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OPTIMAL AUCTION DESIGN
by

Roger B, Myerson

1. Introduction

Consider the problem faced by someone who has an object to sell,
and who does not know how much his prospective buyers might be
willing to pay for the object. This seller would like to find some
auction procedure which can give him the highest expected revenue
or utility among all the different kinds of auctions known (pro-
gressive auctions, Dutch auctions, sealed bid auctions, discrimina-
tory auctions, etc.). In this paper, we will construct such optimal
auctions for a wide class of sellers' auction design problems.
Although these auctions generally sell the object at a discount
below what the highest bidder is willing to pay, and sometimes they
do not even sell to highest bidder, we shall prove that no other

auction mechanism can give higher expected utility to the seller.

To analyze the potential performance of different kinds of
auctions, we follow Vickrey [11] and study the auctions as non-
cooperative games with imperfect information. (See Harsanyil [3]
for more on this subject.) Noncooperative equilibria of specific

auctions have been studied in several papers, such as Griesmer,

Levitan, and Shubik [1], Ortega-Reichert [7], Wilson [12],[13].
Wilson [14] and Milgrom [5] have shown asymptotic optimality
properties for sealed-bid auctions as the number of bidders
.goes to infinity. Harris and Raviv [2] have found optimal
auctions for a class c¢f symmetric two-bidder auctiocn problems.
Independent work on optimal auctions has also been done by
Riley and Samuelson [8] and Maskin and Riley [4].

A general bibliogaraphy of the literature on competitive

bidding has been collected by Rothkopf and Stark [i0}.



The general plan of this paper is as follows. Section 2 pre-
sents the basic assumptions and notation needed to describe the
class of auction design problems which we will study. In Section
3, we characterize the set of feasible auction mechanisms and
show how to formulate the auction design problem as a mathemati-
cal optimization problem, Two lemmas, needed to analyze and
solve the auction design problem, are presented in Section 4.
Section 5 describes a class of optimal auctions for auction
design problems satisfying a regulatory condition. This solu-
tion is then extended to the general case in Section 6. In
Section 7, an example is presented to show the kinds of counter-
intuitive auctions which may be optimal when bidders' value
estimates are not stochastically independent. A few concluding

commehts about implementation are put forth in Section 8.
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2. Basic definitions and assumptions.

To begin, we must develop our basic definitions and assumptions,
to describe the class of auction design problems which this paper
will consider. Wegassume that there is one seller who has a single
object to sell. He faces n bidders, or potential buyers, numbered

1,2,...,n. We let N represent the set of bidders, so that
(2.1) N={1,...,n}.

We will use i and j to represent typical bidders in N.

The seller's problem derives from the fact that he does
not know how much the various bidders are willing to pay for the
object. That is, for each bidder i, there is some quantity ti

which is i's value estimate for the object, and which represents

the maximum amount which i would be willing to pay for the object

given his current information about i.

We shall assume that the seller's uncertainty about the value
estimate of bidder i can be described by a continucus probability
distribution over a finite interval. Specifically, we let a, repre-
sent the lowest possible value which i might assign to the object;
we let bi represent the highest possible value which i might
assign to the object; and we let fi:[ai,bi]+EQ+ be the probability

density function for i's value estimate ti’ We assume that:
—w<g,<b. <+
i 7i

fi(ti)>0, Vtie[ai,bi]7

and fi(.) is a continuous function on [ai,bi].
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Fi:[ai,bi]+[o,1] will denote the cumulative distribution

fuction corresponding to the density fi(.), s¢ that

i
(2.2) Fi(ti) = j‘ fi(si)dsi'
a4
Thus Fi(ti) is the seller's assessment of the probability

that bidder i has a value estimate of t.l or less.

We will let T denote the set of all possible combinations of

bidders' value estimates; that is
(2.3) T = [al,bll KewasX [an,bn].

For any bidder i, we let T_. denote the set of all possible com-
binations of value estimates which might be held by bidders other

than 1, so that

(2.4) T . = X [a.,Db.]
* jeN J
J#i
Until Section 7, we will assume that the value estimates of
the n bidders are stochastically independent random variables.

Thus, the joint density function on T for the vector

t = (t1,...,tn)

of individual value estimates is

(2.5) f(t) = n f.(t.)
Of course, bidder i considers his own value estimate to be

a known quantity, not a random variable. However, we assume that
bidder i assesses the prebability distributions for the other
bidders' value estimates in fhe same Ways és tﬁe éeiler doeé.
That is, both the seller and bidder i assess the joint density

function on T_i for the vector

Eog = (bqreeasty gots qrenait)




of values for all bidders other than i to be

(2.6) fo.(t_,) = 1 f.(t.).
+ + jeN J
j#i

The seller's -personal value estimate for the object, if he

were to keep it and not sell it to any of the n bidders, will be

denoted by to. We assume that the seller has no private infecrmation

about the object, so that tO is known to all the bidders.

There are two general reasons why one bidder's value estimates
may be unknown to the seller and the other bidders. First, the
bidder's personal preferences might be unknown to the other
agents (for example, if the object is a painting, the others
might not know how much he really enjoys looking at the painting).
Second, the bidder might have some special information about the
intrinsic quality of the object (he might know if the painting
is an o0ld master or a copy). We may refer to these two factors

as preference uncertainty and quality uncertaintyl. This dis-

tinction is very important. If there are only preference un-
certainties, then informing bidder i about bidder j's value
estimate should nét cause i to revise his valuation.

(This does not mean that i might not revise his bidding strategy
in an auction if he knew j's value estimate; this means only
that i's honest preferences for having money versus having the
object should not change.) However, if there are quality uncer-
tainties, then bidder i might tend to revise his wvaluation of the
object after learning about other bidders' value estimates. That
is, if i learned that tj was very low, squeéting that j had
received discouraging information about the quality of the
cbject, then i might honestly revise downward his assessment

of how much he should be willing to pay for the object.

1. I am indebted to Paul Milgrom for pointing out this distinction.



In much of the literature on aﬁctiohé(see [11]), for example),
only the special case of pure preference uncertainty is considered.
In this paper, we shall consider a more general class of problems,
allowing for certain forms of quality uncertainty as well,

. Specifically, we shall assume that there exist n revision effect

functions ej:[ai,bi] + IR such that, if another bidder i learned that

tj was j's value gstimate for the object, then i would revise his

own valuation by ej(tj). Thus, if bidder i learned that t = (tl,...,t )
was the vector of value estimates initially held by the n bidders,

then i would revise his own valuation of the object to

(2.7) volt) =t + ] ey (ty).
JeN
J#1

Similarly, we shall assume that the seller would reassess his

personal valuation of the object to

. v ="t e-t-,.‘
(2.8) d(t) ot ) J( J}

JEN
if he learned that t was the vector of value estimates initially
held by the bidders. In the case of pure preference uncertainty,
we would simply have ej(tj)z 0
(To justify our interpretation of ti as i's initial estimate

of the value of the object, we should assume that these revision

effects have expected-value zero, so that

]
. St ) EL(EL)dE. = 0.
(2.9) Ja e (ty) 5(k4)d 5 =0



However, this assumption is not actually necessary for any of the
results in this paper; without it, only the interpretation

of the ti would change.)



3. Feasible auction mechanisms

Given the density functions fi and the revision effect
functions e, and v, as above, the seller's problem is to select
an auction mechanism to maximize his own expected utility, We
must now develop the notation to describe the auction mechanisms wh
which he might select, To begin, we shall restrict our attention

to a special class of auction mechanisms: the direct revelation

mechanisms.

In a direct revelation mechanism, the bidders simultaneously
and confidentially announce their wvalue estimates to the seller;
and the seller then determines who gets the object and how much each
bidder must pay, as some functions cof the vector of announced wvalue
estimates t = (tl""’tn)‘ Thus, a direct revelation mechanism

is described by a pair of outcome functions (p,x) (of the.form

p:T - R” and x:T - Efl) such that, if t is the vector of announced
value estimates then pi(t) is the probability that i gets the
object and xi(t) is the expected amount of money which bidder i must
pay to the seller. (Notice that we allow for the possibility
that abidder might have to pay something even if he does not get
the object.)

We shall assume throughout this paper that the seller-and
the bidders are risk neutral and have additively separable utility
functions for money and the object being sold. Thus, if bidder i
knows that his value estimate is ti’ then his expected utility from

an auction mechanism described by (p,x) is

(.1 vty = [ v (0p (6 () E e pat

~-1
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where dt«i = dtl"'dti—ldti+1"’dtn'

Similarly, the expected utility for the seller from this auction
mechanism is

(3.2) U, (p,x) = f

(vo(8) (L~ ] pi(e) + ] x (£))E(erat
- j j

jeN jeN

where dt = dt ._dtn .

1 -

Not every pair of functions (p,x) represents a feasible
auction mechanism, however, There are three types of constraints
which must be imposed on (p,x).

First, since there is only one object to be allocated, the

function p must satisfy the following probability conditions:

(3.3) ) py(t) < 1 and p;(t) > 0, VieN, Vter.
JeN

Second, we assume that the seller cannot force a bidder to
participate in an auction which offers him less expected utility
than he could get on his own. If he did not participate in the
auction, the bidder could not get the object,but also would not
pay any money, so his utility payoff would be zero. Thus, to
guarantee that the bidders will participate in the auction, the

following individual-rationality conditions must be satisfied:

(3.4) U, (p,x,t,) > 0, VieN, Vtie[ai,bi],

Third, we assume that the seller could not prevent any bidder

from lying about his value estimate, if the bidder expected to gain
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from lying. Thus the revelation mechanism can be implemented only
if no bidder ever expects to gain from lying. That is, honest:
responses must form a Nash equilibrium in the auction game, If
bidder i claimed that s, was his value estimate when t, was his -

true value estimate, then his expected utility would be

JT (v (B)py (t_yrsy) = x; (b ;s E (k2 j)dt g,

-i

i’ti+l""'tn) ’

where (t—i’si) = (tl’f"’ti—l’s

Thus, to guarantee that no bidder has any incentive to lie about his

value estimate, the following incentive— compatibility conditions

must be satisfied:

- 3
(3'5) Ui(plxlti)?_ J (vl(t)pi(t—lrsl) >>l\t‘_ilsl)f_i (t"l)dt—l

T .
-1

vieN, Vtie[ai,bi], Vsie[ai,bi].

We say that (p,x) is feasible (oxr that (p,x) represents a
feasible auction mechanism) iff (3.3),(3.,4), and (3.5) are
all satisfied. That is, if the seller plans to allocate the
object according to p and to demand monetary payments from bidders
according to x, then the scheme can be implemented, with all
bidders willing to participate honestly, if and conly if (3.3)-(3.5)

are satisfied,



~11~

Thus far,we have only considered direct revelation mechanisms,
in'which the bidders are supposed to honestly reveal their value
estimates, However, the seller could design other kinds of auction

games. In a general auction game, each bidder has some set of

strategy options @i; and there are outcome functions

A I} .
p:®l><...><®n + R and x:®l><...><®n + rY '

which described how the allocation of the object and the bidders'
fees depend on the bidders' strategies. (That is, if

6 = (61,...,6n) were the vector of strategies used by the bidder
in the auction game, then ﬁi(e) would be the probability of i
getting the object and Qi(e) would be the expected mayment from
i to the seller.)

An auction mechanism is any such auction game together with

a description of the strategic plans which the bidders are expected

to use in playing the game. Formally, a strategic plan can be

A "

- - 3 . @, '. i
represented by a function ei.[ai,bi] - it such that ei(tl).ls the
strategy which i is expected to use in the auction game if his
value estimate is ti' In this general notation, our direct
revelation mechanisms are simply those auction mechanisms in which
®, = [a.,b, 6. (t,) = t,.

. [al,bl] and el(tl) tl
In this general framework, a feasible auction mechanism
must satisfy constraints which generalize (3.3)-(3.5)., Since there
el
is only one object, the probabilities pi(e) must be nonnegative and

sum to one or less, for any 0, The auction mechanism must offer

nonnegative expected utility to each bidder, given any possible
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value estimate, or else he would not participate in the auction.
The strategic plans must form a Nash equilibrium in the auction
game, or else some bidder would revise his plans.

It might seem that problem of optimal auction design must
be guite unmanageable, because there is no bound on the size or
complexity of the strategy spaces C& which the seller may use in
constructing the auction game. The basic insight which enables us
to solve auction design problems is that there is really no loss
of generality in considering only direct revelation mechanisms. This
follows from the following fact.

Lemma 1. (The revelation principle.) Given any

feasible auction mechani®m, there exists an equivalent feasible
direct revelation mechanism which gives to the seller and all

bidders the same expected utilities as in the given mechanisn,

This revelation principle has been proven in the more general
context of Bayesian collective choice problems, as Theorem 2 in
[5]. To see why it is true, suppose that we are given a feasible
auction mechanism with arbitrary stragegy spaces(ji, with outcome
functions % and 2, and with strategic plans gi’ as above. Then con-

sider the direct revelation mechanism represented by the functions

p:T+ﬁRn and x:T~+ RS such that

/\I\ Fas
p(tl,...,tn) p(el(tl),..., en(tn)),

N A

x(Gl(tl),..., Bn(tn)).

x(tl,...,tn)
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That is, in the direct revelation mechanism (p,x), the seller first
asks each bidder to announce his type, and then computes the strategy
which the bidder would have used according to the strategic plans
in the given auction mechanism, and finally implements the outcomes
prescribed in the given auction game for these strategies. Thus,
the direct revelation mechanism (p,x) alWays yields the same
outcomes as the given auction mechanism, so all agents get the
same expected utilites in both mechanisms. And (p,%X) must
satisfy the incentive-compatibility constraints (3.5}, because the
strategic plans formed an equilibrium in the given feasible mechanism.
(If any bidder could gain by lying to the seller in the revelation
game, then he could have gained by "lying to himself" or revising
his strategic plan in the given mechanism.) Thus, (p;x) is feasible,
Using the revelation principle, we may assume, without
loss of generality{ that the seller only considers auction mechanisms
in the class of feasible direct revelation mechanisms. That is,
we may henceforth identify the set of feasible auction mechanisms
with the set of all outcome functiqns (p, %) which satisfy the
constraints (3.3) through (3.5). The seller's auction design
problem is to choose these functions p:T+Ezn and x:T>R " so as to
maximize Uo(p, X) subject to (3.3) - (3.5). |
Notice that we have not used (2.7) or (2.8) anywhere in
this section. Thus, (3.3) ~ (3.5) characterize the set of all
feasible auction mechanisms even when the kidders compute their
revised valuations Vi(t) using functions W&:T+E{, which are not of

the special additve form (2.7). However, in the next three sections,
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to derive an explicit solution to the problem of optimal auction
design, we shall have to restrict our attention to the class

of problems in which (2.7) and (2.8) hold.




4., Analysis of the problem,

Given an auction mechanism (p,x) we define

pi(t)f_i(t_i)dtfi

-1

(4.1) 0, (p,t;) = j
T

" for any bidder i and any value estimate ti' So Qi(p’ti) is the con-
ditional probability that bidder i will get the object from the
auction mechanism (p,x) given that his value extimate is ts.

Out first result is a simplified characterization of the

feasible auction mechanisms.

Lemma 2. (p,x) is feasible if and only if the following con-

ditions hold:

then Qi(PrSi) i Qi(prti)l ViENI Vsilth E[ai,bi];

(4.2) 1if s, < t.
- 1

1 1
t,
R
Ui(p,x,ai) + j‘ Qi(p,si)dsi, YieN, Vtie[ai,bi];

a.
1

]

(4.3) U (p,x,t;)

(4.4) U, (p,x,a.) 0, YieN; and

|v

(3.3) ] p,(t) <1 and p,(t) > 0, ViEN, VteT.
JeN

Proof. Using (2.8), our special assumption about the form of

vi(t), we get

jT FVi(t)pi(t_ilsi)"xi(t_i,si))f_i(t—i)dt"i
-1

_ \[T ((vy (£ os;) + (£3=5,0) (b (£_; 5,0 =x; (€_ 800 £, (£_)at_;

-i

= Ui(Persi) + (ti_si)Qi(plsi)q

B S



Thus, the incentive-compatibility constraint (3.5) is equivalent to
> - - i .
(4.6) Ui(p,x,ti) > Ui(p,x,si) + (ti si)Qi(p,si), VYiEN, Vti,sle[ai,bi].

Thus (p,x) is feasible if and only if (3.3), (3.4), and (4.6)
hold. We will now show that (3.4) and (4.6) imply (4.2)-(4.4).

Using (4.6) twice (once with the roles of s, and t, switched),

we get

(ti~si)Qi(p,si) SiUi(p,x,ti) - Ui(p,x,si)

Then (4.2) follows, when S5 < ti.

These inequalities can be rewritten for any § > 0

Qi(p,si)é

| A

Ui(p,x,si+6)—Ui(p,x,si)

| A

Qi(p,si+6)6.

Since Qi(p,si) is increasing in S:v it is Riemann integrable.

So:

j ' Qi(p,si)dsi = Ui(p,x,ti)vUi(p,x,ai).
e

Which gives us (4.3).

Of course, (4.4) follows directly from (3.4), so all the
conditions in Lemma 2 follow from feasibility.

New we must show that the conditions in Lemma 2 also imply
(3.4) and (4.6).

Since Qi(p,si) > 0 (by (3.3)), (3.4) follows from (4.3) and

(4.4).
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To show (4.6), suppose s; S ti; then (4.2) and (4.3) give us:

.,.‘:,;‘. —— t: [
. 1

U; (pyx,ty) = Ui(p,x,si)+j Qi(p,ri)dri

S.

1

t,

~ 1

z U (prx,sy) + j  Q; (Prs;ddr;

S.
1

Ui (plxlsi)+(ti_si)Qi (P,Si) -

Similarly,if si>ti then

S.
1

Ui(p,x,ti)=Ui(p,x,si)-J‘ Q; (psry)dr,
i

s,

4 i
zUi(p,x,si)—j; Qi(p,si)dri

i

=U; (P/%,8;)+(t;-5,)0Q, (Pss;) -

Thus (4.6) follows from (4.2) and (4.3). So the conditions in
Lemma 2 also imply feasibility. This proves the lemma.

So (p,x) repreéents an optimal auction if and only if it
maximizes Uo(p,x) subject to (4.2)-(4.4) and (3.3). Our next lemma

offers some simpler conditions for optimality.

Lemma 3. Suppose that p:T -+ R" maximizes

f ‘ | 1-F (t;) _
(4.7 ) (@ (ty-e (k) - — ) - £)P; (L)) £(p)at

T i=zN it7i

subject to the constraints (4.2) and (3.3). Suppocse also that

t.
A
(4.8) Xi(t) = pi(t)vi(t) - J pi(t_i,si)dsi, Yi€N, WVteT.

a,
1

Then (p,x) represents an optimal auction.
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Proof. Recalling (3.2), we may write the seller's objective

function as

"(4.9) U, (p,x) = f v (E)E(B)at + ) f Pi(t)(Vi(t)—Vo(t))f(t)dt
Y ieN: "T

-+

igN f (xi(t)-pi(t)vi(t))f (t)dt.
T

But, using Lemma 2, we know that for any feasible (p,x):

(4.10) j (xi(t)—pi(t)vi(t))f(t)dt
T bi
a.
i
b, ty
- j i (Ui(p,x,ai)+ j Qi(plsi)dsi)fi(ti)dti
a

i a,
i

1l

b. b,

i i

_Ui(p,x,ai)— ja js fi(ti)Qi(p,si)dtidsi
i i

b.

. i
-Ui(p,x,ai)-Ja (1-F, (s;))0, (p,s;)ds;

i

= —Ui(p,x,ai)—J;(1—Fi(ti))pi(t)f_i(t_i)dt.

From (2.7) and (2.8) we get
(4.11) v (B)-v (t) = ty-t mey (k).

Substituting (4.10) and (4.11) into (4.9) gives uss

1-F, (t.,)

(4.12) U (prx) = | Z:(ti—to-ei(ti)———fITEIT)pi(t))f(t)dt

T ieN

+ f vo(t)f(t)dt -
T

Z U. (p,x,a;).
jen *t *
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€o the seller's problem is to maximize (4.12) subject to
the constraints (4.2), (4.3), (4.4), and (3.3) from Lemma 2.
In this formulation, x appears only in the last term of the
objective function and in the constraints (4.3) and (4.4).
These two constraints may be rewritten as
. i '
J (pi(t)vi(t)- f pi(t_i,si)dsi-xi(t))f_i(t_i)dt

T . a.
-i i

-i

= Ui(p,x,ai)zo, YieN, Vtie[ai,bi].

If the seller chooses x according to (4.8), then he satisfies
both (4.3) and (4.4), and he gets

z Ui(P:X:ai) = 0,
ieN

which is the best possible value for this term in (4.12).

Thus using {(4.8), we can drop x from the seller's problem
entirely. Furthermore, the second term on the right side of
(4-,12) is a constant, independent of (p,x). So the objective
function can be simplified to (4.7) ., and (4.2) and (3.3) are
the only constraints left to be satisfied. This completes the

proof of the lemma.

Equation (4.12) also has some important implications which
are worth mentioning. This equation tells us that the seller's
expected utility from an aucfion mechanism is completely
determined by the probability function p (which tells us who
gets the object in each possible situation} and by the numbers

Ui(p,x,ai) (which tell us how much expected utility each bidder
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would enjoy if his value estimate were at its lowest possible
level). Thus, for example, the seller must get the same expected
utility from any two auction mechanisms which have the properties
that (1) the object always goes to the bidder with the highest

value estimate above tO and (2) every bidder would expect zero
utility if his value estimate were at its lowest possible level.

If the bidders are symmetric and all ei=0 and ai=0, then the Dutch
auctions and progressive auctions studied in [i1] both have these two
properties, so Vickrey's equivalence results may be viewed as

a corollary of our egquation (4.12). However, we shall see that

Vickrey's auctions are not in general optimal for the seller.

A A T A A A T T R e £ D R R SRR RSN e
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5. Optimal auctions in the regular case.

With a simple regularity assumption, we can compute optimal

auction mechanisms directly from Lemma 3.
We may say that our problem is regular if the function

1—Fi(ti)

(5.1) ci(ti) = ti—ei(ti) I Fu
it-i

is a monotone strictly increasing function of ti, for every i in
N. That is, the problem is regular if ci(si)<ci(ti) whenever
aigsi<ti$bi. (Recall that we are assuming fi(ti)>0 for all

ti in [ai,bi], so that ci(ti) is always well-defined and con-

tinuous.)

Now consider an auction mechanism in which the seller keeps

the object if tO > max (ci(ti)), and he cives it to the bidder
ieN

with the highest ci(ti) otherwise. If ci(ti)=cj(tj) =
max (ck(tk))zto, then the seller may break the tie by giving to
keN
the lower-numbered player, or by some other arbitrary rule.
(Ties will only happen with probability zero in the regular case.)

Thus, for this auction mechanism,

(5.2) pi(tf>0 implies c, (t;) = ??ﬁ (c.(tj))zto.

"For all t in T, this mechanism maximizes the sum

iZN(ci(ti)—to)pi(t)

subject to the constraints that

} p.(t)<1 and pi(t)zo, Vi,
jeN J h



Thus p maximizes (4.7) subject to the probability condition
(3.3). To check that it also satisfies (4.2) we need to use
regularity. Suppose si<ti. Then ci(si)<ci(ti), and so whenever
bidder i could win the object by submitting a value estimate of
Sis he could also win if he changed to ti' That is, pi(t—i’si) <
pi(t_i,ti), for all t_i. So Qi(p,ti), the probability of i
winning the object given that ti is his value estimate, is indeed
an increasing function of ti' as (4.2) regquires. Thus p

satisfies all the condition of Lemma 3.

To complete the construction of our optimal auction, we
let x be as in (4.8):

t,
1

x, (t) = p; (£) (£, + jZN ej(tj))_\f p; (t_;r8;)ds,.
j#i i

This formula mav be rewritten more intuitively, as follows. For

any vector t_. of value estimates from bidders other than i,
let

(5.3) z, (t_;) = inf{si|ci(si)2tO and ci(si)ZCj(tj),Vj#i}.

Then zi(t_i) is the infimum of all winning bids for i acainst

t_i; SO
(5.4) pi(t—i’si) = 51 1f s;>2. (£ 5),
0 if Si<zi(t—i)'
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This gives us

t.
i . .
(5.5) j p, (t_ s 0ds, =y ti7%y (b)) BE By (B 40,
a, = + + o if t,<z,(t_.).
1 i i -
Finally, (4.8) becomes
(5.6) x (8) = 3z, (6 )+ 2 e.(t) if p, (£)=1,
JeN ]
j7i
o) if p; (£)=0.

That is, bidder i must pay only when he gets the object, and
then he pays vi(t_i,zi(t_i)), the amount which the object woculd
have been worth to him if he had submitted his lowest possible

winning bid.

If all the revision effect functions are identically zero
(that is, ei(ti)=O), and if all bidders are symmwetric (ai=aj,

= ()=
bi bj' fi") fj(.)) and regular, then we get

-1
(5.6) zi(t_i)= max {ci (to), max tj}.
j#i

That is, our optimal auction becomes a modified Vickrey auction
ﬁi], in which the seller himself submits a bid equal to c£1(to)
(notice that all ci=cj in this symmetric case, and regularity
guarantees that cy is invertible) and then sells the object to
the highest bidder at the second hichest price. This conclusion
only holds, however, when the bidders are symmetric and the ci(.)

functions are strictly increasing.



For example, suppose tO=O, each ai=Q, bi=100, ei(ti)=0,
and fi(ti) = 7%6’ for every i and every ti between 0 and 100.
Then straightforward computations give us ci(ti) = Zti—100,
which is increasing in ti' So the seller should sell to the
highest bidder at the second highest price, except that he
himself should submit a bid of c;1(0) = Qi%QQ = 50. By announcing
a reservation price of 50, the seller risks a probability (1/2)n
of keeping the object even though some bidder is willing to pay
more than tO for it; but the seller also increases his expected
revenue, because he can command a higher price when the object

is sold.

Thus the optimal auction may not be expost efficent. To see
more clearly why this can happen, consider the example in the
above paragraph, for the case when-n=1. Then the seller has
value estimate tO=O, and the one bidder has a value estimate
taken from a uniform distribution on [b,1001. Ex post efficiency
would require that the bidder must always get the object, as
long as his value estimate is positive. But then the bidder would
never admit to more than an infinitesmal value estimate, since any
positive bid would win the object. So the seller would have to
expect zero revenue if he never kept the object. In fact, the
seller's optimal policy is to refuse to sell the object for less

than 50, which gives him expected revenue 25.

More generally, when the bidders are asymmetric, the optimal
auction may sometimes even sell to a bidder whose value estimate

. N . - oy < ooy 1
is not the highest. For example, when ei(ti)—o ana fi(ti)“ B;:Ei

for all ti between a; and b., (the general uniforn~distribution

case with no revision effects) we get



which is increasing in ti. So in the optimal auction, the

bidder with the highest ci(ti) will get the object. If bi<bj’

then i may win the object even if ti<t., as long as Zti—bi>2tj—bj'
In effect, the optimal auction descriminates against bidders

for whom the upper bounds on the value estimates are higher.

This descrimination discourages such bidders from under-repre-

senting value estimates close to their high bj bounds.
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6. Optimal auctions in the general case.

Without regularity, the auction mechanism proposed in the
preceeding section would not be feasible, since it would vioclate
(4.2). To extend our solution to the general Case, we need somwe

carefully chosen definitions.

The cumulative distribution function Fi:[ai,bi]+[0,1]
for bidder i is continuous and strictly increasing, since we assume

that the density function fi is always strictly positive.

Thus F, (.) has an inverse F;1:[O,1]+[ai,bi], which is also

continuous and strictly increasing.

For each bidder i, we now define four functions which
have the unit interval [0,1] as their domain. First, for any
qg in [0,1], let

o1 -1 i-q
(6.1) hi(q) = Fi (q)—el(Fi (q))- 7
fi(Fi (g))
_ -1
= C(Fl (CI)),
and let
q
(6.2) H; (@) =j h, (r)ar.
0

Next let Gi:[O,1]+Ii be the convex hull of the function Hi(.);

in the notation of Rockafellar ([91, page 26)

(6.3) G, (g) = conv Hi(q)

i 2) and wr.,+(1-w)r

{w,r1,r2]C[O,1]
= min {wH.(r Y+ (1-w)H, (v _
i1 1 2~q



That is, Gi(‘) is the highest convex function on [0,1] such that
Gi(q)<Hi(q) for every q.

As a convex function, Gi is continuously differentiable
except at countably many points, and its derivative is monotone
increasing. We define gi:[O,1J+I2 so that

(6.4) . gi(q) = G} (q)

whenever this derivative is defined, and we extend gi(.) to

all of [0,1] by right-continuity.
We define €.:[a,,bJ—R so that
i i777

(6.5) Ci(ti) = gi(Fi(ti)).
(It is straightforward to check that, in the regular case when

ci(.) is increasing, we get GizHi’gi: i and_ci=ci).
Finally, for any vector of value estimates t, let M(t) be
the set of bidders for whom Ei(ti) is maximal among all bidders

and is higher than to.

(6.6) M(t) = {i]f_sc,(t;) = max c.(t.)}.
jeN

We can now state our main result: that in an optimal auction,
the object should always be sold to the bidder with the highest

Ei(ti), provided this is not less than t_. Thus, we may think of

ci(ti) as the priority level for bidder i1 when his wvalue

estimate is ti’ in the seller's optimal auction.
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Theorem: Let §:T+E{n and x:T>R" satisfy

(6.7) ﬁi(t)'=zr1/gm(t)t if ieM(t),

o) if i¢M(t),
and
— - i_
(6.8) xi(t) = pi(t)vi(t) - J; pi(t—i’si)dsi
- i

for all i in N and t in T. Then (§,§) represents an optimal

auction mechanism.

Proof: First, using integration by parts, we derive the

following equations.

(6.9) J‘(hi(Fi(ti))—gi(Fi(ti)))pi(t)f(t)dt
T

i
iya (hi(Fi(ti))—gi(Fi(ti)))Qi(P,ti)fi(ti)dti

i
b,
=((Hi(Fi(ti))~Gi(Fi(ti)))Qi(p,ti)).t .
i7i
bi
_L ()6, (B (6))) a0, (Bt
i7i

But Gi is the convex hull of H; on [0,1] and Hy is continuous,
SO Gi(O)=Hi(O) and Gi(1)=Hi(1). Thus the endpoint terms in the

last expression above are zero.
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Now, recall the maximand (4.7) in Lemma 3. Using (6.9)

we get:

1-F; () ,
(6.10) j‘ iZN (ti_ei(ti) - —~§ITE;7‘tO)Pi\t)f(t)dt
T

= I (hy (Fy(e)) -t )p, (B)E(b)at
\T ieN -

= .ZV (c; (t;)-t )p, (E)E(t)dt
T lel

o

) (hy (F, (t))-g; (F; (£5)))py (B)E(t)at
ieN D

= J\(igN(ci(ti)-to)pi(t))f(t)dt

T
b.
T 1 - '
) iéN Ji (Hy (Fy (£5))-G; (Fy (£,)))d0; (pyty) .
ti=ai

Now consider (E,;) as defined in the theorem. Observe that
p always puts all probability on bidders for whom (Ei(ti)—to)
is nonnegative and maximal.

Thus, for any p satisfying (3.3):

(6.11) j ) (Ei(ti)—to)ﬁi(t)f(t)dt
™ ieN
r -
= J (1 (ey ()=t )p, (£)f(t)dt.
ieN .



Of course p itself does satisfy the probability condition (3.3).

For any p which satisfies (4.2) (that is, for which Qi(p,ti)

is an increasing function of ti), we must have °

b.
1
(6.12) f (Hi(Fi(ti))—Gi(Fi(ti)))in(p,ti)ZO
t.=a
i i
since H.=>G,.
i i

To see that 5 satisfies (4.2), observe first that
Ei(ti) is an increasing function of ti' because Fi and g; are
both increasing functions. Thus pi(t) is increasing as a
function of ti' for any fixed t—i' and so Qi(p,ti) is also an

increasing function of ti' So p satisfies (4.2).

Since G is the convex hull of H, we know that G must be
flat whenever G <H; that is,
> 1 —_ n =
if Gi(r)<Hi(r) then gi(r) = Gi(r) 0.
So if Hi(Fi(ti)?—Gi(Fi(ti))>O then ci(ti) and Qi(p'ti) are constant

in some neighborhood of ti‘ This implies that

l -~
(6.13) I (H; (F, (£;)) -G, (F; (£,)))d0; (p,t;)=0.

Substituting (6.11), (6.12), and (6.13) back into (6.10),
we can see that 5 maximizes (4.7) subject to (4.2) and (3.3).

This fact, together with Lemma 3, proves the Theorem.

To get some practical interpretation for these important Ei'
functions, consider the special case of n=1; that is, suppose

there is only one bidder. Then our optimal auction becomes:
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{ 1 if E:1 (t)=t,
0 if C1(ti)<to'

51(t1)-min{s1[51(sl)2to}.

That is, the seller should offer to sell the object at the

price
_ 1 . - N
¢, (t, ) = min {s1lc1(S1)2to},

and he should keep the object if the bidder is unwilling to
pay this price.

Thus, if bidder i were the only bidder, then the seller
would sell the object to i if and only if Ei(ti) were greater
than or equal to to. In other words, ci(ti) is the highest
level of to' the seller's personal value estimate, such that
the seller would sell the object to i at a price of ti or lower,

if all other bidders were removed.



W

7. The independence assumption

Throughout this paper we have asssumed that the bidders'
value estimates are stochastically independent. Independence
is a strong assumption, so we now consider an example to show

" what optimal actions may look like when value estimates are

not independent.

For simplicity, we consider a discrete example. Suppose
there are two bidders, each of whom may have a value estimate
of ti=1O or ti=1OO for the object. Let us assume that the joint

probability distribution for value estimates (t1,t2) is:

Pr(10,10) = Pr(100,100) = %,

Pr(10,100) Pr (100,10) =

1
-
Obviously the two value estimates are not independent. Let us

also assume that there are no revision effects (ei=O),and to=O.

Now consider the following auction mechanism. If both
bidders have high value estimates (t1=t2=1OO), then sell the
object to one of them for price 100, randomizing equally to
determine which bidder buys the object. If one bidder has a
high value estimate (100) and the other has a low value estimate
(10), then sell the object to the high bidder for 100, and charge
the low bidder 30 (but give him nothing). If both bidders have
low value estimates (10), then give 15 units of money to one
of them, and give 5 units of money and the object to the other,

again choosing the recipient of the object at random.

T T e TN A w3 =t 15 ot <2 e



The outcome functions (p,x) of this auction mechanism are:

p (100, 100)

I

T 1y _
(_z'l _2') - P(1O:1O)r

p(10,100)

Il

(0,1), P(100,10) = (1,0),

x (100, 100)

U

(50,50), x(10,10) = (-10,-10),

x(10,100) = (30,100), x(100,10) =(100,30).

This may seem like a very strange auction, but in fact
it is optimal. It is straightforward to check that honesty is
a Nash eguilibrium in this auction game, in that neither bidder
has any incentive to misrepresent his value estimate if he
expects the other bidder to be honest. Furthermore, the object
is always delivered to a bidder who values it most highly; and
yet each bidders' expected utility from this auction mechanism
is zero, whether his value is high or low. So this auction
mechanism is feasible and it allows the seller to exploit the
entire value of the object from the bidders. Thus this is an
optimal auction mechanism, and it gives the seller expected
revenue

(130) + (130)+%(—20) = 70.

U, (p,x) = $(100) + = i
To see why this auction mechanism works so well, observe

that the seller is really doing two things. First, he is selling

the object to one of the highest bidders at the highest bidders'

value estimate. Second, i1f a bidder says his valuve estimate is

equal to 10, then that bidder is forced to accept a side-bet

of the following form: "pay 30 if the other bidder's value is

100, get 15 if the other bidder's value is 10". This side-bet
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has expected value O to a bidder whose value estimate is truly
10, since then the conditional probability is 1/3 that the
other has value 100 and 2/3 that the other has value 10. But
if a bidder were to lie and claim to have value estimate 10,

when 100 was his true value estimate, then this side-bet wculd

have expected value %(—30)+%(10) = - E%-for him (since he
would now assess conditional probabilities 2 and-l respectively for

3 3
the events that his competitor had value estimate 100 and 10).

This negative expected value of the side-bet for a lying bidder
exactly counterbalances the temptation to misrepresent in order

to buy the object at a lower price.

These side-bets were not possible in the independent case,
because each bidders' condition probability distribution over
the others' value estimates was constant. But in the general
qnon-independent case, we may expect that this side-bet phenomenon
will commonly arise. That is, the seller can exploit the full
value of the object by always selling to the highest bidder at
the highest bidders' valuation, and then by setting up side-~
bets which have zero expected value if a bidder is honest but
have negative expected value if he lies. If the side-bets are
carefully designed, they can counterbalance the incentive to

lie to buy the object at a lower price.

Of course, we have made heavy use of the risk-neutrality
assumption in this analysis. For risk-averse bidders, the optimal
auctions might be somewhat less extreme. Also, the auction
game suggested in our example has an unfortunate second equilibrium
in which both bidders always claim to be of the low type, although

other optimal auction mechanisms can be designed in which

the honest equilibrium is unique. (E.g., change x to:
x(100,100)=(100,100), x(10,10)=(-15,-15),
x(10,100)=(40,0), x(100,10)=(0,40) ;

keeping p as above.)
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One might ask whether there are any optimal auctions for
our example which do not have this strange property of sometimes
telling the seller to pay money to the bidders. The answer is
No; if we add the constraint that the seller should never pay
money to the bidders (that is, all xi(t)ZO), then no feasible
auction mechanism gives the seller expected utility higher
than 66%. To prove this fact, observe that the auction design
problem is a linear programming problem when the number of
possible value estimates is finite, as in this example. The
objective function in the problem is Uo(p,x), which is linear
in p and x. As in Section 2, the feasibility constraints are of

three types: probability constraints (pi(t)ZO,gipi(t)$1),

i
individual-rationality constraints (Ui(p,x,ti)ZO), and incentive-
compatibility constraints (that Ui(p,x,ti) must be:greater than or

6r equal to the utility which i would expect from acting as if

s; were his value estimate when ti was true). All of these
constraints are linear in p and x. So we get a linear programming
problem, and for our example its optimal value is 70, with

the optimal solution shown above. But if we add the constraints
x; (£)2 0 for all i and t, then the optimal value drops to 662,

for this example. To attain this "second-best" value of 66z

3
with nonnegative x, the seller should keep the object if

if t1 = t2 = 10, and otherwise the seller should sell the object
to a high bidder for 100. '
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8. Implementation

A few remarks about the implementability of our optimal
auctions should now be made. Once the fi and ey functions have
been specified, the only computations necessary to implement
our optimal auction are to compute the Ei functions and tg

evaluate (6.8). But these are all straightforward one-dimensional

problems. The equilibrium strategies for the bidders are also
easy to compute in our optimal auction , since each bidder's

optimal strategy is to simply reveal his true valuec estimate.

In terms of sensitivity analysis, notice that (6.8)
guarantees that our auction mechanism (§,§) will be feasible,
and yet the densities fi do not appear in (6.8). So our optimal
auction will satisfy the individual-rationality and incentive-
compatibility constraints ((3.4) and (3.5)) even if the density
functions are misspecified from the point of view of the bidders.
However the revision-effect functions ey do appear in (6.8)
(through vi), so 1if there are errors in specifying the e, functions
then bidders may have incentive to bid dishonestly in the auction

we compute.

In general, we must recognize that an auction design problem
must be treated like any problem of decision-making under un-
certainty. No auction mechanism can guarantee to the seller the
full realization of his object's value under all circumstances.
Thus; the seller must make his best assessment of the probabilities
and choose the auction design which offers him the highest expected
utility, on average. The usual "garbage-in, -garbage-out" warning
must apply here, as in all operations research, but careful use
of models and sensitivity analysis should enable a seller tc

improve his average revenues with optimally designed auctions.
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