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Abstract. Although the mappings used in the Eaves and Kojima fixed point
representations appear to be different, this paper shows that they are essen-
tially the same -- a unification that is accomplished via a geometric pro-
gramming argument in the more general setting of the '"geometric complementarity

problem'.
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1. Introduction. Given a mapping f from a subset of Rn into Rn, the

corresponding complementarity problem consists of finding all solutions

(x, ) to the conditions

x =0 and y =20
0= {x,
y = £(x).

Eaves [4] characterized the solutions to this problem as essentially
the fixed points for a vector variable Z under a mapping defined by mini-
mizing ”x - z” subject to x > 0. He then used the resulting fixed point
representation, along with Browder's fixed point theorem [1], to establish
the basic theorem of complementarity.

Subsequently, Kojima [14] characterized the same solutions as the fixed
points for a vector variable 2 under a mapping defined by expressing z as
x - Y for some x > 0 and some y = 0 for which 0 = {(x, y). He then used
the resulting fixed point representation to extend the basic theorem of
Eaves and unify it with other existence theorems.

The key to relating the Eaves and Kojima representations is a demon-
tration that the Eaves minimization produces the Kojima orthogonal decom-
position, and vice versa. Such a demonstration extends the well-known fact
that minimizing ﬂx - z” over a given vector space % in Rn amounts to expressing
z as x - y for some x € 7 and some y € Y% & x.

Actually, these two facts are special cases of a theory that deals with
arbitrary closed convex dual cones X and % in Rn. In addition to relating
the Eaves and Kojima representations, this theory leads to fixed point re-

presentations of the geometric complementarity problem.

2. The geometric complementarity problem. Given a relation T on R’ (i.e., a




subset of Rn X Rn), and given both a closed convex cone % in Rn and its
"dual" Y é{y‘E RnIO < (x, y» for each x € X}, consider the following impor-

tant problem.

Problem . Calculate all solutions (x, y) to the conditions

(D x €% and v €%
(11) 0= (x, y
(111) (x, y) €T.

We term this problem the geometric complementarity problem because of its

intimate connections with (generalized) geometric programming. In particular,
when T" = {(x, y) € R X Rn]y = Y (x)} for some objective function g, both
[23] and section 3.1.1 of [21] show that the resulting solutions (x, ¥)

provide all "

critical solutions" x to the resulting geometric programming
problem ¢7. Moreover, when T = {(x, y) € R" ¥ Rnly € Y (x)} for the same
objective function g, both [24] and section 3.1.4 of [21) show that the re-

sulting solutions (x, y) provide all "

primal and dual optimal solution pairs'
(¥, y) 1f the resulting "geometric dual" problems & and /& have no "duality
gap". (It is worth noting that sections 3.3.1 and 3.3.4 of [21], as well

as [23] and [24], contain the seeds for an even more general geometric com-
plementarity problem -- one with explicit constraint functions. However,
since the significance of that problem within optimization is already well
documented by the preceding references, and since its relevance outside of
optimization is not yet known, there is not yet any compelling reason to
formalize it and further study it.)

Problems o for which there are no "variational principles" (i.e., for

which T has neither the preceding gradient form that leads to an equivalent



optimization problem nor the preceding subgradient form that leads to an
equivalent pair of dual optimization problems) frequently arise as alter-
native formulations of "equilibrium problems" (as indicated, for example,

in [91 and [221). 1In independent work, problems C of that general type

were first studied by Saigal [261, who had been stimulated by the work of
Karamardian [10,12]. Karamardian had assumed that T = {(x, y) € R x Rn]

y = £(x)} for some mapping £, and had been motivated by the work of Habetler
and Price [8], who had further assumed that X is both "pointed" and '"solid".
Habetler and Price were generalizing earlier work on the original complemen-
tarity problem -~ namely, problem C with both Z'and'y being the non-negative
orthant RZ (a closed convex polyhedral cone that is self-dual and both pointed
and solid). That earlier work and its offshoots was performed by Lemke [15],
Cottle [2], Cottle and Dantzig [3], Eaves [5], Merrill [17], Saigal [25],
Eaves and Saigal [6], Karamardian [11], Saigal and Simon [271, Moré [18, 19],

Fisher and Gould [7], Kojima (131, and Megiddo and Kojima [16].

3. The key theorem. The following problem essentially generalizes the

Eaves minimization problem.

n
Problem 7(z). TFor the vector z from R calculate a corresponding vector x

that minimizes (1/2)”x *‘3”2 over X.

The following problem generalizes the Kojima orthogonal decomposition

problem. .

n
Problem f£(z) . For the vector z from R calculate corresponding vectors x
. 14/
and y in R so that

(1) x €X and y €Y



(11) 0= (x, ¥

(I11%) zZ=Xx-y.

The following theorem summarizes the requisite facts about problems

M(z) and .B(z).

Theorem 0. Problem 7(z) has a unique solution Xx; and problem .£(z) has a

unique solution (X, y), with y determined from both Z and x by relation (I11%).

Proof. The closedness of % and the continuity and unboundedness of ”-”
obviously imply the existence of a solution x to problem 7(z). Moreover,

that solution X is unique because of the convexity of X and the strict con-

-z)|.

vexity of (1/2)1
Now, problem 7. (2) is a geometric programming problem of the general

type defined in section 2.1 of [21]. Moreover, differentiation of (1/2)”-—2”2

shows that the defining conditions for problem ./(Z) are just the appropriate

optimality conditions for problem 7M(2), as described in section 3.1.1 of

[21]. 1In fact, the convexity of both % and (l/2)”o-Z”2 implies, via Theorem

1 in section 3.1.1 of fle, that the solutions x to problem .£/(2) are iden-

tical to the solutions x to problem 7(z}. Consequently, problem .5(z)

has a unique solution (x, y), with y determined from the unique solution Xx

to problem 7(z) by relation (III”). q.e.d.

It should be noted that the second assertion of Theorem O generalizes
the work of Moreau [20], who had assumed that both X and % are pointed and

solid while using a different proof.

4. The main result. In view of Theorem O, the given relation I" determines

another relation



e

{(z, O ¢ R’ X Rnl (x, x - ) € T for the unique solution x to

N

problem 7(2) }

{(z, O € R X Rn](x, X - O €T for the unique solution (x, y) to
problem £(z) }.

Associated with the realtion Z is the following fixed point problem.

Problem #. Calculate all fixed points z for the relation 7; that is, cal-
culate all solutions z to the condition

(Iv) (z,-2) € Z.

Problem J with 7 specified by the defining formula is essentially a
direct generalization of the Eaves fixed point problem, while problem J with
Z specified by the second formula is a direct generalization of the Kojima
fixed point problem.

The following theorem establishes the equivalence between problems

C and 7.

Theorem 1. Each solution (x, ¥) to problem C produces a solution X - y to
problem J; and each solution Zz to problem J, along with the unique solution x

to problem M(Z), produces a solution (x, X - Z) to problem C.

Proof. Given a solution (x, y) to problem C, let z é X - Y. Then, y=x - 2z,
and hence (x, x - 2) € T'. Moreover, (X, y) solves problem .5(z); so Theorem O
asserts that x is the unique solution to problem 7(z). Consequently, (z, z) € Z,
and thus Z is a solution to problem 7.

Conversely, given a solution z to problem J, along with the unique solu-
tion x to problem 7(z), let y A X - z. Then, (z, z) € Z, and hence (x, y) € T.

Moreover, Theorem O asserts that (x, y) is the unique solution to problem



B(z). Consequently, (x, y) is a solution to problem C. q.e.d.

In subsequent papers, our fixed point representation(s) of the geo-
metric complementarity problem will be used to help extend known theory
about the original complementarity problem.

Finally, it is worth noting that there is at least one more fixed
point representation of the geometric complementarity problem -- a repre-
sentation due to Saigal [26]. However, it has no direct relation to the

fixed point representations discussed here.
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