DISCUSSION PAPER NUMBER 360
Pursuing Mobile Hiders in a Graphl

by
Nimrod Megiddo? and S. L. Hakimi>

December, 1978

1This work was suppored in part by U.S. Air Force Office of
Scientific Research, Systems Command, under Grant AFOSR-76-3017.

2Graduate School of Management, Northwestern University,

Evanston, Illinois 60201, and Department of Statistics,
Tel Aviv University, Tel Aviv, Israel.

3Department of Electrical Engineering and Computer Science,
and Department of Engineering Science and Applied Mathematics,
Northwestern University, Evanston, Illinois, 60201.

ABSTRACT

The pursuit-evasion game considered here takes place
in an undirected graph. The central problem is how many
pursuers are required to guarantee the capture of all evaders,
and how should the pursuers act. A linear-time algorithm
for this problem is developed for tree-graphs. The difficulty
of the problem is demonstrated by a characterization of graphs
that require no more than two pursuers and by examples of

minimal graphs requiring more than three pursuers.

1. Introduction

Pursuit-evasion problems have been thoroughly studied
in the context of differential games, as initiated by Isaacs
[3]. In all these models, velocities and their derivatives play
essential roles. In certain versions of these problems, where
there is some lack of information (on the part of the pursuers,
for example) these problems have a probabilistic flavor. In
those cases, when the pursuers have no information as to the
exact location of the evader, the latter is called a hider
(I1h.

When the game takes place in a one-dimensional domain
(say, a graph), and there is more than one pursuer, then the
combinatorial and the computational aspects become more
dominant. Asel'derova [2], for example, deals with such a
game on a graph with edge-lengths, assuming certain speed limits.

Our present paper deals with a pursuit-evasion game
which is purely combinatorial (both the differential and the
probabilistic elements are eliminated). The model was first
suggested by Parsons [4,5]. A definition is given below.

For our purpose it is convenient to define a graph‘as
a union of a finite number of closed straight line segments
in some euclidean space. Thus, a subgraph of a graph GR" is
a subset of G which itself is a graph, namely, consists of a

finite number of closed straight line segments. Obviously,

-2 -

if a graph is given in the combinatorial form of vertices
and edges, then it can be embedded in a euclidean space4 so
as to conform with our definition. Multiple edges and loops
may be handled by means of introducing additional vertices.
Henceforth we shall conceive a graph both as a subset of a
euclidean space and as a collection of pairs of vertices.

Our game takes place within a connected graph. Each
one of the evaders has the capability of moving with no speed
limit within the graph. The pursuers have some finite speed
limit. Furthermore, the pursuers have no information as to
the location of any evader, unless the latter has already been
captured. We shall henceforth use the term hider instead of
evader. Capture in this game means collision. The central
question considered here is how many pursuers are required to
guarantee capture of all hiders, and how should the pursuers
act.

It can be shown that the answer to this question is
independent of the number of hiders, the lengths of the line
segments and the speed limit of the pursuers.

Numerous applications could be mentioned. One can think
of a search of a city for the mobile headquarters of a terrorist
organization, or for some stolen merchandise., Other applications
are to purifying a contaminated transportation network in the
event of a chemical warfare, to the control of water pollution,

and to the inspection of motorized vehicles.

4 . .
A 3-dimensional space suffices.

-3 -

In Section 2 we describe a linear time algorithm for
finding the minimum number of pursuers (the search number)
required for a tree graph. The algorithm computes a search
plan as well. 1In Section 3 we describe a method to compute
the search number of a general graph. This method is then
applied to derive some bounds for the search number,

In Section 4 we characterize graphs with search number 2 (via
minimal graphs of search number 3). Section 5 provides examples

of minimal graphs with search number 4.

2. Pursuit-evasion on trees.

In this section our graph is a tree (i.e. it is connected
and has no cycles) and is denoted by T. The number of pursuers
required to guarantee capture is denoted by s(T) and is called
the "search number" of T. We develop here a linear-time
algorithm for finding s(T) as well as a supporting search plan.

There does not seem to exist a simple rule that states
how essentially should a tree be searched. The tree shown in

Figure 1 may be a good example.

B oo peres sres roures IO

Fig. 1

-4 -

This tree has search number 3. The three pursuers should act. as
follows. They have to search the five subtrees,one at a time,
while one of them is guarding at the root of the subtree. The
other two clear the subtree, starting from the two left-hand
leaves, say, and ending at the two right-hand leaves.

We find it convenient to define several other parameters
of the tree that are related to the search problem, and then
compute the values of these parameters and s(T) simultaneously.
Even though our game is played over an undirected tree, we will
arbitrarily fix one vertex r as the root of the tree. This
defines for every vertex x a subtree T(x) rooted at x, namely,
the subtree of T induced by all vertices y such that x lies on

the path from y to the root r of T.

Definition of s*(T): If T is a tree rooted at r then by s*(T)

we mean the search number s(T%*) of a tree T%* obtained by

adjoining to T one more vertex and one more edge incident upon r.

Fact 1l: . s(T) £ s*(T) £ s(T) + 1.

We shall now define some modified versions of our
pursuit-evasion game, from which we derive additional parameters
of T that are useful in the computation of s(T). By Version 1

we mean the original game over T.

Version 2: This game is basically the same as the original

one but with the following exception. We say that the hider

-5 -

"escapes'" (i.e. cannot be captured anymore) if he reaches the

root r when none of the pursuers is there.

Definition of u(T): The minimal number of pursuers required to

guarantee capture in Version 2.

Note that in order to guarantee capture in Version 2,
one pursuer must start at the root. Also, it is sufficient to
place a "guard'" at the root and employ s(T) pursuers as in

Version 1.
Fact 2: s*(T) £ u(T) = s(T) + 1.

Version 3: Basically the same as Version 1, but with the follow-
ing exception. The hider is free to get through the root in

and out of the tree. However, the rules are such that he is
considered captured if he is located outside of the tree when

the search is terminated. Thus, the hider may use the outside

as a temporary shelter.

By reversing the direction of time, it can be shown that
the minimal number of pursuers required in this game, 1is

equal to u(T).

Definition of w(T). Given two rooted trees Tl’ T2 whose sets

of vertices are disjoint, we define the composition Tl + Tzato be

the tree obtained by connecting the two roots by means of a

new edge. Now we define

-6 -
w(T) = Max{u(T') : s(T+T') = s(T)}.

Intuitively, w(T) is the maximal number of pursuers,
out of the s(T) who are searching T, that could be assigned

to external search tasks, starting at the root of T and carried

out during the search of T.

Fact 3: 1If s(T) = u(T) then w(T) = s(T).
(This is because the search of T, in case s(T) = u(T), can be
carried out with all pursuers terminating at the root, and then

all of them can start another task at the root.)

Fact 4: 1If s*(T) = s(T) + 1 then w(T) = O.
(This is because adjoining just a single edge to T requires

an additional pursuer.)

Assuming that T is the given rooted tree and x is any
vertex of T, we will in short denote s(x), s*(x), u(x) and w(x),
for s(T (x)), s*(T(x)), u(T(x)) and w(T(x)), respectively.

We will show that once the values of s¥y), s*(y), u(y) and

w(y) are known for every son y of a vertex x, then the values
of s(x), s*(x), u(x) and w(x) can be easily calculated.

The case of x being a leaf is trivial. Also, without loss of
generality, we assume that there are no vertices of degree 2 in
T. Henceforth,we assume that x is a vertex that has at least
two sons. We denote the set of sons of x by X. The evaluation

of the four functions requires distinguishing cases. The

-7 -
different cases are covered in the following assertions.

Assertion 1. 1If there are at least three sons ERIIRE of x

such that s*(yi) = Max [s*(y):y€X} (i=1,2,3) then

s(x) = s¥(x) = u(x) = w(x) = s*(yl) + 1,

Propof: We rely on a lemma proved by Parsons [4,Lemma 4]:

"Let T T, be disjoint trees each having at least one

1> T20 13
edge. For j=1,2,3 let vj be a vertex of degree 1 in Tj‘ Let T
be the tree obtained by identifying Vs Vo5 Vg into a single -
vertex v. If s(Tj) = k for j=1,2,3, then s(T) = k+1." It
follows that in our case s(x) = s*(yl) + 1. Furthermore, in

an optimal search plan for T(x), one of the pursuers is

positioned at x throughout. This implies the equalities asserted.

Assertion 2. If there are precisely two sons, ¥y and yz,g£ X

such that s*(yl) = s*(yz) = Max {s*(y):y€X}, and they satisfy

u(y;) = s*(y;), i=1,2, then s(x) = s*(y;), s*(x) = Max {S*(Yl),zl,
u(x) = s*(y) + 1 and w(x) = s*(yl) -1,

Proof: Following is a search plan for T(x) with s*(y;)

pursuers. First, let all s*(yl) pursuers clear the subtree T(yl),
in such a way that when they terminate at e the hider is known
to be outside of T(yl). This is possible in the light-of' the -
assumption u(yl) = s*(yl) and the discussion of Version 3. Next,
let all s*(yl) pursuers proceed from y; to x. Now, place one

of them as a guard at x and let the others clear all subtrees

-8 -

T(y), yEX\{yl,yz}, one at a time, if any. This is possible since
s*(y) £ s*(y;) - 1 for yEX\{yl,yZ}. Finally, let all s¥*(y;)
pursuers proceed from x to Yo and clear the subtree T(yz),
making sure that the hider does not reach Yo This is possible
in the light of the assumption s*(yz) = u(y2) and the definition

of u(yz)o Thus, s(x) = s*(yl).

It follows from the search plan we described, that if
s*(yl) > 2, then s*(x) = s(x). On the other hand, if s*(yl) =1,
then by Parsons' lemma (see the proof of Assertion 1) s¥*(x) = 2.
Thus, s*(x) = Max {s*(yl), 2}. To compute u(x), note that
during a search of T(x) there must be an interval of time,
during which all the s(x) pursuers are located inside T(yl).
There also must be an interval of time during which all the
s(x) searchers are located inside T(yz). Thus, when playing
Version 2, one additional guard is required for preventing
the hider from escaping by reaching x. In other words, u(x) =
s(x) +1 = s*(yl) + 1. Moreover, since all the s(x) pursuers
can proceed together through x during the search, it follows

that w(x) = s(x) - 1 = s*(yl) -1, a

Assertion 3: If there are precisely two sons, Y1 and yz,of X,

such that s*(yl) = S*(yz) = Max {s*(y):y€X}, and if u(yl) =
s*(yl) + 1 then

s(x) = s%(x) = u@®) = w(x) = s*(y;) + L.

-9 -

Proof: First, s*(yl) + 1 pursuers certainly suffice for
Versions 1, 2, 3. This is because, one may place a guard at

x and let the other &Yyl) pursuers clear the subtrees T(y), y€X,
one at a time. Secondly, note that s*(yl) pursuers must spend

a positive amount of time inside T(yl) and a positive amount

of time inside T(yz). However, since s*(yl) < u(yl), it cannot be
guaranteed (unless we employ at least s*(yl) + 1 pursuers) that
the hider has not sneaked back into T(yl) wnile the sursuers
were leaving this subtree. (This corresponds to Version 3
played on T(yl)). Nor can it be guaranteed that the hider

has not sneaked out of T(yl) while the pursuers were entering
this subtree. (Think of Version 2 played on T(yl)). Thus, the
presence of an additional guard at x is necessary: s(x) = u(x) =
s*(yl) + 1. It follows from Facts 1-3 that also s*(x) = w(x) =

s*(yl) + 1, o

Assertion 4. If there is precisely one son Y of x such that

sf(y) = Max {s*(y):y€X} and if u(yl) = s*(yl) then

s(x) = s*(x) = u(x) = w(x) = s*(y).

Proof: Following is a search plan for T(x) with s*(yl) pursuers.
First, clear T(yl) as if Version 3 were played on this subtree
(note that u(yl) = s*(yl)). Then let all s*(yl) pursuers proceed
to x. Next, one of them is positioned at x and all the others
clear the subtrees T(y), y6x\{y1} one at a time. This plan implies

our claim. g

- 10 -

If Y1 is a son of a vertex x then by T(x/yl) we mean the

subtree rooted at x and consisting of all subtrees T(y) and

edges (x,y) for YGX\{Yll-

Assertion 5. Suppose that there is precisely one son Y1 of x

such that s*(yl) = Max [s*(y):y€X} and this son satisfies

u(yl) = s*(yl) + 1. Under these conditions:

s*(yl) + 1 if w(yl) < u(T(X/Yl))
s(x) =

s*(yl) otherwise,

s*(x) = Max [s(x), 2},

u(x) = s*(yl) + 1, and
s*(yy) + 1 if w(y) < u(T(x/y))
u(x) = { w(y;) if w(y) = w(T(x/yp)) = Max {u(y):yex\ly;]

w(yl) -1 if w(yl) > Max {u(y):yEX\fylll.

Proof: First, observe that the search plan described in the proof
of Assertion 4 implies that u(x) = u(yl) = s*(yl) + 1. Next,

by the definition of w, s(x) = s*(yl) if and only if

w(y;) 2 u(T(x/yy))). Thus, if w(y;) < u(T(x/y;)) then

s(x) = s*(yl) + 1, since one additional pursuer acting as a

guard at x certainly suffices. This also implies that if

w(yy) < u(T(x/yl)) then s*(x) = w(x) = s*(y;) + 1. We still

have to deal with s*(x) and w(X) in case w(yl) giu(T(x/yl))o

- 11 -

It is easy to verify that if w(yl) = 1 then s*(x) =
s(x) +1 and if w(yl) > 2 then s*(x) = s(x).

For the evaluation of w(x) consider first the case
w(yy) > Max {u(y):yEX\{yi}}. In this case W(x) = w(y;) by the
following plan. During the search of T(yl), W(yl) pursuers
may leave through yq- One of them is placed as a guard at x,
wnile the others clear the subtrees T(y) (yEX\[yll). Then all
the w(yl) searchers may leave through x.

If there is precisely one son yZEX\{yl] such that
W(Yl) = Max {u(y):yEX\{yl}} = u(yz), then T(x/yl) should be
cleared by u(yz) pursuers in the following way. Place a guard
at x, let the others clear the subtrees T(y) for yEX\iyl,yZ],
one at a time, if any, and then let all u(yl) pursuers enter
T(yz)° This implies that in this case W(x) = w(yl) - 1.

Finally, if there are at least two sons y,, y3€X\{y1]
such that w(y;) = Max {u(y):yEX\{yl}} = u(y,) = u(y,) then
U(T(X/Yl))==w(yl) + 1 and this has already been analyzed. This
completes the proof of our assertion. 0

Assertions 1-5 lead to a linear-time algorithm for
evaluating the values s(T), s*(T), u(T) and w(T). It should be
noticed that in all the cases, the information about the values
of these functions at all y€X suffices for evaluating them at x.
In the case of Assertion 5, the value u(T(x/yl)) has to be computed,

but that is possible by the rules of the function u.

- 12 -

The actual search plans associated with these four functions

are implicit in the computation based on our case-analysis.

3. Some general results

3.1 Computing s(G) in the general case

Parsons [4] originally formulated the search problem in
terms of finding continuous functions that describe the motion
of the different pursuers. These functions have to guarnatee
capture regardless of the continuous function chosen by the
hider. Thus, it was not clear whether or not the search number
was even computable.

Later, Parsons [5] reformulated the problem in a way
that led to an algorithm for computing the search number s(G)
of a given graph. We describe below another algorithm for
finding s(G). Our algorithm seems to shed some more light on
the problem, and is shown to be useful for proving results
about the search number.

Suppose that we have a valid search plan for a graph
G = (V,E) with k pursuers. At any time t the point set of G
(recall that G is conceived also a subset of some euclidean
space) 1is partitioned into two subsets, namely, the set of
clear points and the set of unclear points. Specifically, a
point x is clear at time t,if it follows from the search plan
that the hider cannot be located at x,from time t through the

end of the search. At the start, the clear points can be only

- 13 -

initial positions of the pursuers. At the end,every point is
clear. Moreover, at any time t the two subsets are separated
by some of the points that are currently occupied by pursuers.
It follows from this observation, that for every edge e
of the graph, there is a time t(e) when e becomes entirely
clear. Without loss of generality, we may assume that during the
search, one pursuer moves at a time. Thus, one edge becomes
clear at a time. 1In other words, every valid search plan induces
a linear order over the set of edges E, namely, the order in
which the edges become entirely clear. Thus, the problem of
finding the search number reduces to finding the optimal order
in which the edges have to be cleared. However, given a
sequence, p = (el,...,em) of the edges of G, it is easy to find
the minimal number k(p) of pursuers that are required for
searching G in such a way that the edges become clear in the
order €150 5€ - An algorithm for computing k(p) is described
in the Appendix. It follows that the question whether or not
s(G) £ k (given G and k) is decidable in polynomial time on a
non-deterministic Turing machine (i.e. it belongs to the class
NP) and in exponential time on a deterministic machine. We have

not as yet been able to prove NP-completeness of the problem.

- 14 -

3.2 Searching a complete graph

The observation, that the search number problem may be
stated as a problem of finding an optimal permutation of the
edges,is shown to be useful by the following results.

Let Kn denote the complete graph with n vertices. Parsons
[4,5] stated without proof (except for the case n=4) that for
n >4, S(Kn) = n. It is easy to see that s(Kn) < n, since n
pursuers can guarantee capture in the following way. They all
start at vertex 1. Then, pursuer i (i=2,3,...,n) proceeds
from vertex 1 to vertex i and occupies vertex i, Finally,
pursuer 1 clears all edges (i,j), for 2 £ i, j £ n.

We shall now prove that n-1 pursuers do not suffice for
Kn (if n 2 4). Suppose, to the contrary,that n-l pursuers do
suffice for K- Thus, they can clear the edges in some order
7= (el,...,em) (m = #n (n-1)). For every vertex v (1 < v < n),
let i(v) be the index such that ei(v) is the first edge in
the sequence w that is incident upon v. Without loss of gen-
erality assume that i(1) £ i(2) = ... £ i(n). Consider the
situation when el"'°’ei(n-1) are the clear edges. Obviously,
each one of the vertices 1,2,...,n-1 has both a clear and an
unclear edge incident upon it, namely, ei(v) is clear and (v,n)
is unclear (v=l1,...,n-1). Thus, the n-1 pursuers must currently
be positioned at the vertices 1,...,n-1. Suppose that ei(n-l) =
(x,n-1) (L £ x £ n-2). Thus, for every j (1 £ j £ n-2, j# x) the

edge (j,n-1) is unclear. 1In other words, x is the only vertex

- 15 -

that may have no more than one unclear edge incident upon it.

Hence, i (n-1)+1 = (x,n). We arrive at the following contradiction.
When the edges el""’ei(n-l)+l are the clear ones, the pursuers
must be located at the vertices j(j=1,...,n, j# x). However,

each one of these vertices has at least two unclear edges

incident upon it, so that the pursuer positioned at j cannot move. o

3.3 Some bounds on s(G)

Let max-clique(G) denote the maximal number k such that

G contains a subgraph homeomorphic to the complete graph Kk'

Proposition 1. If max-clique(G) = 4 then s(G) 2 max-clique (G).

This is a direct consequence of our result in Section 3.2. The
following bound can be proved very similarly, hence we omit

the proof.

Proposition 2. If G is neither a simple path nor a simple cycle

then s(G) 2 min-degree (G) + 1..

(By min-degree(G) we mean the minimum degree of a vertex in G.)
Let vertex-cover (G) denote the minimum cardinality of a
set of vertices of G such that each edge is incident upon a

vertex in the set.

- 16 -

Proposition 3: s(G) < vertex-cover(G) + 2.

Proof: Consider the connected components of G obtained by
removing all the vertices of some covering set (however, no

edge is removed). Each one of these components is a tree with
diameter not greater than 2. Thus, by placing guards at vertices
of a covering set, we need no more than two additional pursuers,

who will clear all these components one at a time.

Proposition 4: If T is a tree with n vertices then s(T) < 1ogé(n'1)+lo

This follows from our algorithm in Section 2 and may be proved
directly by induction. Moreover, this bound is tight, as is
shown by the trees defined recursively as follows. Let T1 be
a single edge tree. Construct Tk+1 by identifying (coalescing)
three leaves, one from each one of three disjoint copies of Tk'

The first three trees in the sequence are shown in Figure 2.

Fig. 2

It can be verified that s(Tk)==k and Tk has 1-+3k-1 vertices.

- 17 -

4. Graphs with search number 2

Consider the three graphs shown in Figure 3:

G, G, Gs

Fig. 3(a) Fig. 3(b) Fig. 3(c)

It can be easily verified that three pursuers suffice for each
one of these graphs. It can also be shown (by techniques similar
to the one we used in Section 3 for showing s(Kn)==n) that none
of these graphs can be cleared by two pursuers. Furthermore,

we claim that these graphs are minimal in the following sense.
Recall that our graphs are embedded in a euclidean space and

that a subgraph is a subset of a graph which itself constitutes

a graph., Thus, the graph shown in Figure 4, for example, is a
subgraph of graph G, (shown in Figure 3(b)) according. to our

definition.

Fig. 4

- 18 =~

We claim that Gi(i=1’2’3) does not contain a subgraph which is
not homeomorphict:oGi and whose search number is 3. This fact
can be easily verified.

It is interesting to note that Gl’ G2 and G3 are the only
minimal graphs with search number 3.

This is essentially the claim of the following theorem.

Theorem. _A graph G has s(G) < 2 if and only if G does not

have a subgraph homeomorphic to one of the graphs Gi(i=l,2,3).

Proof: In view of our previous discussion in this section,
we have to prove only the "if'" part. Thus, assume that G is

a graph that does not contain a homeomorph of G; (i=1,2,3).

Let V* denote the set of all vertices of degree greater than 2
in G. Define a graph G*==(V*,E*) (possibly with multiple
edges and loops) as follows. For every pair u,vEV* (possibly

u=v) and for each path USW,seee,W =v in G, such that the

p+1

wj's (j=1,...,p) have degree 2 in G, let there be an edge linking
u and v in G%, corresponding (in a one-to-one fashion), to this

w
path in G. Since G 1s connected, it is clear that G 1is also

connected. Since G does not contain a homeomorph of Gz, G* does
not contain a cycle of length greater than 2. Since G does not
contain a homeomorph of Gy, there can be no more than two edges
in G* linking the same pair of distinct vertices. Furthermore,

ale

since G does not contain a homeomorphof Gl’ each v€V has no more

- 19 -

* *
than two neighbors in G . It follows that G must contain a
*
simple path such that each edge of G which is not on this
path is either a loop or linking two consecutive vertices on

this path.

All these properties of G* imply the following valid
search plan for G with two pursuers. Let Vl’VZ"“’Vp be the
order in which the vertices of G* appear on the path mentioned
above. Note that these are also vertices of G. The two pursuers
‘start at vy One of them waits at Vi while the other one clears
all the edges that are reachable from 41 without passing through
the edges that lead towards Vo Then both pursuers proceed
from 41 to Vg, either along different paths (there can be two
different paths at most) or along the same path, if there is
only one path from v, to v,. Next, one waits at Vo while the
other is clearing all unclear edges,that are reachable from v,
without passing through the edges that lead towards Vg Then
both proceed to V3, and so on. o

A typical graph with search number 2 is shown in Figure 5.

Fig. 5

- 20 -

Corollary. For a graph G, s(G) < 2 if and only if (i).There is
a simple path covering all vertices of G of degree greater than
2. (ii) No simple cycle in G contains more than two vertices
of degree greater than 2. (iii) No two simple cycles in G

have a common edge.

Remark. Our theorem on graphs with s(G) X 2 implies an efficient
algorithm for deciding whether or not s(G) < 2. First, construct
the graph G~ and check whether or not there is a vertex of

reduced degree (i.e. the number of neighbors) greater than 2 in

als ate
"~

G , and whether or not there are two distinct vertices in G~
linked by more than two edges. If the answer to either one of
these questions is 'yes,'" then s(G) > 3., If the answer to

Y.

"no," then a Hamiltonian path in G~ can be

both questions is
easily found. Now, check whether or not there is an edge of
G*, not on the Hamiltonian path, that is neither a loop nor
linking two consecutive vertices on the path. Again, if the
answer is '"'yes'" then s(G) > 3, and if "no" then s(G) £ 2.

(Note that the case s(G)=1 is trivial, namely, G must be a

simple path.

5. Graphs with search number 3

In section 4 we proved that there were only three minimal
graphs which could not be cleared by two pursuers. The situation

with three pursuers is much more complicated. We have been able

- 21 -

to identify thirteen minimal graphs (see Figure 6) which cannot

be cleared by three pursuers.

Fig. 6(a) Fig. 6(b) - Fig. 6(c)

Fig. 6(d) Fig. 6(e)

Fig. 6(f) Fig. 6(g)

- 22 -

Fig. 6(h) ‘ Fig. 6(1)

Fig. 6(3) Fig. 6(k)

Fig. 6(%) : Fig. 6(m)

Thus, a characterization of graphs whose search number is
3, based on these minimal graphs, although seems to be possible,

may not be particularly enlightening.

- 23 -

Appendix

Number of pursuers required to clear
a graph in a predetermined order

Given a subset F of edges in G= (V,F), let V(F) denote

the set of all vertices v such that at least one edge in F

and at least one edge in E\F are incident upon v. Obviously,

if at some time t, F is the set of all clear edges, then at

that time guards must be placed at each v&€V(F). Suppose

that we have to clear one more edge e€E\F while keeping all

edges in F clear. We distinguilsh the following cases:

Case 1:

Case 2:

Case 3:

The edge e has one of its vertices v in V(F) and
e is the only edge in E\F that is incident upon v.
In this case the guard placed at v should proceed into

e, clear it up, and occupy the other vertex of e.

One vertex v of e is either of degree one or v
belongs to V(F). We also assume in this case

that if ve€V(F) then another edge e'§ E\F is incident
upon v. In this case one additional pursuer should
be employed for clearing.the.edge e, starting from

v and then occupying the other vertex of e.

Both vertices of e have degree greater than one and
neither belongs to V(F). In this case we need two

additional pursuers for clearing e and then occupying

both of its vertices.

- 24 -

The above case analysis implies that the number k of
pursuers required for clearing the edges in the order €1se005€
can be calculated as follows. Initialize with F=@ and one
pursuer in "reserve.'" Note that since V(#) =@ no pursuer is
required to occupy any vertex at the beginning. Next, suppose
that F=={e1,...,ej_1} and every vertex in V(F) is occupied by a
pursuer and that there are r pursuers in ''reserve.'" Let x be
the number of additional searchers required for clearing ej

according to the previous case analysis (0 £ x = 2).

Update: r = Max{r,x} + |V(F)| - |V(F U {ejll

F=(FU {ej}) .

Thus, after clearing ej, we have r pursuers in reserve and
|V(F)| pursuers occupying critical vertices. This algorithm
terminates when F=E and then, since V(E) = @#, the number r
equals the minimum of pursuers required for clearing in the

der eq,...,€ &

- 25 =

References

S. Alpern, '""The Search Game with Mobile Hider on the Circle,”

in Differential Games and Control Theory, E. O. Roxin,

P. T. Liu and R, L. Sternberg, eds., Marcel Dekker, Inc.,

New York, 1974, pp. 181-200.

I. M. Asel’derova, '"On a Certain Discrete Pursuit Game on

Graphs,' Cybernetics, 10 (1974), pp. 859-863.

R. Isaacs, Differential Games, John Wiley & Sons, New York,

1965.

T. D. Parsons, '"Pursuit-Evasion in a Graph,'" in Theory and

Applications of Graphs, Y. Alavi and P. R. Lick, eds.,

Springer-Verlag, 1978, pp. 426-441.

T. D. Parsons, '"The Search Number of a Connected Graph,"

Proceedings of the Ninth Southeastern Conference on

Combinatorics, Graph Theory, and Computing at

Boca-Raton, January-February 1978 (to appear).

- 17 -

4., Graphs with search number 2

Consider the three graphs shown in Figure 3:

«

G, G, G

Fig. 3(a) Fig. 3(b) Fig. 3(c)

It can be easily verified that three pursuers suffice for each
one of these graphs. It can also be shown (by techniques similar
to the one we used in Section 3 for showing s(Kn)==n) that none
of these graphs can be cleared by two pursuers. Furthermore,

we claim that these graphs are minimal in the following sense.
Recall that our graphs are embedded in a euclidean space and

that a subgraph is a subset of a graph which itself constitutes

a graph. Thus, the graph shown in Figure 4, for example, is a
subgraph of graph G, (shown in Figure 3(b)) according. to our

definition.

Fig. 4

- 21 -

to identify thirteen minimal graphs (see Figure 6) which cannot

be cleared by three pursuers.

Fig. 6(a) Fig. 6(b) - Fig. 6{c

Fig. 6(f) Fig. 6(g)

- 22 -

Fig. 6(h)

Fig. 6(m)

Thus, a characterization of graphs whose search number is
3, based on these minimal graphs, although seems to be possible,

may not be particularly enlightening.

- 19 -

than two neighbors in G . It follows that G must contain a
simple path such that each edge of G which is not on this
path is either a loop or linking two consecutive vertices on

this path.

-All these properties of G* imply the following valid
search plan for G with two pursuers. Let vl,vz,...,vp be the
order in which the vertices of G* appear on the path mentioned
above. Note that these are also vertices of G. The two pursuers
start at vy One of them waits at vy while the other one clears
all the edges that are reachable from vy without passing through
the edges that lead towards Vo Then both pursuers proceed
from v, to Voo either along different paths (there can be two
different paths at most) or along the same path, if there is
only one path from vy to Vo Next, one waits at v, while the
other is clearing all unclear edges,that are reachable from v,
without passing through the edges that lead towards Vg Then

both proceed to V3, and so on. a

A typical graph with search number 2 is shown in Figure 5.

Fig. 5

In Section 2 we describe a linear time algorithm for
finding the minimum number of pursuers (the search number)
required for a tree graph. The algorithm computes a search
plan as well. 1In Section 3 we describe a method to compute
the search number of a general graph. This method is then
applied to derive some bounds for the search number.

In Section 4 we characterize graphs with search number 2 (via
minimal graphs of search number 3). Section 5 provides examples

of minimal graphs with search number 4.

2. Pursuit-evasion on trees.

In this section our graph is a tree (i.e. it is connected
and has no cycles) and is denoted by T. The number of pursuers
required to guarantee capture is denoted by s(T) and is called
the '"'search number' of T. We develop here a linear-time
algorithm for finding s(T) as well as a supporting search plan.

There does not seem to exist a simple rule that states
how essentially should a tree be searched. The tree shown in

Figure 1 may be a good example.

LS BN Py B po e

Fig. 1

