individwal indifference
or abstention into account limits both the scope of such games and our
ability to define power in many common game-type situations.

In this paper we utilize the ideas and notation from [1]
to define a more general clags of games _y, the semisimple n-persoh games.,
Using tﬂis extension, and any given index of individual power on the simple
games (%, we obtain a generalized and richer notion of a player's power
on ./ 1in the form of a vector (with 2% a1 components). I£ probabilities
of abstention are known for each vlayer, we can recapture a single numerical
value, which agrees with the given index of power on (¢ when abstention has

probability zero.

Returning to the domain of simple games, we make use of a definition
of collective power first introduced by Coleman [2]. We refer to this as

the enactment power associated with a simple game and we present a simple

set of axioms which characterize our measure of enactment power. The veto

power of a game can then be defined as the enactment power of its dual, from



2.
which it follows that these two competing notions of power sum to unity.
These measures of power enable us to compare, for example, the power of

absolute majority rule and two-thirds rule for varying sized voting bodies.

By combining the ideas described in the above two paragraphs, we
then obtain for any given power index on (» a nonnormalized index for
players in a semisimple game. This generalized index enables us to compare‘
individual power in a wide variety of games as well as to compare the power
of different semisimple games. Finally, we discuss the extent to which

the generalized power indices enable us to '"resolve' some of the well-

known paradoxes associated with standard power indices.
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II. Semisimple Games and Generalized Individual Power

Let N be a set of players with n = |N]. A simple game is a
collection Ty of subsets of N such that @ ¢ Iy We say that Ty

is a monotone simple game if, in addition,
M:Aer‘N,and A_C__:B:BQI‘N.

We let (¢ denote the class of monotone simple games. Given TN )

the subsets in Ty are the winning coalitions. To allow flexibility for
later developments (namely, the dual game) we do not insist that games

in @ be proper (A eTyg= N\ A érN )

To motivate what follows consider the absolute majority rule game

on N defined by

ro=(sen| |s| (2,

where [x] denotes the largest integer which does not exceed x. 1In

1l

contrast to Ty simple majority rule Zn allows a subset S of 'yes"

voters to do its will if and only if S| > |T|, where T 4is the set of
"no" voters with N\ (SUT) being the abstainers. Note that Zn has too
much structure to belong to (¢ despite its elementary and ubiquitous nature.
To deal with situations where indifference or abstention may be present,

we utilize an idea introduced in [1) , Similar ideas, with different

notation, appear in [3] and ({4].

We define a monotone semisimple game I on N as an indexed family

{TJ}JQZN\{@1 of simple games ry; on J such that



wlym

Ml: I e FK and I cJ CcK=1c¢ FJ.

M: Ie T& and I cJcK=aIy (K\J) ¢ Tk’

The idea behind this definition is that for.a set N of players, each
of whom is capable of abstaining, we must specify the winning coalitions
for each set J of nonabstaining voters. Conditions Ml and M2 are
the two natural monotonicity requirements corresponding to

1) a fixed set of '"yes" voters with increased abstention; and

2) an increased set of "

yes'" voters taken from the set of abstainers.
We let p denote the class of monotone semisimple games.
It is easy to see that any I'y € ¢ can be expressed as a member of
/ by identifying Ty with {FK}, where Ty = PN n ZK. The simplé
majority rule game Zy (which is not a simple game) belongs to _ since
5, = f FK} where Ty = F\K\’ the absolute majority rule game with \K\
players. The class of (monotone) semisimple games thus provides a
natural means of describing a variety of common voting rules and game
situations where abstention or indifference is a meaningful‘option.
We assume in what follows,unless otherwise noted, the existence of
a fixgd universal player set N for every simple game. This assumption
is plausible since we'may always adjoin dummy players to a smaller game.
Formally, a player 1 ié a dummy in a gamé Ty eC if A ¢ Ty = AN\ {1} ¢ FN'
This definition extends to ¢ in obvious fashion by calling i a dummy in
r={rg} if i isadumyin T, for all Ke 2Ny [} for vhich i K.
A power index on @ 1is a function p: @ - R"  which assigns to each

TyeC an n-tuple p(rN) of individual "powers." Thus pi(rN) measures,
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"in some fashion, the power of player i in the game FN' While a variety
of such indices have been proposed, we focus in this paper on those having
an axiomatic characterization of a certain common form. Specifically,
we recognize indices which are uniquely determined by a set of axioms of
the following type:

i) If i is a dummy in Ty’ then pi(FN) = 0.

ii) If i and j are 'symmetric" players in FN’ then

p; (Ty) = o5 Ty
iii) p 1is normalized in some systematic fashion (usually 'ZNpi(FN)= 1).
iv) e(ry ! Tp)s p(T; N T,) and p(ry) + p(r,) are relatedlgn
some "interesting' fashion.

The well-known power indices of Shapley and Shubik [5] and Banzhaf [6]
satisfy the above conditions (see Dubey [7] for axiomatic developments).
Deegan and Packel [8] develop another such index and a generalization [9]
that provides a broad family of axiomatically based power indices.

Let p: Bfl be any power index of the form described above and
normalized to unity. We can "extend" p to . by defining, for
r={rgt edos p(@) = {D(TK)}KQZN\\{Q}‘ I1f we think of a player i ¢ K as
having pi(rK) =0 and if we enumerate the 2" -1 nonempty subsets of N in

some systematic and constant <fashion, we see that the generalized power

of a player i in a semisimple game is a 2™ -1 tuple which we denote by
pi(r). In the next section we develop a notion of the overall power of a
game. This will lead to a modification of an index p on .. We postpone

specific examples until these ideas have been presented.



111. The Power of a Game and its Dual

It is not uncommon to regard certain voting bodies or game situations
as ineffectual in the sense that their inherent structuremakes changes in the
status quo very difficult. We now use an idea introduced by Coleman [2] to

define what we call the enactment power of a simple game. By using the notion

of the dual of a game, we can then obtain a complementary blocking power for

a game. At the individual player level, distinctions between "power to act"

and '"power to block" have been made in [2] and [9].

Consider any T € @ . If we assume that each of the on possible coalitions
of "yes" voters is equally likely to form, then a motion to alter the status quo
will pass with probability [Pl /2" . As with individual power, there are clearly
other plausible formulations. Nevertheless, we find this approach to be pleasing
in its simplicity, the axiomatization it gives rise to, and the specific results it
provides.

Given T € & , the enactment power of I is defined by p(T) = ‘F’/ ot

If, abandoning the assumption of a 'fixed universe' N temporarily, the game
I' has r players, then we would define p(I) = |T1 /2% . Let T \1i denote the
simple game on N\{i} defined by AeT\ ie A€eT ZN\{i}. The
first axiom requires that the power of a game not depend on the presence or
absence of dummy ﬁlayers.

Al: i adumy in I = p(I'\ 1) =p@) .
The second axiom fixes a power value for the games which requife unanimous support

of their nondummy players to "carry'" a motion.

A2: T a unanimity game with r players= p(l') = 1/ 2"
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The final axiom describes how power in a combined game depends upon power in the

constituent games. It turns out to be identical with one of the characterizingaxioms

for both the Shapley-Shubik and the Banzhaf power indices (see [7]).
A3: p(rp UTy =p() +p(r,) -p(r; NT,Y.

Theorem 1 The unique function p :C 4+ R satisfying Al, A2, and A3 is

the enactment power p(I) = lrl /2"

Proof. It is easily checked that the function p(T) = lP| /2" satisfies

Al, A2, and A3 . Indeed, A2 is immediate, A1l follows since adding a dummy
player to a game doubles the number of winning coalitions, and A3 results from the
set theoretic identity |S U T| = |s| + 7] - |sn T{ . Conversely, let p be

any function satisfying Al, A2, and A3 . The set theoretic identity mentioned
above can be exténded inductively as follows. Let Q(k,m) denoté the set of
increasing sequences of length k chosen from the first m positive integers.

Then

m m
W Jus,] = zEDS g | n s,
=1 k=1 c€Qlk,m jeo 7

By identical reasoning, A3 extends to

m m
k+1
(2> pCUTY = Z (-1 z p( N rj)
i=1 k=1 c€Qk,m) jeo
m m
Given any T € ¢ with T = {5,}._, we can write I = \yT,, where T, is
ii=1 jo1 & i

the game generated by



{(consisting of all supersets of) Si . In this case N ', 1is the game generated
jeo
by S0 = U S-_,| , and can be viewed using A1l as a unanimity game with'\SO‘
j€o

players. By A2 and (2) it follows that p(I') has a well-determined value and
that this wvalue is

m
G pm = 1/2°[ z (-DF 3 22 | %] ]
k=1 o € Q(k,m)

This establishes that at most one function p : 2+ R can satisfy A1,A2, and A3 ,
and the fact that p(T) = ‘1"'/ 2" is such a function completes the proof. For
insurance we note that the bracketed quantity on the right hand side of (3) is

m
indeed ll“l by a careful application of (1) to U r. .
' i=1 Q.E.D.

The dual T* of a simple game T in ¢ 1is defined by
X o= N
rF={se2\ {0} | M\ser]} .

Thus, the winning coalitions in ['* are those which can '"block” the formation of

winning coalitions in T . We define the blocking power p¥ on 2 by

p* () = p(T¥)
Theorem 2. Y non-empty T €¢ , p(D) +p*(T) =1

Proof For all Sc N, either S €T or N\ S € I'* , but not both. Thus

T} + || =2° It follows directly that p(I) + p (I) = 1.

Q.E.D.
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If we define I" € to be strong if S ETI = N\S € I and to be proper if

SET=N \ S ¢ T , additional relationships readily emerge. The following

theorem summarizes a variety of results connecting these ideas. The proofs are

immediate and will be omitted.

Theorem 3 Given T € ¢ with T nonempty :

i) r+% =71

ii) (p UT)* =r¥N I3

iii) I' strong ©® T[% proper

iv) ' strong=p(I') > 1/2

V) ' proper =2 p(M < 1/2

vi) ' =TI'* eI strong and proper = p(I") =1/2

vii) p(M) =1/2=7T 1is either both strong and proper or neither.

We close this section with a table of enactment powers for several well known

classes of simple games. All results assume a player set of size n .

TABLE I: Enactment Powers and Other Properties for Some Simple Games

T p(M Characteristics
Abs. Majority Rule, n odd 1/2 Proper, Strong, I'* =T
A n n+l -
Abs. Majority Rule, n even 1/2-( n/2 )/2 Proper, I'* ={Sl ‘S\z:n/Z}
n
{s]|s| = 1 (%) /2% Propers k>3 ,I* =8| |$|>n-k}
Dictator (n- 1 dummies) 1/2 Proper, Strong, I'* =T
T - oligarchy: {S|SoT} 1/2[T, Proper, I'* = {S|SNT # ¢}
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IV. Nonnormalized Power in Semisimple Games

, . . n -
Given a normalized power index p : -+ R and a semisimple game

} € o/ , the previous sections provide a measure of power

T dx e o™ (o

p(TK) for each simple game [T, and a o1 tuple p(r) = {p(FK)} of individual

K

powers. It seems natural, for each Ty » to divide up the game power p(TK) in

n
. . I = n . =
proportion to the individual powers p(FK) = {pi(rK)}izl . Since iilgi(FK) =1,

this is readily done by defining, for each i ¢ N, Hi(TK) = p(TK)pi(TK)

Doing this for each nonempty subset K of N , we are able to define a non=

normalized power index T : f -+ RrR" by

nm = {pTe TRy ¢ L\ (g

We illustrate these ideas with the weighted voting game T'={5;3,2,1,1,1] ,
where the 5 players (we denote them by a,b, c,d, e respectively) have weights
of 3,2,1,1,1 and a quota of 5 votes is needed to form a winning coalition (so
abstention is effectively a vote against changing the status quo ). The following
table describes game and individual powers for the seven nonequivalent nonempty
simple games which occur when individual abstention is allowed. We use the index
developed in {8] for reasons of simplicity and nonobjectivity. This normalized-

to-unity index assigns power to player i in I according to the formula

= 1
pi(I‘) Iz3 Sémzl /|sl’
ieS
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where 7 denotes the set of minimal winning coalitions in I' . To ease comparison,

we round off the individual index values to two decimal places.

TABLE II: Epactment and Individual Power Values for the Game I' = [5:3,2,1,1,1]

Player Set K p(FK) p (Tp) H(FK)

{a,b,c,d,e} 13/32 (.30,.15,.18,.18,.18) (.12,.06,.07,.07,
{a,b,c,d} 5/16 (.42,.25,.17,.17,.00) (.13,.08,.05,.05,
{a,c,d,e} 1/4 (.33,.00,.22,.22,.22) (.08,.00,.05,.05,
{b,c,d,e} 1/16 (.00,.25,.25,.25,.25) (.00,.02,.02,.02,
{a,b,c} 1/8 (.50, .50,.00, .00, .00) (.06,.06,.00,.00,
{a,c,d} 1/8 (.33,.00,.33,.33,.00) (.04,.00,.04,.04,
{a,b} 1/4 (.50,.50,.00, .00, .00) (.12,.12,.00, .00,

Asa second illustration, we compare index values for absolute and simple
majority rule. If rn is absolute majority rule, then the results of Table I
applied to Fn regarded as a member of / give p(rn) = {p(FK)} where k==]K] and

n+2]
2

k

z -(%) /2k if k> |
=Rtz O

p(ry) = ] 2

v
0 if k < [EEfL]

.07)

.00)

.05)

.02)

.00)

.00)

.00)
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Since each individual in K has power 1/k
1/%k p(Ty)  if

my (Te) =
0 if

In contrast, with Zn = simple majority rule

in FK by symmetry, we then have

iek
i¢K

we have p(Zn) = {p(FIKI)}K ¢ ZN‘\ (9

where
1/2 if '[K| is odd
P(F'KI)
k k+1
1/2-(k/2)/2 if |K} =k 1is even
In this case, for 1 € K,
1/ (2k) k odd
ni(FlKl) =
1/k(1/2 - (kljz)/zkﬂ) k even

Thus we see that simple majority rule affords more power to enact at each level of

abstention, with absolute majority rule leading to zero individual power as abstentions

. n
increase past [ 0 ]

. These conclusions are rather obvious from the structure of the

games themselves, but our model enables the differentiations in power to be quanti-

fied.

. . n
The notion of generalized power as a 2 -1 tuple seems natural in view of the com-

plexity which is added when abstention is allowed. If we assume that the probabilities of

abstention are known and independent for each voter, our index can once again be reduced

i
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to a single number by means of an 'expected power' computation. Indeed, let

vi'— the probability that wvoter i fails to abstain in the game T = {FK} €S .

Then the probability of ending up with a set K of nonabstaining voters is

Ve = TT v, TT (1-v,) . We can then define the enactment power of T
. i i
iekK i¢ K
v . . v
by p () = Z v,p(r,) and the individual powers by D= :zv (r.)
K MK Pi 2 Py
K40 LU g KUK
and Iy () = 2 vI,(r)
n . = \
i . K0 K'iv K

Clearly if there is no abstention permitted or assumed, these index valued reduce

to the original values determined by whatevever simple index 0 is being used.
If we assume that each individual votes with equal probability v , then

n-k

v, = vk(l-v)

K (k’=lKl). For the "democratic" games of absolute and simple

majority rule we then obtain the following enactment powers:

n k

pc) =z IOVa-wtTE oz et
n _ nt2 . ont2. 3
k=[] i=
n k
p) = 2 IOVa-wtTE 3 (/2N
k=1 . k2.3
i=]

By democratic symmetry, individual powers Hi are obtained by dividing by n .

The following table lists enactment powers for Fn and Zn for various values of

v and n .

[TABLE III about here]
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As seen from Table III, enactment power for absolute majority rule

with abstention approaches O as n increases. For simple majority rule
enactment powers tend to .5 with increasing n. Thi§ limiting behavior can
be demonstrated analytically and serves to highlight the well known disparity
in efficacy between thesé two common voting rules. The table also indicates
that the distinction between even and odd sized groups becomes less and less
significant as n 1increases. While these results are all in accordance with
what one might expect, they provide a numerical framework for our intuition

and add credence to our model of enactment power.
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V. Concluding Comments

By extending the notion of a simple game to allow abstention, we are able
to encompass a significantly increased class of real-world processes involving
gaming behavior and social choice. Abstention is common practice in a wide
variety of legislative and group decisionmaking bodies. The ideas of group and in-
dividual power which arise from our extension can reflect, in quantitative
fashion, the consequences of abstention with respect to overall decisionmaking
efficacy and how this efficacy is apportioned among the voters. Our approach
does not provide a new definition of individual power, but rather a means of
extending any given measure of power on simple games. Since such measures on
simple games have been useful both practically and theoretically, our rather
natural extensions should find similar application.

One intriguing characteristic of power indices on simple games has been
the various paradoxes associated with them [8,10,11]). The weighted voting game
r =15;3,2,1,1,1] considered in Table IT suggests that our extension may
"resolve" some or all of these paradoxes as a result of viewing power as a
ZTi- 1 vector. Specifically, it may be noted that the "1 -vote'" players c ,

d , and e have more power when there is no abstention than the "2 - vofe“

player b . When abstention is allowed this surprising result does not continue

to hold, and player b 's overall power must be viewed as not directly comparable
to that of ¢ , d , and e . This weighted voting paradox arises only for the

index developed in [8], Other paradoxes such as the 'mew member'" paradox where
adding a new player can increase the power of an established player can also be
seen to dissolve under abstention. We do not offer these observations as con-.

clusive proof that paradoxes will no longer be present, but merely as an indication
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that allowing abstention may mitigate them significantly.

Just as there are a variety of indices measuring individual power, there
should be alternative ways to define the enactment power of a game. The
approach we used employs an aggregation axiom (A3 ) compatible with the one
used [7] to characterize the Shapley-Shubik and the Banzhaf index. 1If the
approach of [8] were used, it would seem reasonable to define enactment power
in proportion to the probability of a minimal winning coalition forming. In

this case A3 could be replaced by

| IR +r)|p ()
| M(r ) +]M(Ty)]

A3': p(r; U ry)

b

where M(T") denotes the family of minimal winning coalitions in T . This
approach'with a few qualifications provides a characterization of another
enactment power measure, p(T") = IM(I‘)I/Zn . We omit the details.

Another consequence of our generalization to semisimple = games is the
ability to formulate two alternative monotonic social choice processes as
such games. The power index ideas then allow us to discuss power both for this
situation and, when neutrality of the choice process is assumed, for an.
arbitrary alternative Arrovian framework (cf. [1l], [4], and [12]p. 54 ) .
This makes possible the specification of conditions on the power index values
(such as equal power) as axioms to be used in attempting to characterize social
decision functions and voting rules. Sée [13] for an initial result in this

direction.
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