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A BIDDING MODEL OF PRICE FORMATION UNDER UNCERTAINTY

The theory of competitive equilibrium under conditions of certainty
is well understood. Early treatments of equilibrium under uncertainty
proceeded by applying the certainty theory to markets for state-contingent
claims. In the important case when markets are incomplete, these treatments
are not satisfactory because the exchange process itself can reveal informa-
tion which may alter traders' preferences.

The theory of rational expectations equilibria (REE) has evolved to
cope with the complexities of information being transmitted through prices
and trades. Among the REE models most often studied are some which in-

volve equilibrium prices (called fully revealing prices) that convey all

of the information available to traders in the economy (Green [1973], Khilstrom
and Mirman [1975], Grossman [1976], Radner [1977}). 1In these models, traders
equilibrium demands do not depend on their private information; they depend only
on the prevailing prices.

This conclusion raises a variety of questions. How do prices come
to reflect information if no trader takes any action which reveals his
information? Why does any trader bother to collect information which he
will never use? In an investigation of the first question, Beja [1977]
concludes that informative prices cannot be the outcome of any process
resembling tatonnement. Grossman and Stiglitz [1978], studying the second
question, conclude that there cannot be incentives to collect costly infor-
mation when markets are informationally efficient.

The questions raised above are, I believe, most fruitfully addressed
by specifying mechanisms for price formation and then examining the mechanisms'
properties. Thié paper studies the mechanisms introduced by Vickrey [1961].

Vickrey's investigation focused on one aspect of uncertainty--traders
were uncertain about other traders' tastes. He showed that, in such a con-

text, his mechanisms lead to Pareto optimal allocations. They also lead to

"prices" resembling competitive prices.
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Rational expectations models frequently focus on another aspect of un-
certainty--traders are uncertain about the utility which they may eventually
realize from any particular allocation of the mechanism. In such models,
the various traders' preferences among commodities and risk attitudes are
assumed to be known, but some parameter affecting the consumption value of
the commodity is unknown. The models studied in this paper allow traders
to be uncertain about both the consumption value of the commodity being
traded and the tastes of the other traders.

The properties of Vickrey mechanisms are most easily developed for the
simple case in which a single, indivisible object is to be sold to one of
n possible buyers (bidders). Section 1 presents a formulation of the single
object Vickrey auction with risk-neutral bidders and characterizes the
bidders' optimal strategies. Section 2 studies a family of models for which
explicit equilibrium strategies can be derived. One model in this family
exhibits a fully revealing equilibrium.

Bidders' incentives to gather information are analyzed in Section 3.

It is shown that bidders generally have a positive incentive to collect in-
formation, even when information is costly and prices are fully revealing.

The robustness of the results developed for the auctions of sections 2
and 3 is examined in Section 4. Sections 5 and 6 extend some of the re-
sults to auctions involving multiple items. 1In Section 7, I present some
concluding remarks. The existence of equilibria for bidding games is dis-

cussed in an appendix.



1. A GENERAL VICKREY AUCTION

The four primitive objects of the auction model are

1. The set of players, N = {1,...,n}, where n > 2.

2. A real-valued parameter € which is unknown to the bidders
but which influences the wvalue of the object being auc-

tioned (OBA). (Some authors call 6 the payoff relevant

variable.) The prior distribution of & is denoted by G.

3. Signals X .,Xn which are observed by players 1 through

12"
n, respectively., These signals are taken to be real-

valued random variables and, given 0, their conditional

joint distribution is denoted by FS'
2
4. Bounded functions Hys...,H mapping R into R, . For

the generic bidder i, the quantity Vi defined by

Vi = Hi(e,Xi) is the private value of the OBA.

A strategy for player i is a measurable function pi:B{ - B{+ which speci-

fies a bid pi(x) for each possible value x of Xi' When the strategies

P1s.-.sp, are held fixed, one can define the following random variables:
(1) W =max p,(X.)
jen 3
(2) W.= max p:(X:) .
ojen
j#

In a Vickrey auction, the player submitting the highest bid wins the
auction and obtains the OBA for a price equal to the highest bid among his
competitors. In case of ties, the winner is selected "at random" from
among the high bidders. Let i* denote the winner of the auction. When

the strategies are held fixed, i* is a random variable., The notation
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{i* = i} denotes either the event that i* = i or the indicator variable
for that event, as appropriate for the context. Then the generic bidder's

expected payoff from the auction is
(3) E[(V, - W){i* = 1}].

Implicit in this expression are the assumptions that players' utilities are
additive separable in money and that players are risk-neutral regarding
gambles involving money.

I shall assume that the F,'s have continuous uniformly boundéd den-

e
sities ?9 on R'. With this assumption, all conditional expectations given
signal information can and will be defined using Bayes' Theorem.

Given strategies Pys+--sP > define i*(b) to be the identity of the

winning bidder when P; is replaced by ﬁi = b. A strategy Py is called

an optimal response[l] to the opposing strategies if for every x in the

range of Xi
(4) p; (x) € arg max E[(V, - Wi){i*(b) = i}{xi = x].

An equilibrium is an n-tuple of strategies (pl,...,pn) such that each is
an optimal response to the others.

The reader should interpret Wi is this set-up as the price which
player i faces. Different players face different prices, but no player
can influence the price he faces. Notice that Wi does not depend on Xi'
This key fact distinguishes Vickrey prices from REE prices and leads
eventually to the sensible conclusion that players can profit from their
private information.

The first formal problem is to characterize the role of ties in

the equilibria of the Vickrey auction. Fix strategies Pos-eesP and con-



sider player 1's problem in locating an optimal response.

Proposition 1., Let x be in the range of Xl' Then
(5) b € arg max E[ (V; -wp{ixd) = 1}[x; = x]
if and only if both (6) and (7) hold,

(6) b € arg ﬁsx E[(Vl--Wl){w1 < b}le = x]
(7) E[(v, - W) {wW, =Db}[x =x]=o.

To show (5) => (7), suppose that (7) does not hold. One case is that

the left hand side of (7) is positive:
EL(V, -W) W, = b}[X, = x] = 20> 0.

Then by the specified treatment of ties,

E[(V; -W) W =D, ix(®) # 1}[X =x] >a> 0.

Hence, for & > 0,

E[(V, -wl){i*(EHs)

l]le = x]

- B[V, W) {i*() = 1}]X; = x]

E[(V, - W) ({w, =D, i*x(B) # 1} + {b< W, <D + 6}

1
+ ) =b +6, i*( +8) = 1}]%; = x]

>a-bP{b<wW <b+8[Xx =x}-0a>0

1
as & » 0. 1If the left-hand side of (7) is negative, a similar argument
shows that b - & is better than b for some small positive §.

To show that (5) = (6), suppose (6) does not hold and choose b* so

that

EL(v, -wp){w, < E]]xl = x] < E[(V] -W){W <b*}[x; =x]



Since the last expression is left-continuous in b¥*, there is some 6§ > 0

such that both

(8)  EL(Vp-WD{W < b} =x] < E[(vy - W {wy < bx - 8}]x;

x]

and P{W1 = b* - 6]X1 = x} = 0. This latter fact implies that

(9) B[ (V) - W) {ix(b¥-8) = 1}|x; = x] = E[ (V) -W){W < bx - 81lx, = x1.
Since (5) => (7), (5) also implies that

(10)  E[(vy -wp{ix(B) = 1}]x; = x] = B[ (v -wp{w < bB}|x; = x].

Combining (8), (9) and (10) yields

E[(v) -wp){ix(®) = 13]x; = x] < B[V, - W) {ix(b*-8) = 1}|x; = x]

in contradiction to (5).

The foregoing argument proceeded by (5) = [(5) and (7)] = (6). The
argument that [(6) and (7)] =>[(5)] is similar to the argument that [ (5)
and (7)] = (6).

C.E.D.

In view of Proposition 1, the equilibria of the auction game can be
found by solving the problems (6) for each player simultaneously and then
checking to see that (7) holds. Pursuing this idea, consider player 1's
problem when he has observed {Xl = x}. The bid b satisfies (6) if and

only if for every positive number §,

(11) E[(V; - W {W < b}[Xl = x] 2 E[(V, -W){W, < b+ 53[x1 = x]
and
(12) E[(V]_ -wl){wl < b}’Xl = x] > E[(Vl'wl){wl <b - 5'”X1 = x].

Equations (11) and (12) reduce to

(13) 0> E[(V; -W)Ib < W <D +8}[X =x]



and

(14) 0 < E[(Vy-w){b - 6 < W, <b}X, =x].

Vickrey analyzed the special case in which Vi = Xi' He showed that
in this case each bidder has a dominant strategy, namely, p(x) = x. Unfor-
tunately, in certain degenerate cases, there are other less plausible

equilibria, as displayed in Table 1.

Table 1

Equilibria When V1 and V2 are Degenerate Variables

Case vy v, Player 1's Bid Player 2's Bid
1 10 20 10 20
2 10 20 18 25
3 10 20 5 12
4 20 20 20 20
5 20 20 0 20
6 20 20 40 20

Pathological cases such as 2, 3, 5, and 6 do not occur when the opti-
mal responses always satisfy the two positivity conditions:

(15) Y6 > 0 P{b5w1<b+5]xl} > 0.

(16) Y6 >0 P{b - 8 < W <blx]>o0.

When (15) is satisfied, (13) is equivalent to

(17) 0 ZE[Vl-W]X1=x,b§_w <b+3].

1 1

Similarly, when (16) is satisfied, (14) is equivalent to

(18) 0 <E[V,-W[X =x,b-6<W <bl.

1

Any optimal response satisfying (17) and (18) is called a regular opti-

mal response and any equilibrium in regular optimal responses 1is called a

regular equilibrium.




Define the function §1 by
(19) gl(s,t) = E[V]_[X]_ = s, W]_ = t].

In the coming sections, models are developed for which §1 is continuous in

t. Then letting 6§ - 0 in (17) and (18) yields the '"first-order condition"

0 = gl(s,b) - b
or, equivalently,

(20) b = E[vllx1 = s, W =bl.

Equation (20) is highly suggestive of the rational expectations effect.

It is also the intuitive foundation of much of the following analysis.
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2. A FAMILY OF MODELS WITH EXPLICIT SOLUTIONS

Suppose that the value functions are identical (H; = ... =H

o= B

and that H is continuous and increasing in both arguments. Suppose too,

that conditional on 6, the signals are independent and identically dis-

tributed with common distribution function FB'

(21) Fe(tl""’tn) = Fe(tl) cee Fe(tn)

Let fe be the corresponding density function and suppose that fe has the

monotone likelihood property (MLP):

Monotone Likelihood Property--For any 91 >0 fe(x)/fe (x) is a decreas-
2 1

2’
ing function of x on its range of definition (where any positive number

[2]

divided by zero is defined to be +=).

Define the variables Y; and the function g by

(22) Y. = max X,
1 _]EN
j#i
(23) g(t,s) = E[H(®,X{)|X] = ¢,¥; = s].

Applying Bayes' Theorem,

(H(r,t) fr(t)F:-z(s)fr(s)dG(r)

(24) g(t,s) = -
jfr(t) F: z(s)fr(s)dG(r)

Proposition 2. Under the foregoing assumptions, the strategies given by

pl(t) = ,.. = pn(t) = g(t,t) form a regular equilibrium.

The proof of Proposition 2 relies heavily on the MLP through the

following lemma.
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Lemma 1: Under the foregoing assumptions,

(i) Y, has the monotone likelihood property and

1

(ii) g is continuous and increasing in both arguments.

Proof.
To see that Y1 has the MLP, note that its conditional distribution
n-1
(given B) is Fe (-).
Take 61 > 92. Then the relevant likelihood ratio is

-2
[(a-1)F,  (2) f92<z>1/[<n-1>F§

2
(2 ()].
2 1

1

Since fe (z)/f9 (z) is decreasing by assumption, it suffices to show that
1 2

Fe (z)/Fe (z) is decreasing. Taking the derivative, I need to show that
2 1

0< £, (2)F, (2) - £, (2)F, (2)
e1 92 92 e1

or that
z

fe (2) Fe (2) I fe (r) dr
(25) Fw S R® T TLOE -
91 91 I 91

-0

By the monotone likelihood property for Xl’

(26) £, (2)/fy (2) < £, (¥)/fy (x)
92 ) 92 61

1
for r < z. Then (25) follows from (26).

Since X, and Y. are conditionally independent and share the monotone

1 1
likelihood property, the conditional distribution of © given X1 =5 and
Y1 =t stochastically dominates the conditional distribution given X1 = s
Y. =t , if s, > s, and t, > t From this fact and the assumption that H

1 2 1 2 1 2°

is increasing in both arguments, it follows from (23) that g is increasing

in both arguments.

2’
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Finally, using (24 and the boundedness and continuity of f, it
can be shown (using the Dominated Convergence Theorem [Royden, 1968]) that

g(~,-) is continuous.

Proof of Proposition 2.

It is direct from lemma 1 that Py is continuous and increasing. Con-
tinuity and the distributional assumptions ensure that the positivity con-
ditions (15) and (16) always hold. Hence, if the specified strategies
form an equilibrium, then they form a regular equilibrium. Take § > 0,
=x, and b = pl(x). Since Py = --- =P, and since Pq is increasing,
it follows from (2) that Wl = pl(Yl)' Since Py is increasing, b < Wl if

and only if x <Y From these facts and the definition of g,

1
B[V, -W [ =x, b<W <b+8]
-1
= E[vy-WlX =x, x<¥; < p, (b +8)]

-1
- = - <
E[lg(x,Y)) - g(Y,Y[Xy =%, x< ¥ <p (b +06)]
< 0
since g is increasing and x < Yl' Similarly,

X, =%, b-6<W, <bl.

0 < E[V, -W 1

1l 1
Hence (17) and (18) hold and these are sufficient for the optimality con-
dition (6).

To check that (7) holds, note that

E[(V, -W) W = p, X = x]

PIW, = pl(x)]xl = x} - E[V, -W1|X1 = x, W =p;(x)]

1
= 0-0 = 0.

Then Proposition 2 follows from Proposition 1.
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The similarity between these equilibria and rational expectations
equilibria is emphasized by Proposition 3 below. Informally, the proposi-
tion asserts that if a player were told the price wi and given an oppor-
tunity to revise his bid, he would not choose to make any revision. Thus,
each player has chosen his most preferred allocation at the prevailing

prices, given both private information and price information.

Proposition 3. 1In the equilibrium of Proposition 2,

(27) py (X)) € arg mﬁx E[ (V) - W) {w < b}[Xl,wl].

Proof:

Observe that if pl(Xl) < wl then Xl < Yl’ since wl = pl(Yl) and Py

is increasing. Choose any 6 > 0. Then
(28) E[ (V) - W)W, < p (X + 5}]w1,xl]

- LV =W {wy < p X HW LX)

B[V, WX ] - W) ip (X)) < Wy < py (X)) + 6]

[g(xl’Yl) = g(Yl’Yl)]{pl(Xl) < w]_ < P]_(Xl) + é}

<0

since X, < Y

L L on {pl(Xl) < wl} and since g is increasing. Hence, no im-

provement is ever possible by increasing pl(Xl) to pl(Xl) + 6. A similar
argument applies to reductions from pl(xl) to pl(Xl) - 6.

An interesting feature of the equilibrium of Proposition 2 is that wl
itself has the monotone likelihood property. To see this, note that since
Py is increasing wl = pl(Yl). Then since Yl has the MLP by lemma 1 and

since Py is increasing, it follows that wl has the MLP.
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Next, consider the special case in which all values of @ are positive
0 for t <0
(29) Fo(t) = t/6 for 0<t <9
1 for 8 < ¢t

that is, X, is uniformly distributed on [0,0].

1

Since wl = pl(Yl) for the equilibria in this section and since (with this
choice of Fe's) Yl is a sufficient statistic for X2”"’Xn’ Wl may be re-
garded as a fully revealing price. 1In view of Proposition 3, the uniform
likelihood model yields equilibria resembling fully revealing rational ex-
pectations equilibria.

When, in addition to assuming that (29) holds, the prior is assumed

to be
0 for t <0
(30) G(t) = {t/M for 0<t<M
1 for M<t
for some M > 0 and when H(®,t) = 0, the equilibrium strategies become
_ DT -
(3D) P1(2) = I-n  _Ll-n, °
(n-2)(z - M )

For n large, pl(z) ~ z- (n-1)/(n-2). Also E[Yi*le] =0 . (n-1)/(n+l) so

the winner's expected payoff satisfies

2
- . (@-1D"
(32) E[ (9 -wi_k)[e] =0 . (1 n2) (atD) )y > 0.

and

The winning bidder has a positive expected payoff but this payoff approaches

g

zero as n grows large. In fact Y approaches 8 almost surely as n — o

and hence Wi also approaches © almost surely.

ol
w

The interpretation of this result is that prices can reflect quite a lot

of information. Wilson [1978] has proven a result showing that this sort
of convergence is common in first price auctions. Milgrom [1979] has
extended Wilson's result. The analogue of these theorems for the Vickrey

auction of this section is given below.

[3]
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Proposition 4. Let B(s) be the supremum of the support of X1 when € =s. Then

one may always take H(s,B(s)) = lim H(s,z),
z— B(s)

Let W?* be the price paid by the winning bidder in an n-bidder auction.
Then w?¢ converges in probability to H(®,B(8)) as n ~ « if and only if

for all 61 > 92

8

(33) lim f (z),/fe (z) = 0.
z*B(el) 2 1

The proof of this result is lengthy and analogous to the proof of Theorem 3

in Milgrom [1979].
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3. INCENTIVES TO COLLECT INFORMATION

Consider the player set N = {1,...,n} and the equilibrium given by
Proposition 2 for the model in the preceding section. Consider the prob-
lem of an additional player n+l with signal Xn+1' Instead of assuming

- X . . . .
that Vn+1 H(G,Xn+1) and that Xn+1 is distributed according to the Fe S,

assume that (i) Vn+ is a garbling of X,, that is,

<V, and (ii) X
- n+

1 1 1 1

the conditional joint distribution of 9,X2,...,Xn given Xl and Xﬁ+1 does

net depend on Xn+1'

Proposition 5.

(34) sup E[(V_,; - W< bHXn_'_l] =0 a.s.

Accordingly, an equilibrium of the n+l-player game is given by

pp(t) = ... =p_ (t)

n+1(t)

g(t,t)

0.

i

P

Proof.

The supremum in (34) is non-negative since the choice b=0 is allowed.
It therefore suffices to show that it is also non-positive.

Since Py is an equilibrium strategy, for any real number b

(35) 0 > E[(Vy - Wp{pp(Xy) < Wy < b}[%]

E[(V, -W){p, (X)) € W < b[X;

’Xn+1]

since Xn is a garbling of Xl’ Taking the conditional expectation of (35)

+1

given Xn+1 yields

(36) 0 > E[E[(V, -Wp){p; (X)) < W <bYXL,X 11X ]

E[ (V) -W)fpy (X)) < Wy < b}[X 441,
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Note as before that Wl < Pl(Xl) implies Y1 < Xl' So,

(37) E[(V; - py X)) {W; < py (X)) < bHXHX L]

< 0.

It follows that

(38) E{ (V, - pl(Xl)){w1 <p (X< b}]Xn+1] < 0.
Since Vn+1 <V
(39) E[(Vn+1 - Wiw< b}]Xn+1]

< E[(V - W< b}]xn+1]

E[(V, - Wip (X)) €W, < b}[X

1 n+1]

+E[(V; - W{W < p X <bHxX ]

E[(V; - Wpy (X)) < W <bHXK ]

+E[(V] - py X)W < py (X < BYX ]

< 0.
where the last inequality follows from (36) and (38). Since (39) holds for
all real numbers b, the supremum is also non-positive, as claimed.

The thrust of Proposition 5 is that (at least for a class of models)
poorly informed bidders cannot earn a positive expected payoff. For these
models, there is an incentive to collect information.

It is not difficult to formally incorporate the possibility of gather-
ing costly information into the ambient model. Suppose, for example, that
each bidder may choose whether to observe his signal at a cost of c¢. Let
T(n) be the expected payoff per bidder in the n-bidder model and suppose

c < m(2). Since payoffs are bounded, TM(n) must tend to zero as n grows
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large. Hence, there exists a largest integer k for which c¢ < m(k).
Suppose there are m bidders in all. An equilibrium of this auction
with costly information occurs when (i) the first n(= MIN(m,k)) bidders
pay to observe their signals and then bid according to the equilibrium
strategies of Proposition 2 and (ii) the remaining bidders choose not
to observe their signals and then bid zero. 1In the case the Fe's satisfy
(25), this model yields a fully revealing equilibrium with costly infor-
mation in which only bidders who buy information have positive expected

payoffs.
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4. ROBUSTNESS OF RESULTS

Table 2 lists the significant assumptions used in the developments
of the preceding sections. In this section I demonstrate that the first
five assumptions can be substantially weakened or eliminated without im-
pairing the results of the earlier sectionms.

When separability and risk-neutrality are eliminated, player 1l's
optimization problem becomes

(40) MAX E[u(8,X;,W)){W; < b}|X; = x]
b

where u(eo,x,b) is the payoff to player 1 when he wins with a bid of b in
the event {0 = 60,X1 = x}.

Assume that the functions u(eo,x,-):I{F - R are uniformly bounded,
decreasing and equi-continuous in b, Assume, too that for all pairs
(Go,x), u(GO,X,O) > 0. Finally, assume that for all (GO,X) there is some
b such that u(GO,x,b) < 0. Note that it is implicit in (40) that utili-

ties are normalized so that a losing bidder's utility. is zero.

Table 2

List of Significant Assumptions

1. Separability: Players preferences over money and
the OBA are additive separable.

2. Risk~neutrality: Players are risk-neutral regarding
money gambles.

3. Symmetry: Players have identical preferences and
prior beliefs and equally informative
signals.

4. Independence: Conditional on O, the signals are

independent.
5. Real-valued signals: Signals are real-valued random variables

Monotone likelihoods: The signals have the monotone likelihood
property.
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With these assumptions, there exists a unique b* such that

(41) E[u(e,Xl,b*)]Xl =s, Y, =t]=0.

Define g(s,t) = b¥*, Then one can mimic the proofs of lemma 1 and Proposi-
tion 2 to show that these hold. Also, Proposition 3 holds when (27) is
replaced by the analogous statement

27") P, (X)) € arg max E[u(e,Xl,b){Wl < b}lxl,wl].

Proposition 4 holds by an argument resembling that given by Milgrom [1979].

Proposition 5 is difficult to state without the separability assump-
tion. When one can write u(Vl - b) for u(e,Xl,b), the proposition is true
with (34) replaced by

(34") sup E[u(V__, - WW< b}[xn+l] = 0.
b

The proof is a minor variation on the proof given for the original Propo-~
sition 5.
The independence assumption interacts with the monotone likelihood

assumption to yield the following:

Conditional Monotone Likelihood Property (CMLP)

Let B,,...,B_  be Borel sets and define corresponding
1 n
events Ai by

(42) A, = jQi {xj € Bj}

Suppose that for every i and every non-null event Ai of

the specified form,the family of distributions {F;(-]Ai)}
indexed by ® has the monotone likelihood property. Then
Xl,...,Xn are said to have the conditional monotone like-

lihood property.
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In proving lemma 1, a key fact is that assumptions 4 and 6 combine to

yield the CMLP. When the CMLP is directly assumed, one can dispense with

the independence assumption and still have that g is monotone in its

first argument.

As an example where independence fails but the CMLP holds, suppose

that, given 0, X ,...,Xn have a joint normal distribution with E[Xile] =0

1
and Var[XiIB] = 02 for each i and suppose that for i # j,
E[(Xi-e)(Xj-9)|9]/02 = p, where 0 < p < 1. One can show that Xl""’Xn
then has the CMLP. Then Propositions 2 through 5 still hold.

The symmetry assumption plays a central role in Propositions 2 and 3.

Propositions 4 and 5 can be rescued, but I shall focus attention on 5.

Suppose that all assumptions except symmetry are satisfied and that

P1s>--->P, are equilibrium strategies with the following properties:

1. The range of each Ps and wi coincide.

2, The range of Xi does not depend on Xl""’xi—l’xi+1""’xn'

3. Each P is increasing and satisfies the analogue of (20),

(43) P (x) = E[V.[X;, = x, W, = p.(x)]

1

B; (x,p, GO
An immediate consequence of the CMLP is

Lemma 2. éi is increasing in its first argument.

Proposition 5 can be proven using (43) in place of the expression
pi(t) = g(t,t) and using lemma 2 in place of lemma 1.

In the model of section 2, each bidder's information is represented by
a real-valued signal (Assumption 5). Yet in many interesting cases, the

variable observed may be much more complex, such as a weather map or a con-
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sultant's report. The form of the signal, however, is essentially irrele-
vant to its ability to transmit information in this model.

Suppose X, is a variable whose values are consultant's reports and

1
suppose that for distinct reports x and ;, it is always the case that
E[B[Xl = x] # E[B]Xl= ;]. Then one can define a real-valued variable

o

Xl“ = E[B[Xl] which reveals '"the same information" as X
Generally, the condition that the Xi's have the MLP is not necessary
to the development, since it is not even necessary that they be real-valued.

A more basic condition is that Xiﬁ = E[9]Xi] (or some similar variables)

have the MLP. An interpretation of this condition is offered in section 7.
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5. MULTIPLE ITEMS--ONE PER BIDDER

The theory developed in the preceding sections remains substantially
the same when there are k < n items to be distributed among the n bidders.
Let ﬁi be the kth highest bid among the opponents of player i. If i
submits one of the k highest bids, he wins one item and pays ﬁi'

Suppose that Vi = H(B,Xi) where H, ©, and the Xi's have the proper-
ties assumed in section 2. Let §i be the kth highest signal among the

opponents of player i. Set

(44)  g(t,s) = E[H@,x)D[X = ¢, ¥ = 5]

r - k-1
_JH(r,t)fr(t)fr(s)F:k () (L-F_(s))  dG(r)

n-k
J‘fr(t)fr(s)Fr

(s) (1~F_(s))* e (x)

Proceeding analogously to lemma 1, one can show

Lemma 3. Under the assumptions of this section,
(1) ?1 has the monotone likelihood property

(ii) g 1is continuous and increasing in both arguments.

Arguing as in Proposition 2, one can show:

Proposition 6. Under the assumptions of this section, the strategies given
by pl(t) = ... = pn(t) = g(t,t) form an equilibrium.

Analogous to Proposition 3, one has:

Proposition 7. 1In the equilibrium of Proposition 6,

(45) p1(X)) € arg mfx E[(Vy -ﬁl){ﬁl < b}lxl’ﬁl]'
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A statement of Proposition 4 in this context requires the introduc-
tion of new notation (since there are now several winning bidders i*) and

is therefore omitted here. Proposition 5 becomes:

Proposition 8. Suppose Vn+

1
Let W be the kth highest bidder among players 1 through n. Then

<V oand X

is garbling of X.j for all j < k.

(46) sup E[(V 4y - WIW<b}X ;1 =0 a.s.
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6. MULTIPLE ITEMS - UNRESTRICTED

Suppose that there are k identical items to be distributed and that
any bidder may be allocated any number of items from zero through k. Let
Wi(m) be the value to player i of an allocation of m items and define the
variables.

A -
(47) Vi=T ) - -1

for £ > 1. Normalize ¥; so that Wi(O) = 0. Each player's preferences are
assumed to be convex and monotone, that is,

(48) virvle v 20
Each player submits k bids and the k highest bids each win one of the
OBA's. 1If player i has submitted m of the k highest bids, he pays a price
equal to the sum of the m highest unsuccessful bids among his competitors.
In this set up, a strategy for player i is a function piER -*iR+
specifying the k bids to be submitted by i as a function of his signal Xi'
Since the labelling of the bids is irrelevant in this auction, there is

no loss of generality in ordering the individual bids piﬂ(xi) according to

1 2 k
(49) P; 2P, Z .o 2P, -

Define Wiq to be the qth highest bid among the opponents of player i.
If player i wins m of the OBA's, his payoff is

+1- - K
(50) T T T T
1 1 1 1 1

The marginal impact on i's payoff of his bid pim(xi) is therefore

(51) (Vim _ wik+l—m){wik+l-m < pim(xi)}.

It follows that pim(xi) is a solution of
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w.k+1—m
i

w.k+1-m

) W,

(52) Max E[(Vim -

< b}]xi].
belp, ™ )0, (x,)]

with the convention that pio = 0.

Suppose that each Vim has the form Vim = Hm(e,xi) where O is a real-
valued payoff relevant variable and H is bounded, continuous, and increas-
ing. Suppose the Xi's satisfy the assumptions of section 2. Consider a

function ﬁi such that ﬁim(xi) solves the problem

(53) Max E[(V.™ - W,k+1-m){w,k+1-m < b}}x.].
i i i i
b>0
s k+1-m . .

Proposition 9 . 1If for each m, wi has the monotone likelihood property,
and if P{Wik+1-m = Wik+2—m} = 0, then

~ 1l _ A2 ~ k
(54) pi Zpi 2"'Zpi'
Proof.

Since wik+2_m < w.k+1—m and since the latter has the MLP, one can show

that (for a version of conditional probability) the conditional distribution

k+2~
of @ given W "

s stochastically dominates the conditional distribution

k+l-m s. Define

of @ given Wi

w.k+1-m

i t].

(55) eim(s,t) = E[Vim[xi = s,

From the previous observation, eim-l(s,t) > eim(s,t) for all s and t. By

the monotone likelihood property, each eim is increasing in t.

m-1 k+2-m k+1-m
< W,

Using (55) and the inequalities Vim <V and Wi i , one

may infer that on the set {ﬁim(xi) > ﬁim—l(Xi)},
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m k+1l-m_ .. m-1 k+1-m A
(56) E[(V, - W, b, (X)) < W, < By (XD1X,]
m k+1-m k+l-m ,~ m-1 k+1-m A M

m-1 k+2-m k+l-my s m-1 k+l-m _ a m
. - < b
< E[Ce™ W T - W TR S W, < B,"(x)} K]

E[(eim-l(Xi,W.k+2-m) _ w'k+2-m){i;.m-1(x.) < w.k+2-m

1 1 1 i — 1

A

< B (XX,
< 0

where the last inequality follows £from the optimality of ﬁim-l (see (13)).

~

Since ﬁim is optimal, it follows that {ﬁim(Xi) > pim-l(Xi)} is empty.

When prices have the monotone likelihood property, one can f£ind ﬁlayer
i's optimal response by solving the problems (53). These problems are iden-
tical in form to the maximization problem (6) in the single object auction,
and I have shown for that case that for a class of models the prices have
the MLP. The present model is complex, but one may expect conclusions
which are qualitatively similar to the conclusions in the single object

auction.
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7. CONCLUDING REMARKS

In the standard rational expectations formulation, traders are price-
takers and all traders face the same prices. If, in addition, prices are
informative and depend on the traders' private information, the conclusion
is inescapable that some player sees his private information already reflected
in prices. This conclusion leads to the question: Why does the trader bother
to collect information which is already revealed by prices when he assumes
he cannot influence prices?

There appears to be two principal approaches to resolving this infor-
mation paradox. First, one may assume that players know that their
actions influence prices. A bidding model with this feature has been
developed by Wilson [1978]. The second approach is to assume that traders
are pricé~takers but that different traders face different prices. I
have taken this second approach in this paper.

A defect of my model as a model of price formation is that it considers
only one side of the market--the buyers' side. To incorporate sellers into
the model, one might assume that each seller makes available for sale some
number of objects and specifies a reservation price for each. If both
buyer and seller are to be price takers, then the price m paid by the
buyer i to the seller j can depend only on the prices named by the other
traders £ (L # i, 4 # j).

The qualitative conclusions reached in the models of this paper are
suggestive of the conclusions one might expect from any more complete model
following the second approach:

(1) Prices are informative, and higher prices are indi-

cative of greater value.
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(ii) There are positive incentives to gather information,
even when it is costly and prices are '"fully revealing".

(iii) "Inside information', (that is, information which is
not widely available) tends to lead to greater advantage
than "public information".

(iv) A trader who is told the marginal price of the last
object he has successfully purchased would not choose

to change his bids, even if he had the opportunity to

do so.

In addition, one might well expect the following property.

(v) For all players i, E[}wil _ wim(l)+l

|1 = 0(1/n) where
m(i) 1s the number of objects purchased by player i
in the n bidder auction. Thus, for large n, the
players perceive an essentially fixed price per unit
in equilibrium.
It seems clear that the monotone likelihood property has played a
major role in this development, so it is appropriate to discuss its econo-

mic meaning. The following two lemmas clarify the Bayesian interpretation

of the MLP.

Lemma 4. Suppose X has the monotone likelihood property. Then if

X] > %, and G is any non-degenerate prior distribution for 9,

G(-!X = xl) stochastically dominates G(-]X = x2).

Lemma 5. Suppose that for every non-degenerate prior distribution G for
® and every %) > Xy G(-]X = Xl) stochastically dominates G(-‘X = XZ)'
Then fFe} has the monotone likelihood property.

The essence of the MLP, applied to traders' signals, is that it is
possible to arrange the various posterior distributions G(-IX) into order

according to stochastic dominance. Suppose, for example, a trader's signal

is a research report X and that such reports can be put on a scale from
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"least favorable'" to "most favorable", in the seﬁse that the posteriors
are ordered by stochastic dominance. Then X is informationally equivalent
to the signal)? = E[GIX] and the latter has the MLP. Thus, the MLP assump-
tion in the model of section 2 can be weakened to an assumption that E[9]X1]
has the MLP.

When the MLP is applied to prices, no such weakening is satisfactory.
It is necessary not only that price information can be put on the "least
favorable'" to '"most favorable' scale, but also that higher prices are more

favorable indicators than lower prices.
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8. APPENDIX:

Existence of Equilibria in Bidding Games

Two issues arise in the standard fixed point approach'to proving
equilibria of bidding games. First, the payoff functions in these games
are typically discontinuous because a small change in one's bid can change
one's role from loser to winner. This problem is related to the issue
of non-regular equilibria, described in section 1.

The second issue, which is addressed in this appendix,concerns com-
pactness in the space of bidder's strategies.

Suppose that bids must be denominated in discrete units, e.g., pennies.
Since each Vi is bounded, each bidder can make only a finite number of bids.
Suppose each Vi is of the form Vi = Hi(G,Xi) and that the joint distribu-

tion functions fe of (Xl""’Xn) € R" have uniformly bounded equi-continuous

density functions fB’ A pure strategy for player i is a function
p;iR - B = {bl,...,bm} where B 1is the set of possible bids. Let wm

n
be the unit simplex in R .

(57) " = {(cyseeesey) € R :Vic; >0 and 5 = 1},
A behavioral strategy for player i is a function ﬁizﬂi - wm whose jth com-~
ponent is ﬁij.

When the players adopt pure strategies p = (pl,...,pn), player i's pay-
off in any realization (6,x1,...,xn) is ﬂi(e,pi(xl),...,pn(xn)). Assume
that each . is bounded and measurable,

When the behavioral strategies p = (ﬁl,...,ﬁn) are adopted, the payoff

for (9,x1,...,xn) té player i is

m m

58 m P eeesD = .o e

(29) ﬂi(e,pl(xl), ,pn(xn)) _Z_ . § ﬂi(e,b. > ,bj )P
=l 3=
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Proposition 10. A behavioral strategy equilibrium for this game exists.

Proof:
Let G be the prior distribution for ©. Under the ambient assumptions,

for any fixed strategies p = (ﬁl,...,ﬁn), the functions defined by

(59) ?ri(zlf)) E[f, X, = z]

r‘,\ A ~
J ﬂ(e,pl(xl),...,pn(xn))fe(xl,...,z,...,xn)dG(B)

J fe(xl,...,z,...,xn)dG(B)

are continuous in z. By a measurable selection argument which I shall omit,

this continuity ensures the existence of a measurable optimal pure response

Pi for player i to the strategies ﬁj of the other players. The set of opti-

mal behavioral responses ﬁi is clearly convex. It is also relatively compact

in the product topology. Moreover, in the product topology, each Ei is continuous
in p. It follows that the optimal behavioral response correspondence is

closed and its values are non-empty, convex and compact. So by Glicksberg's

[1952] fixed point theorem, the correspondence has a fixed point p which is

the required equilibrium.
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(2]
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Footnotes

This is not the standard definition. Traditiomnally, Ps is called
an optimal response if it maximizes (3). Any response which I call

optimal is also optimal under the traditional criterion.

I shall use phrases like "f_, has the MLP," ”Fe has the MLP" and

©

”X1 has the MLP" interchangeably.

Although these F_'s do not satisfy our assumptions because their

0
densities are neither continuous nor uniformly bounded, they do lead
to continuous strategies if G is continuous. One can check that

the violated assumptions were used only to establish the continuity

of Pq- Hence, Proposition 2 also applies to these Fe's.
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