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Abstract

Contrary to popular belief geometric programming is not just a special
technique for studying the very important class of '"posynomial programs'.
It is really a very general mathematical theory that is especially useful
for studying a large class of "separable programs'. Its practical
efficacy is due mainly to the fact that many very important (seemingly
nonseparable) programs can actually be formulated as (separable) geo-
metric programs by fully exploiting their (linear) algebraic structure.
Some examples are: nonlinear multicommodity network flow problems, dy-
namic programs with linear transition functions, facility location pro-
blems, (fp constrained) &, regression problems, (quadratically congtrained)
quadratic programs, and general algebraic programs. The theory of geo-
metric programming includes (i) very strong existence, uniqueness, and
characterization theorems, (ii) useful parametric and economic analyses,
and (iii) powerful numerical solution techniques.

This paper is primarily expository in nature and includes only the
simplest derivations and results that provide insight into the subject. No
prior knowledge of geometric programming is assumed.
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1. INTRODUCTION

Geometric programming provides a svstematic method for analyzing and
optimizing a large class of technological designs. The original prototype
theory treats the important class of optimization problems that consist
of minimizing a "posynomial" (i.e., a generalized positive polynomial)
subject to upper bound inequality posynomial constraints. In essence,
this 1s accomplished by transforming such (nonconvex nonseparable)
problems into equivalent convex separable problems and applying Cauchy's
"arithmetic-geometric mean inequality.'" The resulting "'geometric dual
problem'" is at least as important in the study of posynomial programming
as the linear dual problem is important in the study of linear progran-
ming. In fact, the geometric dual problem has only linear constraints,
provides lower bounds on the minimum value of the corresponding posy-
nomial problem, and gives the dependence of the minimum value on the
posynomial coefficients.

Analogous transformations and inequalities can be used to treat other
important classcs of optimization problems, such as chemlcal equllibrium
problems, quadratically-constrained quadratic programs, Vp—construlned
Lp-regression problems, tacility location problems, dynamic programs
with linear transition functions, and multicommodity network flow prob-
lems. The appropriate transformations are suggested by the (linear)
algebraic structure of the given problem, and the appropriate inequali-
ties are generated by taking the 'conjugate transform" of the resulting
functions.



In addition to indicating the potential scope of geometric program-
ming and its potential impact on technological design, the discussion
of its mathematical foundations given in Secs. 2 through 6 can serve
either as an introduction to the subject or as an enlightening review
of the prototype theory.

First-generation geometric programming algorithms have encountered
certain numberical difficulties when slack constraints are present.
Those difficulties have been at least partially overcome by the intro-
duction of slack variables (in a manner that differs considerably from
the corresponding approach in linear programming). The method is
closely related to "penalty function methods'" and also provides a some-
what simpler proof of the original '"refined duality theory" of proto-
type geometric programming, This topic is discussed in Sec. 7.

Well-posed algebraic programs (namely, optimization problems involv-
ing only real-valued functions that are generated solely by addition,
subtraction, multiplication, division, and the extraction of roots) can
be transformed into equivalent posynomial programs. The resulting class
of posynomial programs is substantially larger than the class of proto-
type geometric programs. However, much of the prototype theory can be
generalized by studying the '"equilibrium solutions'" to the '"reversed
geometric programs"” in this larger class. Moreover, the "arithmetic-
harmonic mean inequality" can be used to '"invert'" the 'reversed con-
straints'" and hence reduce the study of each reversed geometric pro-
gram to the study of a corresponding "‘robust' family of ‘conservatively
approximating' prototype geometric programs. Hence, algebraic programs
can be analyzed by the well-developed techniques of prototype geometric
.programming. This topic is discussed in Secs. 8 and 9.

2. GEOMETRIC PROGRAMMING FAMILIES

Classical optimization theory and mathematical programming are con-
cerned with the minimization (or maximization) of an arbitrary real-
valued function g over some given subset S of the functions nonempty
domain C. For pedagogical simplicity we shall restrict our attention
to the finite-dimensional case in which C is itself a subset of n-
dimensional Euclidean space Ej.

In (generalized) geometric programming the subset S is required to
be the intersect of C with an arbitrary vector subspace X C E,. How-
ever, for both practical and theoretical reasons, this problem of mini-
mizing g over X N C is not studied in isolation. It is first embedded
in the family Aj of closely related minimization problems Aj1(u) that
are generated by simply translating (the domain C of) g through all
possible displacements — u € Ey, while keeping X fixed. (For gaining
insight we recommend making a sketch of a typical case in which n is 2
and the dimension of X is 1.) The problem of minimizing g over X N C
appears in the family A as problem A1(0) and is studied in relation to
all other problems Aj(u), with special attention given to those problems
A1(u) that are close to A1(0) in the sense that (the norm of) u is smaill.

Each problem Aj(u) is said to be a geometric programming problem, and
the family A; of all such problems (for fixed g:C and X) is termed a
geometric programming familv. For purposes of easy reference and mathe-
matical precision, problem Aj(u) is now given the following formal def-
inition in terms of classical terminology and notation.
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Problem Aj(u). Using the "feasible solution" set

S(u) AXn(C-w,

calculate both the "problem infimum"

$1(u) & inf g(x + u)
X€ S(u)

and the "optimal solution'" set

S*(u) A {x€ S(u) [g(x + u) = $1(u)}.

For a given u, problem Aj(u) is either "consistent' or "inconsistent,"
depending on whether the feasible solution set S(u) is nonempty or empty.
It is, of course, obvious that the family Aj contains infinitely many
consistent problems Aj(u). The domain of the infimum function ¢; is
taken to be the corresponding nonempty set U of all-those vectors u for
which AI(U) is consistent. Thus, the range of ¢1 may contain the point
—o; but if ¢1(u) = —»_ then the optimal solution set S*(u) is clearly
empty.

Each optimization problem can generally be put into the form of the
geometric programming problem Aj(0) in more than one way by suitably
choosing the function g and the vector subspace X. For example, we can
always let g be the '"objective function'" for the given optimization
problem simply by choosing X to be E,; but we shall soon see that such
a choice is generally not the best possible choice for most problems in
technological design,because they involve a certain amount of linear
analysis (due to the presence of matrices, linear equations, etc.) which
can be conveniently handled through the introduction of an appropriate
nontrivial vector space X. The presence of this vector space X is the
distinguishing feature of the geometric programming point of view.

Due to the pre-eminence of preblem Aj(0), we shall find it useful to
interpret problem Aj(u) as a perturbed version of Aj(0), so we term the
sSet

Ua{ue En|S(u) is not empty}

the feasible perturbation set for problem Aj(0) relative to the family
Ay. We shall soon see that the functions #; and S* usually show the

dependence of an optimal design on actual external influences such as

design requirements, materiel costs, and so forth.

Example 1. Perhaps the most striking example of the utility of the
geometric programming point of view comes from using it to study the
minimization of "generalized polynomials." This was first done by Zener
(1961, 1962) and Duffin (1962a,b), and served as the initial development
(as well as the main stimulus for subsequent developments) of geometric
programming.

A generalized polynomial is any function with the form

n a a a
P(t) = ) cgt; 1l e, 12 [ ¢ tim,
i=1

where the coefficients ciy and the exponents ajj are arbitrary real con-
stants, but the independent variables t4 arc restricted to be positive.

The presence of the "exponent matrix' (ajj) is the key to applying
geometric programming tc generalized polynomial optimization. To ef-
fectively place the problem of minimizing P(t) in the format of problem
A1(0), simply make the change of variables



m
Xy = zaij In ti, 1i=1, 2, ... ny
j=1
and then use the laws of exponents to infer that minimizing P(t) is
equivalent to solving problem Al(O) when

n
g(x) A ) cqe
i=1

St

and X

He

column space of (aij)-

The advantages of studying this problem Aj(0) rather than its poly-
nomial predecessor come mainly from the fact that, unlike the function
P, the function g is ''separable" in that it is the sum of terms, each
of which depends on only a single independent variable xj. Notice also
that u; is a logarithmic perturbation of the coefficient cj, a very
useful type of perturbation to consider because the coefficients cq are
typically costs per unit quantity of materiel and hence tend to vary
somewhat. The exponents ajj are usually geometrical constants or are
fixed by the laws of nature and/or economics; so they do not tend to
vary and hence there is little lost in not studying their perturba-
tions. We shall discuss other aspects of polynomial optimization in
later sections.

Example 2. Our second example comes from the minimization of quad-
ratic functions

Q(z) = X<z ,Mz> + <h,z>,

where M is an arbitrary constant matrix and h is an arbitrary constant
vector. Using linear algebra, we can compute matrices Hj; and Hp such
that

- u,t t
M = H," H) - Hb Hy,
t

where indicates the transpose operation. In terms of Hy and H, the
quadratic function is
Q(2) = %(<H12,le> - <H22,sz>) + <h,z>.

Of course, the expression <Hjz,Hjz> 1s not present when Q(z) 1s ''nega-
tive semi-definite'; and the expression -<Hoz,H72z> is not present when
Q(z) 1is "positive semi-definite" (i.e., a convex function).

From elementary linear algebra we now infer that minimizing Q(z) is
equivalent to solving problem A;(0) when

m 9 2m 5
g(x) 85 ] xi7 - ] xq7) + xomel
i=1 1=m+1
H
and XA column space of Hz .

Lh
Notice that, unlike the quadratic function Q, the quadratic function g
1s separable, a fact that can be exploited both theoretically and com-
putationally.
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It is useful to introduce some additional parameters into the pre-
ceding function g so that a much broader class of optimization problems
can be studied. In particular, we redefine g so that

T -1 Py o Pi
g(x) & ] pilxg = byl T -} piTlxg = byl T+ xomy1 - bomel
i=1 i=m+l
where each bj is an arbitrary constant and each constant pj > 1. Notice
that the function g is still separable and can be specialized to the
quadratic case by choosing b; = 0 and p;j = 2 for each i. Another in-
teresting specialization is obtained by choosing p;y = p for each i,
while choosing Hy to be the zero matrix and h the zero vector. The re-
sulting problem consists essentially of finding the ''best 2, ,-norm ap-

proximation" to the fixed vector (by, ..., b,) by vectors in the column
space of the matrix Hj, a fundamental problem in "regression analysis."
It is worth noting that u is a perturbation of the vector (bj, ..., by)

being approximated, a rather useful type of perturbation to consider.
We shall discuss other aspects of "Ep programming' in later sections.

Example 3. Our third example comes from the problem of optimally
locating a new facility relative to existing facilities. We suppose
that there are p existing facilities with fixed locations bl, b2, N
bP, and we assume that for each k = 1, 2, ..., p there is a cost dy{(z,b™)
of choosing the new facility location z relative to bK. In many in-
stances the functions dy are just "metrics" (i.e., generalized distance
functions) that reflect the cost of shipping materiel between the two
locations. Such metric functions are usually determined by the avail-
able transportation systems. The problem then is to choose the new
location z so that the total cost

d(z) = E dy (z,bK)
k=1

is minimized. However, minimizing d(z) is clearly equivalent to solving
problem Aj(0) when

g(x) A E d (xX,b%)
k=1

I
1

and X A column space of ol
1

where x = (xl, xz, ..., xP) and there are a total of p identity ma-

trices I. .

Notice that, unlike the function d, the function g is at least par-
tially separable in that it is a sum of terms, each of which depends on
only a single independent vector variable XX, Furthermore, it is clear
that each component of u perturbs a corresponding component of one of
the fixed locations bX when each metric di is generated by a "norm"
| |k; that is, dk(xk,bk) A ‘[xk-bk||k. The effect of such pertur-
bations is clearly of interest in studying the potential pay-off from
relocating the existing facilities.

Examples 4 and 5. There are two other special examples that should
be mentioned: 'dynamic programming' with linear "transition functions,"
and (nonlinear) "multicommodity network flow' problems. In the dynamic




-6

programming example the linear transition functions are used to define
the vector space X. In the network flow example the (linear) ''conser-
vation laws' are used to define X. The details for these two examples
are left to the imagination of the interested reader.

It will prove helpful to establish some elementary properties of the
family A] prior to giving an additional important example of great gen-
erality. We begin by giving a more precise description of Aj.

Theorem 2A. The feasible perturbation set U is the nonempty 'cylin-

"

der

U=0C-X.

Moreover, if C is a convex set, then so is U, and the point~to-set map-
ping u > S(u) is "concave' in that

§15(ul) + 8,8(u?) € s(8qul + 6,u%)

for each '"convex combination" Glul + 62u2 of arbitrary points ul,u? e v.
Furthermore, if g is a convex function on C, then either the infimum
function ¢; is finite and convex on U or ¢1(u) Z= ~» for each u € (int
U) (the "interior" of U).

The proof of this theorem is omitted (Peterson, 1970b).

It should be mentioned that there are convex families Aj such that
$1(u) is finite for at least one u € (bd U) (the "boundary' of U) even
though ¢1(u) = -» for each u€ (int U). An example can be found in
Appendix C of Peterson (1970b).

The following theorem reduces the study of the family A; to a study of
only those problems Aj(u) for which u &€ Y, where Y 4 ¥t. 1In this con-
text, it will be convenient to adopt the notation uy and uy for the or-
thogonal projection of an arbitrary vector u onto the orthogonal com-
plementary subspaces X and Y.

Theorem 2B. For each vector u € E,, either the feasible solution
sets S(u) and S(uy) are both empty, or both are nonempty, with the lat-
ter being the case if, and only if, u € U, in which case

S(U) = S(UY) - UX
and $1(w) = ¢y (uy).
Furthermore, if u € U, then either the optimal solution sets S*(u) and
$*(uy) are both empty, or both are nonempty and

$*(u) = $*(uy) - uyg.

The proof of this theorem can be found in Peterson (1970b).

Example 6. The preceding reduction theorem provides the prerequi-
sites for introducing our sixth example, the recently developed Rocka-
fellar formulation (1968) of optimization theory.

To obtain the Rockafellar formulation, let

%

where Ip is the p x p identity matrix, Oy is the q X p zero matrix, and
P+ q = n. Then the orthogonal complement Y of X 1s, of course, given
by the equation

X A column space of [ Ip },

I

Y = column space of ( %p },
L q
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where I, 1s the q x q identity matrix, and Op is the p x q zero matrix.
Taking account of Theorem 2B, we see that the resulting specialized
family A; is equivalent to the following family A;' of mathematical
programming problems A;'(u').

Problem Al'(u'). Using the feasible solution set

S'(u') 4 {x'€ Epl(x',u’) €C'},

calculate both the problem infimum

$1'(u') A inf g'(x",u")

»'€S'(u")
and the optimal solution set

S'*(u') & {x" € 8" (u") [g" (x",u") = #"(uN}.

It is to be understood that u' is a vector parameter in Eq so that the
Cartesian product (x',u') is in E,; and the function g':C' is, of course,
identical to the function g:C.

Each optimization problem can be put into the form of problem Ap'(0),
and a given A]'(0) can be embedded in a very large class of permissible
families A]', with the particular choice of an A]' to be determined by
the particular "perturbations'" being studied. With this in mind, Rocka-
fellar (1968) has termed each such mapping u' — [s"(u"),g"(+,u")] a "bi-
function," and the corresponding problem A;'(0) together with a local
analysis of the infimum function ;' at u' = 0, a "generalized program!
Note that this Rockafellar formulation Al' shows that the class of per-
turbations permitted in the geometric programming formulation A; of a
given optimization problem A;(0) is not nearly as small as we might
suspect from a superficial examination of problem Aj(u).

Note also that Appendix A of Peterson (1970b) shows that the present
geometric programming formulation of optimization theory can also be
viewed as an example of the Rockafellar formulation, so the two formu-
lations are actually equivalent. The geometric programming point of
view tends to be the most useful when we are trying to simplify the
statement of an optimization problem (e.g., write it in separable form).
The Rockafellar point of view tends to be the most useful when we are
more concerned with the perturbations to be studied.

Both the geometric programming and Rockafellar formulations were
preceded by another formulation of optimization theory, the original
Fenchel formulation (1951). Although the Fenchel formulation is equiv-
alent to both the geometric programming and Rockafellar formulations,
it does not seem to have any particular virtue for studying problems
in technological design.

3. GEOMETRIC PROGRAMMING DUAL FAMILIES -

To introduce the extremely important concept of a dual family and
its associated dual problem, we need the '"conjugate transformation."
The conjugate transformation maps functions into functions in such a
way that the 'conjugate transform" w of an arbitrary function w has
functional values

w(z) A sup {<z,z> - w(z2)},
T z€EW

where W is the domain of w. Of course, the domain Q of w is defined
to be the set of all those vectors [ for which thils supremum 1is finite,
and the conjugate transform w exists only when Q is not empty.



Slope ¢ € dw(z)

Geometrical insight into the conjugate transformation can be obtained
by considering the "subgradient" set

NpFe——

dw(z) A {clw(z) + <z,z' ~ 2> < w(z') for each z' € W}

for w at z. The subgradient concept is related to, but considerably
different from, the more familiar "gradient" concept. The gradient pro-
vides a "tangent hyperplane" for the function's graph; while the subgra-
dient provides a "supporting hyperplane' for the function's graph, in
that the defining inequality simply states that the hyperplane with
equation w' = w(z) + <z,2' - z> intersects the graph of w at the point
[z,w(z)] and lies entirely on or below it.

It is clear from the displayed example that a subgradient may exist and
not be unique even when the gradient does not exist. On the other hand,
it is also clear that a subgradient may not exist even when the gradient
exists. There is, however, an important class of functions whose gra-
dients are also subgradients — the class of convex functions. In fact,
the notions of gradient and subgradient are identical for the class of
differentiable convex functions defined on open sets, a class that we
shall be working with in many of our examples.

To relate the conjugate transform to subgradients, observe that if
z € 3w(z), then

<g,z'> - w(z') < <g,z> - w(z) for each z' € W,
which implies that ¢ € Q and that
w(g) = —{w(z) + <g,-z>}.

Hence, w(Z) is simply the negative of the intercept of the supporting
hyperplane with the w'-exis. Actually, the conjugate transform w re-
stricted (in the set-theoretic sense) to the domain U 3w(z) is termed
zEW
the "Legendre transform" of w and has been a major tool in the study of
classical mechanics, thermodynamics, and differential equations. The
domain @ of the conjugate transform w generally consists of both
U 9w(z) and some of its limit points.

zEW

When it exists, the conjugate transform is known to be both ''closed"
(i.e., "lower semicontinuous') and convex. In fact, Fenchel (1949, 1951)
has shown that the conjugate transformation provides a one-to-one map-
ping of the family of all closed convex functions onto itself in symmet-
ric fashion (i.e., the mapping is its own inverse). Two such functions
are said to be "conjugate functions" when they are the conjugate trans-
form of one another.

Each function w and its conjugate transform w give rise to an impor-
tant inequality

<z,t> g w(z) + w(g)
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that is clearly valid for every point z € W and every point ¢ € Q [as
can be seen from the defining equation for w(z)]. Moreover, elementary
computations show that this '"conjugate inequality" is actually an equal-
ity if, and only if, z € 3w(z). Of course, the condition r € 3w(z) is
equivalent to the condition z € 3w(f) when w 1s closed and convex (by
virtue of the symmetry of the conjugate transformation when operating

on such functions).

This completes the prerequisites for introducing the concept of
duality into geometric programming.

The ''geometric dual' Bj of the family A] exists only when the conju-
gate transform h of the function g exists; that is, when the domain D
of h i1s nonempty. The family B; is then defined in terms of h and the
orthogonal complement Y of X. In particular, the family Bj consists of
the following geometric programming problems Bl(v).

Problem Bl(v). Using the feasible solution set

T(V) éYn(D—V),

calculate both the problem infimum

p1(v) &4  inf h(y + v)
yE T(v)

and the optimal solution set
T*(v) A {ye T(v)lh(y + v) = wl(v)}.

Families A; and B; are clearly of the same type, except that B; con-
tains only convex programming problems because of the nature of the con-
jugate transformation. Notice how By is obtained from A;; the function
g is replaced by its conjugate transform h, and the vector subspace X
is replaced by its orthogonal complement Y. Hence, when g is closed and
convex, the symmetry of the conjugate transformation and the symmetry of
the orthogonal complement relation imply that the family obtained by ap-
plying the same transformation to B] is again Aj. Because of this sym-
metry (in the closed convex case), A; and B; are termed dual families
of geometric programming problems.

Each of the dual families Aj and Bj contains a problem of special
interest, namely, problems A;(0) and By(0). Due to the apparent symme-
try between them (in the closed convex case), A;(0) and BI(O) are termed
dual problems. To avoid confusion, it is important to bear in mind that
problems Al(u) and Bl(v) are termed dual problems only when u and v are
zZero.

However, problem Aj(u) does have a dual problem, and it can be ob-
tained by observing that Aj(u) is essentially problem A;(0) with the
function g:C replaced by the function g(+ + u):C - u, Thus the dual of
problem Ay(u) is problem By(0) with h:D replaced by the conjugate trans-
form hu:Du of g(» + u):C ~ u. To compute h,:D,, notice that

h,(8) = sup {<g,2z> - g(z + u)}
z€C~-u

= sup {<g,c> - g(c)} - <u,z>,
ceC

which shows that D, = D and that hy(+) = h(+) - <u,->., It follows that
the dual of problem Aj(u) has the same feasihble solution set T(0) as
the dual problem Bj(0); only the objective function h(-):D for B,(0) 1is
altered to give the objective function h(+*) - <u,*>:D for the dual of
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Aj(u). Hence, we might expect the feasible solution set T(0) for the
dual problem B{(0) to play an important role in a study of the family
A}. This expectation 1is confirmed by the results to be given here.

Because of the symmetry between the families A} and By, it 1s clear
that problem By(v) also has a dual, namely problem A;(0) with g(+):C
replaced by g(+) - <v,:>:C. The analogs of the remarks made about
problem Aj(u) and its dual are left to the reader.

Unlike the usual min-max formulations of duality in mathematical
programming, both problem A;(0) and its dual problem By(0) are minimi-
zation problems. The relative simplicity of this min-min formulation
will soon become clear, but the reader who is accustomed to the usual
min-max formulation must bear in mind that a given duality theorem will
generally have slightly different statements, depending on the formula-
tion in use. In particular, a theorem that asserts the equality of the
min and max in the usual formulation will assert that the sum of the
mins is zero [i.e., ¢;(0) + ¥;(0) = 0] in the present formulation.

The symmetry between families Ay and B; induces a symmetry on the
theory that relates A; and By (in the closed convex case). Thus each
mathematical statement about A} and By automatically produces an equally
valid "dual statement' about By and Aj. To be concise, our attention
will be focused on the family Aj, and each dual statement will be left
to the reader's imagination,

It is now instructive to compute the geometric dual B; of the family
A, for each of the examples given in Sec. 2. To do so, we need only
compute the corresponding conjugate transforms h:D and the correspond-
ing orthogonal complements Y. The former computations are possible (in
fact, easy) because all example functions g:C are separable. O0f course,
the latter computations are always easy because they involve only ele-
mentary linear algebra. Hence, we shall now take advantage of one of
the main features of the geometric programming point of view — the re-
sulting separability of the functions g:C.

Example 1. To obtain the geometric dual B} of the family A; corre-
sponding to generalized polynomial optimization, we compute the conju-

n
X
gate transform h:D of E cie 1. This conjugate transform h:D exists
i=1

only if each coefficient ¢{ > 0, in which case we are dealing only with
convex functions and "posynomial” minimization. However, we are able
to remove this restriction by employing additional devices as in Sec. 4.
To compute h:D, observe that

n X
h(y) = sup <y, x> - Z cje T
XEE, i=1
n Xy :
= Z sup {yyx{ -~ cqe "}
i=1 xiE El
n n
yi
= ] yilog (-c—i-] - 1oy
i=1 i=]
for y€D = {y€ En!y- 20 fori=1, 2, ..., n}, with the understand-

[t}

i
ing that y; log yi 0 when y; 0. The orthogonal complement Y of the
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column space X of the exponent matrix (aj4) 1s simply the set of all
those vectors y € E; that satisfy the "orthogonality conditions"
n

Zl agyyy =0 for 3 =1, 2, ..., m.

Hence, the resulting specialized family B; is obtained by letting

h(y) = ) yjlog {z;) - 1 Yi»
i=1 i=1
D={ye Enlyi 20 fori=1, 2, ..., n},
n
and Y={y €Ey[ [ ajjy; =0 for j =1, 2, ..., m},
i=1

The resulting dual problem B](0) was first obtained by Duffin (1962a),
but it is not the same dual problem that was eventually incorporated
into the "prototype formulation" (Duffin, 1966; Duffin, Peterson, and
Zener, 1967) of geometric programming. To obtain the prototype dual
problem, we must perform a ''suboptimization” (Duffin, 1962a) whose de-~
tails can also be found on page 500 of Peterson (1970b).

Example 2. To obtain the geometric dual B; of the family Aj corre-
sponding to Ep programming, we compute the conjugate transform h:D of

+ X, — bp. In essence we are assuming that Hp is
i=1 Ps

the zero matrix so that the negative terms —pi—llxi - bi! 1 need not
appear in the original definition of g:C. Of course, this restricts
our attention to only convex ip programming, but this is the only case
in which the conjugate transform h:D exists. However, this restriction
can probably be eliminated with further research. To compute h:D, ob-
serve that

n-1
h(y) = sup <y, X> - Z pzllxi - bilpi - x, + b
X€E, i=1
n-1 ps
= 7 sup {yjxq- pillxi-bil 1} + sup {(yn- Dxp} + by
i=1 Xy € Ey xXa€ Eq
ncl 1, 191
= 1 @3 lygl "+ byy) + by
i=1

for ye D= {y € Enlyn = 1}, where qi is determined from py by the re-
lation pi’l + qi‘l =1 fori=1, 2, ..., n-1. The orthogonal comple-

E is simply
the set of all those vectors y € E, that satisfy the conditions
n-1
I Hygyy +hyyy =0 for =1, 2, ..., m
1

ment Y of the column space X of the partitioned matrix
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Hence, the resulting specialized family B; is obtained by letting

n-1

-1
h(y) = J (ag ly1]% + biys) + by,
i=1
D={ye€€tly, =1},
n-1
and Y =

{y € Enl ] Hijyy + hyyp =0 for j = 1, 2, ..., m}.
i=1

The resulting dual problem Bj(0) was first obtained by Peterson and
Ecker (1968), but another geometric dual problem corresponding to a
slightly different formulation of the special Lp-regression problem had
previously been introduced and studied in Chapter VII of Duffin, Peter-
son, and Zener (1967). The latter dual problem can be obtained from
the former by a suboptimization similar to the one described on page
500 of Peterson (197Qb) for posynomial problems.

Example 3. To obtain the geometric dual B; of the family Aj corre-
sponding to the problem of optimally locating a new facility, we com-

pute the conjugate transform h:D of § dk(x bk) This conjugate

k=1
transform h:D exists only when the conjugate transform hy:Dy exists for
each function dy (- ,bK), a condition that is always satisfied when each
function dy(+,x) is a metric. To compute h:D in such a case, observe
that

sup | E <y, xk> - Z dy (x¥,bK) )

h(y) =
x€E, k=1 k=1
= g sup {<yk xK> - d (xk,bk)}
k=1 xKeE, .
= E hy (¥%,b%)
k=1
b K 1k K _ Kk
for ye D= X Dg. If, in particular, dp(x<,b%) = |[x - bK|| where
k=1
I 'llk is a norm, then
hk(yk,bk) = sup {<yk,xk> - [lxk - bkifk}
X+ € Enk
= sup {<y®,wF + b5 - | |WK| |0
wkEEnk
= sup  {<yR,wls - [JWR )+ <dk,yis
w e En

= <bk,yk>
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for yk €Dy = 3||0|lk- Now, the orthogonal complement Y of the column

space X of the partitioned matrix is simply the set of all those

g v aa

vectors y € E, that satisfy the condition E yk = 0.
k=1

Hence, the resulting specialized family By is obtained by letting

b = b,
k=1
p
D= X D,
k=1
: k
and Y={ye€kE] ) y*=o0}.
k=1
In particular, hk(yk,bk) = <bk,yk>
and D, = 3]]0]]
when dk(xk,bk) = {ka - bk{fk. These problems have recently been in-

vestigated by Wendell and Peterson (1971).

Examples 4 and 5. A computation of the geometric dual By of the
family A] arising in dynamic programming is, of course, left to the
imagination of the interested reader, as is the corresponding compu-
tation for multicommodity network flow problems.

Example 6. To obtain the geometric dual Bj of the family A] corre-
sponding to the Rockafellar formulation of optimization theory, we use

. I
the assumption that X is the column space of the special matrix OPW’
q4
and the resulting fact that Y is the column space of the special matrix

[?p]' Then, taking account of the (unstated) dual of the reduction
q

theorem, Theorem 2B, we see that the resulting specialized family Bj is
equivalent to the following family B;' of programming problems By'(v').

Problem Bi'(v'). Using the feasible solution set

T'(v') b {y' € Eg[(v',y") € D'},

calculate both the problem infimum
Y1’ (v") A inf h'(v',y")
yVETl(vl)
and the optimal solution set
T 8 y'e T TGy = e vl
It is to be understood that v' is a vector parameter in Ep, so that the

Cartesian product (v',y') is in Epn; and the function h':D' 1is, of course,
identical to the closed convex function h:D.
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Families Aj' and B)' are clearly of the same type, except that Bj'
contains only convex programming problems because of the nature of the
conjugate transformation. Notice how B]' can be obtained directly from
A1'; simply replace the function g':C' by its conjugate transform h':D',
replace the variable vector x'€ Ep by the perturbation vector v' € Eps
and replace the perturbation vector u'€ Eq by the variable vector
y'€e Eq. Hence, when g:C is closed and convex, the symmetry of the
conjugate relation and the symmetry involved in permuting Cartesian
products imply that the family obtained by applying the same transfor-
mation to B}' is again Aj'. Because of this symmetry and the resulting
symmetry between problems A}'(0) and Bj'(0), Rockafellar (1968) has
termed them ''dual generalized programs.' Actually, Rockafellar formu~
lates B]' as a family of 'concave programs" by placing minus signs at
crucial (and difficult to remember) places, but that version requires a
parallel discussion of the maximization of concave functions and hence
is not as simple as the present version.

Appendix A of Peterson (1970b) shows that the present geometric pro-
gramming formulation of duality can also be viewed as a special case of
the preceding Rockafellar formulation, so the two formulations are ac-
tually equivalent. However, an examination of Appendix A should con-
vince the reader that Rockafellar's formulation is more easily obtained
from the geometric programming formulation than vice versa. Moreover,
the presence of explicit constraints ruins the symmetry of Rockafellar's
formulation, and it is not presently known how to overcome that diffi-
culty. In contrast, we shall soon see that the present geometric pro-
gramming formulation can be modified without any loss of symmetry to in-
clude arbitrary (convex) programming problems with explicit constraints.

Both the geometric programming and Rockafellar formulations were
preceded by another formulation of duality, the original Fenchel formu-
lation (1951). Although the Fenchel formulation is equivalent to both
the geometric programming and Rockafellar formulations, it does not
seem to have any particular virtue for studying problems in technologi-
cal design.

4. DUALITY GAPS AND THE EXTREMALITY CONDITIONS

We begin with the most basic and easily proved duality theorem, which
leads directly to both the duality gap concept and the extremality con-
ditions. Unless otherwise stated, we assume that the function g:C is
both closed and convex throughout the rest of this paper. This guaran-
tees the existence of the conjugate transform h:D and leads to much
stronger and more useful conclusions in our theorems.

Theorem 4A. If x and y are feasible solutions to the dual problems
A1(0) and By(0) respectively, then

0 < g(x) + h(y), -

with equality holding if, and only if, x € 3h(y) or, equivalently,
y € 3g(x), in which case x and y are optimal solutions to Aj(0) and
B;(0) respectively.

Proof. Because X and y are in the orthogonal complementary sub-
spaces X and Y, we see from the conjugate inequality that 0 = <x,y>
£ g(x) + h(y). with equality holding if, and only if, x € dh(y),or
y € 3g(x). Moreover, it is a direct consequence of this inequality
that x and y are optimal solutions to problems A1(0) and B;(0) when
0 = g(x) + h(y). This ccmpletes the proof of Theorem 4A.
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The basic inequality provided by Theorem 4A implies important prop-
erties of the dual infima ¢1(0) and y;(0).

Corollary 4Al. 1If the geometric dual problems A;(0) and Bj(0) are
both consistent, then

(1) the infimum ¢1(O) for problem AI(O) is finite, and

for each feasible solution y to problem BI(O);

(1i) the infimum ¥1(0) for problem B;(0) is finite, and

0 2 ¢1(0) +yy(0).

The proof of this corollary is, of course, a trivial application of
Theorem 4A.

Consistent dual problems A{(0) and Bj(0) for which 0 < ¢7(0) + y;(0)
are said to have a duality gap of ¢1(0) + y1(0). It is well known that
duality gaps do not occur in finite linear programming, but they do oc-
cur in infinite linear programming where this phenomenon was first en-
countered by Duffin (1956). They also occur in the present formulation
of geometric programming, and examples due originally to J.J. Stoer are
given in Appendix C of Peterson (1970b). However, we shall see that
duality gaps in the present formulation are extremely rare (when g:C is
assumed to be closed and convex) in that they are excluded by very weak
conditions on the dual problems A{(0) and By(0). This extreme scarcity
of duality gaps is very fortunate because of their highly undesirable
properties.

Duality gaps are undesirable from a theoretical point of view because
we shall see that relatively little can be said about the corresponding
dual problems. They are also undesirable from a computational point of
view because they usually destroy the possibility of using the inequality
0 £ g(x) + h(y) to provide an algorithm stopping criterion.

Such a criterion results from specifying a positive tolerance € so
that the numerical algorithms being used to minimize both g(x) and h(y)
are terminated when they produce a pair of feasible solutions x° and y°
for which

g(x™) + h(y") s 2¢.

Because conclusion (i) to Corollary 4Al and the defining property for
$1(0) show that

~h(y") 5 4,00) 5 g(xN),
we conclude from the preceding tolerance inequality that

1y = hyt
l¢1(0) - 8D 5 h(y )l < €.

Hence, ¢71(0) can be approximated by Cg(x™ - n(y")]/2 with an error
no greater than *e; and, dually, ¥;(0) can be approximated by
[h(y*) ~ g(x*)]/Z, also with an error no greater than e.

Note, however, that the defining properties for ¢,(0) and ¥;(0)
imply that

$1(0) + ¥1(0) £ g(x) + h(y)
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for each pair of feasible solutions x and y. Now, suppose that the
dual problems Aj(0) and B;(0) have a duality gap, and let the positive
tolerance e be chosen so small that

2e < $1(0) + v;(0).

[0f course, such a choice for € is possible if, and only if, the dual
problems A1(0) and By(0) actually have a duality gap.] From the pre-
ceding two inequalities we easily infer that there are no feasible so-
lutions x¥ and y¥ for which

g(x™) + h(y") g 2¢;

so the numerical algorithms being used to minimize both g(x) and h(y)
will never be terminated. Consequently, this algorithm stopping cri-
terion may not be very useful for solving dual problems Aj(0) and By(0)
that have a duality gap, especially if the gap is rather large.

For those dual problems Aj(0) and B{(0) that do not have a duality
gap, Theorem 4A provides a useful characterization of dual optimal so-
lutions x* and v* in terms of the following extremality conditions:

(1) ' x € X and y €Y,
(11) either x € 3h(y) or y € 3g(x).
We formalize this characterization as the following corollary.

Corollary 4A2. Suppose that the geometric dual problems A;(0) and
B1(0) are both consistent and 0 = ¢1(0) + y1(0). Then arbitrary vec-
tors x and y are optimal solutions to problems Al(O) and Bl(O), respec-
tively, if, and only if, x and y satisfy the extremality conditions
(1) and (ID).

The proof of this corollary is an immediate consequence of Theorem
4A and the conjugate transform relations 3g(x) € D and 3h(y) C C that
were described in Sec. 3.

Note that the preceding characterization is especially useful when
both A)(0) and By(0) are known to have nonempty optimal solution sets
S*(0) and T*(0). 1In that case, Corollary 4A2 provides a direct method
for calculating all optimal solutions from the knowledge of only a
single optimal solution. For example, if x* is a known optimal solu-
tion to A1(0), then T*(0) = Y n 3g(x*), and S*(0) = X N 3h(y*) for each
y* € T*(0).

The extremality conditions (I) and (II) constitute the analog of the
"complementary slackness conditions'" in linear programming, and they
can be specialized to give the "extremality conditions" stated in Rocka-
fellar (1967a) for the Fenchel-Rockafellar formulation of duality.

The following theorem, which was first established by Duffin (1962a),
has much stronger hypotheses than those required to exclude duality
gaps, but its proof is relatively simple and very informative.

Theorem 4B. If problem By(0) has an optimal solution y* at which
h:D is differentiable, then the dual problem A;(0) has a unique optimal
solution x™ A Vh(y*), and 0 = ¢1(0) + ¥;(0).

Proof. First, observe that x* € X; otherwise, there would exist a
direction vector d € Y such that <Vh(y*),d> < 0, which would imply (by
virtue of the differential calculus) the existence of a sufficiently
small € > 0 such that h{(y* + ed) < h(y*), a contradiction of the assumed
optimality of y*. YNext, observe that x* € C because Vh(y*) € sh(y¥) c C.
Hence, x* and y* are feasible solutions to A)(0) and B;(0), respec-
tively, so Theorem 4A and the assumption that x* = Vh(y*) imply that
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0 = g(x*) + h(y*) and rherefore that 0 = $7(0) + ¢;(0). The uniqueness
of x* follows from Corc lesv 4A2 and the fact that dh(y*) = {Vh(y¥)} by

virtue of the properties ¢l subgradients and gradients for convex func-
tions (as described in Sec. 3).

Deeper duality theorems are established in Sec. 9 c¢f Peterson (1970b)
with the help of the mathematical machinery described in the next sec-
tion. That machinery is also of intrinsic interest because it provides
both an economic interpretation of duality and a method for construct-
ing the infimum function ¢y:U without employing numerical optimization
techniques.

5. THREE ECONOMICS PROBLEMS IN MANAGEMENT SCIENCE

To motivate the additional programming problems to be introduced in
this section, let us review the problem of Zener Corporation. (Editor's
note: See Sec. 2 of "An Introduction to Mathematical Programming' by
Peterson.) Thus, suppose that Zener Corporation manufactures m differ-
ent raw materials, and assume that Zener Corporation's technology limits
its feasible "product mixes'" to vectors z € Ej for which Mz € C - u,
where M is essentially an appropriate (n x m) "technology matrix," and
where u € E, is an arbitrary perturbation of Zener Corporation's ware-
house store of raw materials. In particular, a positive value for uj
is to indicate the external disposal of uj units of raw material i, and
a negative value for uj is to indicate the acquisition of -uj additional
units of raw material i. Also, suppose that g(Mz + u) is the difference
between Zener Corporation’'s marketing cost and the price it receives for
the feasible product mix z, and let X be the column space of M. Then,
given that Zener Corporation carries out a feasible raw material per-
turbation u € U, its set of feasible transformed product mixes x = Mz
is just the nonempty feasible solution set S(u); its minimum possible
cost is the problem infimum ¢y (u); and its set of optimal transformed
product mixes x* is the ontimal solution set S*(u). Of course, a nega-
tive cost infimum #;(u) is to be interpreted as a positive profit su-
premum —¢; (u).

Presumably, Zener Corporation can externally dispose of some of its
raw material by selling it, and can acquire additional raw material by
buying it. We shall assume in this paper that Zener Corporation can
either buy or sell each raw material i for y; dollars per unit quantity
on the '"raw material market,'" where the raw material price vector y is
an arbitrary, but fixed, vector in E, that cannot be influenced by Zener
Corporation's actions.

Thus, Zener Corporation's total maximum profit is <y,u> - ¢1(u) for
a feasible perturbation u € U, and it is reasonable that Zener Corpora-
tion should want to adjust u to maximize its total meximum profit. For
purposes of easy reference and mathematical precision, this economics
problem from management science can now be formally stated.

Problem Ao(y). Using the feasible perturbat’on set

U4 {ue EHIS(U) is not empty},

calculate both the problem supremum

$2(y) &4 sup {<y,u> - ¢1(u)}
ue U

and the "optimal perturbation’ set

U*(y) & {u € uley,u> = ¢9(0) = ¢5(»}.
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In addition, given u* € U*(y), calculate the optimal solution set
S*(u*) & {x € s(u*) |glx + u*) = ¢;(u¥)}.

According to Theorem Z2A, the feasible perturbation set U is the non-
empty cylinder C - X, so problem Aj(v) is consistent for each y in Ep.
Thus, the domain of the supremum function ¢ is all of E;. Note, how-
ever, that the range of ¢, may contain the point +~. But in contrast
to problem Al(u), observe that the optimal perturbation set U*(y) for
A7(y) need not be empty even though ¢9(y) = +=. Nevertheless, it is clear
that each optimal solution set S*(u*) must be empty when ¢7(y) = +=.

It is possible to give a complete solution of problem A>(y) in terms
of the feasible solution set T(0) and the objective function h:T(0) for
the dual problem B1(0). This close relationship between the problem
family A7 and problem Bj(0) is not very surprising when we observe that
the supremum function ¢ is just the conjugate transform of the infimum
function ¢; which, in turn, is a constrained infimum of the function g
whose conjugate transform is h; but the actual derivation is not
straightforward, and it helps to first solve another closely related
economics problem A(y).

To motivate problem A(y), observe that Ap(y) is the second stage of
a two-stage sequential optimization problem: first, minimize Zener
Corporation's "production' cost g(x + u) by adjusting its transformed
product mix x subject to the feasibility constraint x € S(u) to obtain
its minimum production cost ¢1(u) for each u € U, and then maximize its
total maximum profit <y,u> - ¢1(u) by adjusting its raw material per-
turbation u subject to the feasibility constraint u € U to obtain its
maximum total maximum profit ¢,(y). From Zener Corporation's point of
view, this sequential optimization problem clearly seems to have no
more economic relevance than the more easily stated nonsequential op-
timization problem: maximize Zener Corporation's total profit <y,u>
- g(x + u) by simultaneously adjusting its transformed product mix x
and its raw material perturbation u subject to the feasibility con-
straint x € S(u) to obtain its maximum total profit.

For purposes of easy reference and mathematical precision, the pre-
ceding nonsequential optimization problem is now stated formally.

Problem A(y). Using the "feasible strategy' set

WA {(x,u) € By jx € S(u)I,

calculate both the problem supremum

¢(y) 4 sup {<y,u> - g(x + u)}
" (x,u) €W

and the "optimal strategy' set -

W¥(y) A {(x,u) € Wi<y,u> - g(x + v) = $(y)}.

Notice that the feasible strategy set W is not empty by virtue of
Theorem 2A, so problem A(y) is consistent for each y € E . Thus, the
domain of the supremum function ¢ consists of all of E,, and the range
of ¢ may, of course, contain the point +»; but if ¢(y) = 4=, then the
optimal strategy set W*{v) must clearly be empty.

Obviously, problems Ap(y) and A(y) are closely related. In fact,
the following theorem shows that they are equivalent in the sense that
a solution of either one autcmatically provides a solution of the other,
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Theorem 5A. The supremum ¢o(y) for problem Ar(y) and the supremum
¢(y) for problem A(y) are identical for each y € E,. Moreover, if
these suprema are finite for a particular y € E,, then

(1) the optimal perturbation set U*(y) and the optimal strategy set
W*(y) are related by the set containment

U*(y) 2 {u € Enl(x,u) € W*(y) for some x € E_},

with set equality holding if, and only if, the optimal solution set
S*(u*) is nonempty for each u* € U*(y),

~ (ii) for each u* € U*(y) the optimal solution set S*(u*) and the
optimal strategv set W*(y) are related by the set egquation

S*(u*) = {x € E |(x,u*) € W*(y)}.

The proof of this theorem is rather routine and can be found in Sec.
7 of Peterson (1970b).

The nonsequential optimization problem A(y) seems to be easier to
solve than the sequential optimization problem Az(y). Thus, we first
solve A(y) and then use Theorem 5A to translate that solution into a
solution for Ap(y).

The solution for problem A(y) can be conveniently summarized as the
following theorem.

Theorem 5B. The feasible strategv set W is nonempty and hence
problem A(y) is consistent for each y € E,. Moreover, the supremum
¢(y) tor problem A(y) is finite if, and only if, v € T(0) 4 Y N D, in
which case: -

(1) 6(y) = h(v):

(11) the optimal strategy set W*(y) is nonempty if, and only if,
dh(y) is nonempty; in which event

W¥(y) = {(x,y) € Einx € X and u € 3h(y) - x}.

The essential idea in proving this theorem comes from observing that
if y€ Y N D, then

¢(y) = sup {<y,x + v> - g(x + w}
(x,u) €W

because x € X for each (x,u) € W. But

sup {<y,x + v - g(x + W} = sup {<y,c> - g(c)} A h(y)

(x,u) €W c€C
because {x + u € En!(x,u) € W} is clearly identical to C. Hence,
o (y) = h(y)
and w*(y) = {(x,u) € Eznlx € X and x + u € 3h(y)}

by virtue of the conditions that characterize equality for the conju-
gate inequality.

Notice that the solution to problem A(y) is intimately related to
the dual problem B1(0); in particular, Theorem 5B can be summarized by
the following statement. The supremum 6(y) for problem A(y) 1is finite
1f, and only if, the vector y 1s a feasible solution to the dual prob-
lem B7(0); in which case, (i) ¢(y) is identical to the dual objective
function value h(v}, and (ii) a strategy (x,u) € E9, 1is optimal if, and
conly if, 1t satisfie= the extremality conditions x € X and x € 3h(y) - u.
Of course, these extremality conditions are not the same as those
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provided in Sec. 4 for the dual problems A;(0) and B;(0), but are the
extremality conditions that correspond to problem Aj(u) and its dual
problem, namely, problem Bj(0) with h(+):D replaced by h(:) - <u,+>:D.

The solution of problem A)(y) can now be readily obtained by using
Theorem 5A to translate the solution of problem A(y) provided in the
preceding Theorem 5B. The resulting solution of problem As(y) is stated
here as the following theoren.

Theorem 5C. The feasible perturbation set U is nonempty and hence
problem Aj(y) is consistent for each y € E,. Moreover, the supremum
$2(y) for problem A,(y) is finite if, and only if, y € T(0) 4.Y N D, in
which case:

(1) ¢7(y) = h(y);

(1i) either the optimal perturbation set U*(y) and its intersection
with Y are both empty, or both are nomempty; in which event U*(y) is
the cylinder

U*(y) =(U*(y) N Y)- X,
which is bounded from outside by the relation
U*(y) < 3[h:T(0) Uy);

moreover, if 3h(y) is nonempty, then U*(y) is bounded from inside by
the relation '

3h(y) - X ¢ U*(y),

with the corresponding set theoretic difference being empty if, and only
if, the optimal solution set S¥(u*) is nonempty for each u”™ € U*(y);

(iii) if 9h(y) is nonempty, then
S*(u*) = X N [3h(y) - u*]

for each u* € U*(y), with S*(u*) being nonempty for each u* € U*(y)
when y € (int D); but if 3h(y) is empty, then S*¥(u®) is empty for each
u* € U*(y).

As with problem A(y), the preceding solution to problem A,(y) can be
phrased in terms of the dual problem B;(0) and the extremality condi-
tions for problem Aj(u) and its dual problem. However, such a state-
ment of Theorem SC will be left to the interested reader.

Note that Theorems 2A and 5C provide a method for constructing the
infimum function ¢;:U without employing numerical optimization tech-
niques. In particular, if the dual feasible solution set T(0) is empty,
then Theorem 2A asserts that ¢j(u) = —~ for each u € (int U); so there
is virtually nothing left to know about ¢;:U in this case. The only
other (more interesting) possibility is that T(0) is nonempty, in which
case we can cover it with a "mesh" of points -

tyl, ¥y2, ..., ¥y$} € T(0) 4 Y N D.

Then Theorem 5C implies that
41 (u) = <y, uw> - h(yK) for each u € sh(y¥) - X,

for k=1, 2, ..., s. Moreover, it is a consequence of the properties
of the conjugate transformation that the set of all such vectors u can
be made as ''dense' in U as desired, simply by choosing the mesh {yl, y2,
e..s ¥5} to be sufficiently dense in T(0). Of course, this method de-
pends on an ability to construct the dual objective function h:T(0), a
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construction that is rather easy for the important examples given in
Secs. 2 and 3. )

Aside from its preceding significance, Theorem 5C provides the fol-
lowing basis for proving important duality relations between the geo-
metric dual problems A;(0) and B;(0).

Corollary 5Cl. The infimum function ¢;:U for the family A; is finite
on its entire domain U if, and only if, problem Bj(0) is consistent, in
which case the objective function h:T(0) for problem Bj(0) is the conju-
gate transform of the function ¢q:U.

Proof. Theorem 2A asserts that either ¢)(u) = -= on (int U) or ¢1:U
is finite and convex on U; and problem Aj(y) shows that the supremum
function 47 is the conjugate transform of ¢7:U. With these facts in
mind, the proof of this corollary is an immediate consequence of The-
orem 5C.

The preceding corollary was first obtained by Rockafellar within the
Fenchel-Rockafellar formulation of duality. However, he was not aware
of its economic significance and did not explicitly introduce the ana-
logs of problems A(y) and A(y), nor did he even implicitly study them
as thoroughly as we have explicitly done in Theorems 5A, 5B and 5C.
Rockafellar was interested primarily in applications to his dual prob-
lems. Analogous applications to the geometric dual problems A(0) and
B1(0) are given in Sec. 9 of Peterson (1970b). We reproduce only one
of them here in the form of the following corollary.

Corollary 5C2. If the dual problems A;(0) and B;(0) are both con-
sistent and 0 = ¢1(0) + ¥1(0), then

8¢,(0) = T*(0).

Proof. Corollary 5Cl asserts that h:T(0) is the conjugate transform
of ¢1:U; so the conjugate inequality implies that <u,y> g 61(u) + h(y)
for each u € U and each y € T(0), with equality holding if, and only if,
y € 3¢1(u). In particular, because 0 € U, we see that

0 5 $,(0) + h(y)

for each y € T(0), with equality holding if, and only if, y € 341(0).
But from the assumption that 0 = ¢3(0) + Y;(0) and the definition of
¥1(0), we also know that the preceding inequality is actually an equal-
ity 1f, and only if, y € T*(0). This completes the proof of Corollary
5C2.

Corollary 5C2 is important because of its application to '"sensitivity
analysis.” In particular, given the infimum ¢1(0) for problem A1(0), it
is desirable to be able to estimate ¢](u) for u close to O. Such an es-
timate can, of course, be based on the directional derivative of ¢; at O
in the direction u. 1In particular, the defining equation

¢1(su) - ¢7(0)

]

Dy$1(0) 4 lim
g0t

provides the estimation formula
$p1(u) = ¢1(0) + Dyuo1(0); (5.1)

and, hence, it is of interest to be able to compute D, ¢1(0).
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Fenchel (1951) has shown (in the more general setting of convex
functions) that

Dy$1(0) = max <u,y> ‘ ( 5.2a)
y€23¢41(0)

which, incidentally, reduces to the well-known formula D,¢;(0)

= <V¢$1(0),u> when 9¢1(0) = {Vé1(0)}. Moreover, under appropriate
conditions (such as those provided in Corollary 5C2), this formula
can be rewritten as

Dy¢1(0) = max <u,y>. ( 5.2b)
y € T*(0) '

Thus, it is of interest to know T*(0) in addition to ¢1(0) and s*(0),
so that formulas (A5.1) and (A5.2b) can be used to estimate ¢1(u) for
u close to 0. But T*(0) can usually be calculated from an arbitrary

x* € S*(0) by employing the extremality conditions as explained imme-
diately following Corollary 4AZ2.

6. DUALITY WITH EXPLICIT CONSTRAINTS

The conjugate inequality must be generalized to handle problems with
explicit constraints. To make that generalization, recall that the
conjugate inequality corresponding to a pair of conjugate functions
g:C and h:D is

<x,y> < g(x) + h(y) for x € C and y € D, (6.1)

with equality holding if, and only if, y € 3g(x) or, equivalently,
x € 3h(y).

Given a scalar variable X > 0 such that y € AD, we can substitute
y/X for y in the preceding conjugate inequality and then multiply
through by A to establish the nontrivial part of the corresponding
geometric inequality

<x,y> < Ag(x) + ht(y,\) for x € C and (y,\) € Dt, ( 6.2)

where pt {(y,k)leither A

e

0 and sup <c,y> < +»,
c€C

or A > 0 and y € AD}

>
I

sup <c,y> if . 0 and sup <c,y> < +=
c€C c€C

Ah(y/A) if A 0 and y € XD.

and  ht(y,})

o>

v

Of course, the trivial part of this geometric inequality is an immedi-
ate consequence of the definition of h*(y,\) for A = 0. Moreover, it
is clear that equality holds if, and only if, either X = 0 and
<x,y> = sup <c,y>, or A > 0 and y € A3g(x).
c€C

Similarly, given a scalar variable ® > 0 such that x € X C, we can
substitute x/% for x in the conjugate inequality and then multiply
through by X to establish the nontrivial part of the corresponding
geometric inequality

<x,y> < gt(x,x) +%xh(y) for (x,x) € ¢t and y € D, (6.3

{(x,x) jeither x = 0 and sup <x,d> < +m,
deD

or X > 0 and x € xC}

where ct

ne>
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sup <x,d> 1f X = 0 and sup <x,d> < 4=
d€eD d€ep

and g+(x,x) A ,
- xg(x/n ) ifx > 0 and x€ nC.
0f course, the trivial part of this geometric inequality is an immedi-
ate consequence of the definition of gt(x,x ) for ®x = 0. Moreover, it
is clear that equality holds if, and only if, either x = O and
<x,y> = sup <x,d>, or ® > 0 and y € 3g(x/% ).
deD
To keep track of the explicit constraints that will now appear in

our family of geometric programming problems, we introduce twb nonin-
tersecting (possibly empty) positive-integer index sets I and J with
finite cardinality o(I) and o(J) respectively. We also introduce the
following notation and hypotheses:

(Ia) For each k € {0} U I U J, suppose that gy:Cyx is a closed con—
vex function with a nonempty domain Ck € Epj.

(I11a) For each k € {0} U I U J, let uK be an independent vector pa-
rameter in Engs and let p be an independent vector parameter with com~
ponents ui for each i € I. )

(I1Ia) Denote the ''Cartesian product' of the vector parameters ul,
i € I, by the symbol ul, and denote the Cartesian product of the vector
parameters ulJ, j € J, by the symbol uw/. Then the Cartesian product
u b (uo,uI,uJ) of the vector parameters, uo, uI, and ul 1is an inde-
pendent vector parameter in E,, where

ndng+ X ny + X ny.
I J

(IVa) For each k € {0} U I U J, 1et xk be an independent vector
variable in Eny, and let X be an independent vector variable with com-
ponents X ; for each j € J.

(Va) Denote the Cartesian product of the vector variables x1,
i € I, by the symbol xI, and denote the Cartesian product of the vector
variables xJ, j € J, by the symbol xJ. Then the Cartesian product
x A (xo,xI,xJ) of the vector variables xo, x!I and xJ is an independent
vector variable in Ej.

(VIa) Suppose that X is a vector subspace of Ej.

Now consider the following family A} of 'geometric programming'
problems Aj(u,u).

Problem A}(u,u). Consider the objective function G(: + u, x):C(u)

whose domain
cuw) & {Gou) &+ ok €, ke ot uT,
and (xj + uj, xj) € C+j, i€ J},

and whose functional value

G(x + u,x ) Ag (x0 + uO) + 2 g} (x3 + uj, xj),
J

where, of course,

Cj A {(zj, Xj)leither‘xj = 0 and sup <zj’dj> < 4o,
- djE Dj

or xj > 0 and zj € XjCj}
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jsup <z ,dd> if X3 =0 and sup <zJ,dj> < 4
and g}-(zj’ xp) A dJ € py dd € py

xjgj(zj/ Xj) if Xy > 0 and zJ € XjCj.

Using the feasible solution set
S(u,u) A {(x,n) ¢ C(u)lx € X, and gi(x +ul) + uy 0, 1€ 1},

calculate both the problem infimum

¢y (u,u) 4 inf G(x + u, n)
(x,% ) € S(u,u)

and the optimal solution set
S*(u,u) & {(x, %) € S(u,p) [G(x + u, x) = ¢1(u,u)}.

In defining the feasible solution set S(u,p), it is important to
make a sharp distinction between the vector space condition x € X and
the constraints gl(x1 + ul) +uy £0, 1 € I, both of which restrict the
vector variable (x, ). The vector space condition is linear and,
hence, can be eliminated by a linear transformation of the vector var-
iable x, but the (generally nonlinear) constraints usually cannot be
eliminated by even a nonlinear transformation. Nevertheless, we do not
explicitly eliminate ‘the vector space condition because such a linear
transformation would 1ntroduce a common vector variable into the argu-
ments of gp, g4, and gJ. Such a common vector variable would tend only
to camouflage one ot the extremely useful characteristics possessed by
the geometric programming point of view, namely, the separability that
is built into problem Aj(u,u). We shall eventually illustrate this
separability by introducing constraints into the examples of Sec. 2.

Analogous to the unconstrained case discussed in Sec. 2, we shall
find it useful to interpret problem Aj(u,u) as a perturbed version of
A1(0,0), so we term the set

U A {(u,u)]S(u,u) is not empty}

the feasible perturbation set for problem Aj(0,0) relative to the
family Ay. Notice that the special perturbations u appear only with
the constraints, It is, of course, obvious that the unconstrained
case 1s obtained by taking the index sets I and J to be the empty set,

Closely related to the family Ay is its geometric dual family Bj.
To obtain B} from A}, we need the following additional nmotation and
hypotheses:

(Ib) For each k € {0} U I U J,1let hy:Dy be the conjugate transform
of gk:Ck. Then hk:Dk is a closed convex function with a nonempty do-
main Dk < Eng.

(11b) For each k € {0} U I U J,let vK be an independent vector pa-
rameter in Epy, and let v be an independent vector parameter with com-
ponents vj for each j € J.

(I11Ib) Denote the Cartesian product of the vector parameters vi,
i € I, by the symbol VI, and denote the Cartesian product of the vector
parameters vj, j € J, by the symbol vJ. Then the Cartesian product
v a (vO,vI,vJ) of the vector parameters VO, vl and vJ is an independent
vector parameter in Epn, where

n é ng + 2 ny + z nj.
I J
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(IVb) For each k € {0} U I UJ, let yk be an independent vector
variable in Epnp, and let X be an independent vector variable with com~
ponents A{ for each i € I,

(Vb) Denuvte the Cartesian product of the vector variables yi,
i €I, by the symbol yI, and denote the Cartesian product of the vector
variatles y1, j € J, by the symbol yJ. Then the Cartesian product
y & (y0,yI,yJ) of the vector variables y0, yI, and yJ is an independent
vector variable in Ep.

(VIb) Let Y be the orthogonal complement of X in Ep. Then Y is, of
course, a vector subspace of Ej.

Now, consider the following family Bj of-''geometric programming"
problems By (v,v).

Problem Bj(v,v). Consider the objective function H(- + v,x):D(v)

whose domain
D(v) A {(y,k)lyk + vk ¢ D, k € {0} U J,
and (yi + vi,ki) € pt, 1 ¢ 1},
and whose functional value

HGy + v,A) 8 ho(y0 + v0) + [ ni vf + vinp),
I

where, of course,

DI A {(zl,ki),either Ai = 0 and sup <ci,zi> < 4o
clé€ Ci

or \{ > 0 and z1€ A;D;}

sup <ci,zi> if A{ = 0 and sup <ci,zi> < o0
clé€ Cq cle Cy

and hI(zi,Ai) . .
)xihi(zl/?\i) if 2y > 0 and 2t € AiDyg.

e

Using the feasible solution set
T(v,v) A {(y,)) € D(v)}y € Y, and hj(yj + vj) + vy 8 0, 3 € J},
calculate both the problem infimum

Y1(v,v) A inf H(y + v,))
T (y,\) €T(v,v)

and the optimal solution set
T*(v,v) & {(y,)) € T(v,V) [H(y + v,}) = y1(v,v)}.

Families Ay and By are clearly of the same type, so the observations
made about Aj are equally valid for B;. Notice how Bj] is obtained from
Ay: the closed convex functions gy:Cg, k € {0} U 1T U J, are replaced
by their respective conjugate transforms hy:Dy, k € {0} U I U J; the
vector subspace X is replaced by its orthogonal complement Y; and the
roles played by the two index sets I and J are interchanged. Hence,
the symmetry in these three operations implies that the family obtained
by applying the same transformation to Bj is again A;. Because of this
symmetry, A] and By are termed dual families of geometric programming
problems.

Each of the dual families Aj and Bj contains a problem of special
interest, namely, problems Aj;(0,0) and Bj(0,0). Due to the apparent
symmetry between them, A1(0,0) and B;(0,0) are termed dual problems. To
avoid confusion, it is important to bear in mind that problems Al(u,u)
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and By(v,v) are termed dual problems only when (u,u) and (v,v) are
zero.

The symmetry between families A} and B} induces a symmetry on the
theory that relates Ay} to By. Thus, each mathematical statement about
Ay and B} automatically produces an equally valid dual statement about
B; and Aj. To be concise, our attention will be focused on the family
A1, and each dual statement will be left to the reader's imagination.

We shall now consider the unperturbed problem A;(0,0) and its geo-
metric dual problem B1(0,0). Many of the most important properties of
these dual problems are direct consequences of the conjugate and geo-
metric inequalities. In fact we need only make repeated use of the
following fundamental lemma that results from those inequalities.

Lemma 6a. If (x, x) is in the domain
c0) & {Ge, ) [x"€ ¢, k €{0}U I, and (I, ny) €}, j € I}

of the objective function G(-,x) for problem A;(0,0), and if (y,)) is
in the domain

D) & {(y,) ]|y € D, kK€ (0} U J, and (y',2) € DI, 1€ 1)
of the objective function H(-,x) for problem B;(0,0), then
<x,y> £ G(x, X) + ] Aigi () + H(y,0) + | xjhy(yD),
I J

with equality holding if, and only if,

either Xi = 0 and <xi,yi> =  sup <ci,yi>,
cle Ci

or Ay > 0 and yie kiagi(xi), ie I,

either %3 = 0 and <xj,yj> =  sup <xj,dj>,
) dJ€ Dy

or %; > 0 and yJ € ng(xj/ X, §€J.

Moreover, if y also satisfies the constraints
hj(yJ) £0, jeJ,

of problem B;(0,0), then
G(x, %) + [ Aqgi(xD) + H(y,0) + ] w5hyGd)
I J

s G(x,n) + ) xigi(xi) + H(y,\),
I

with equality holding if, and only if,
xyhy(yd) =0, €7,

Furthermore, if x also satisfies the constraints
g (xl) 0, 1€1,

of problem Ay(0,0), then
G(x, ®) + ) Aygs (1) + H(y,)) g G(x, n) + H(y,)),
1

with equality holding if, and only if,
rigg(xi) =0, i€ 1.
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Proof. From the conjugate inequality ( 6.1) we know that

<x0,y0> < go(xo) + ho(yo),

with equality holding if, and only if,
v0 € 380(X0)-
From the geometric inequality ( 6.2) we know that
<xi,yi> < Xigi(xi) + hi(yi,xi),
with equality holding 1if, and only if

either A; = 0 and <1 ,y = sup <Ci,yi>

cle Cy
or Ay > 0 and yi € Xiagi(x ), i€ I,
From the geometric inequality ( 6.3) we also know that
J.y] +(x] . h (y]
<xd,yd> g gi(xd, ny) + w3hi (),
with equality holding if, and only 1if,
either Xy = 0 and <xj,yj> =  sup <xj,dj>,
dle Dj
or wj > 0 and yj € agj(xj/ xj), i€ J.
Adding all 1 + o(I) + o(J) of these inequalities and taking account of
the defining equations for x, y, G, and H proves the first assertion of
Lemma 6a. The second assertlon is an immediate consequence of the fact
that %: 2 0 when (xJ, 1 ) € C , € J. Similarly, the third assertlon

is an 1mmed1ate consequence of the fact that A; 2 0 when (y1 A{) € Dl,
i € I. This completes our proof of Lemma 6a.

We now give the most basic and easily proved duality theorem. This
theorem generalizes Theorem 4A and. hence leads directly to both the
duality gap concept and the extremality conditions for problems with
explicit constraints.

Theorem 6A. If (x, ») and (y,)) are feasible solutions to problem
A1(0,0) and its geometric dual problem By(0,0), respectively, then

0 5 G(x, ») + H(y,N),

with equality holding if, and only if,

yO € Bgo(xo),
either A; = 0 and <xt,yt> = sup <ci,y1>,
C]‘ECi
or ;3 >0 and yl € Xiagi(xi), i€1,
either ny = 0 and <x j> = sup <xj.dj>,
al € Dy

or %y > 0 and yj € ng(xj/ xj), j € J,

1

rgg(x) =0, 1€ I, and njhy(yd) =0, 3 € J.

Proof. A sequential application of all three assertions of Lemma 6a
shows that
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<x,y> 5 G(x, n) + } Aygi(xb) + H(y,A) + 7 njhj(yi)
I J

[N

G(x, x) + § Aggy(xh) + H(y,N)
I

%)

G(x, n) + H(y,N).
Thus it is a consequence of Lemma 6a that
<x,y> £ G(x, x) + H(y,1),

with equality holding if, and only if, the final four conditions in the
theorem are satisfied. Now x and y are in the orthogonal complementary
subspaces X and Y, so <x,y> = 0 and, hence, our proof of Theorem 6A is
complete.

The basic inequality provided by Theorem 6A implies important prop-
erties of the dual infima ¢;(0,0) and ¥;(0,0). 1In particular, we obtain
the following generalization of Corollary 4Al.

Corollary 6Al. If the geometric dual problems Ay(0,0) and B;(0,0)
are both consistent, then
(i) the infimum ¢1(O,O) for problem A;(0,0) is finite, and

0 < ¢;(0,0) + H(y,»)

for each feasible solution (y,)) to problem B;(0,0);
(ii) the infimum wl(0,0) for problem BI(O,O) is finite, and

The proof of this corollary is, of course, a trivial application of
Theorem 6A.

Naturally, consistent dual problems A1(0,0) and B1(0,0) for which
0 < $;(0,0) + y;(0,0) are said to have a duality gap of ¢(0,0) + ¢(0,0).
The discussion (following Corollary 4Al) of duality gaps for problems
without explicit constraints is equally vaiid for problems with explicit
constraints., In fact, dual problems with explicit constraints can be
studied within the framework of dual problems without explicit con-
straints. Only the extremality conditions must be modified to reflect
the presence of explicit constraints.

That modification is easily obtained by observing that Theorem 6A
provides a characterization of dual optimal solutions (x*, x*) and
(y*,\*) in terms of the following extremality conditions:

(1) x€ X and y €Y

(11) g;(x1) £0, 1€1 and h;vd) g0, 5€ 7,
(I11) 0 ¢ 3g0(x0),
() either Xy = 0 and <xi,yi> = sup <ci,yi>,
Cieci
or Ay >0 and yi € Aiagi(xi), i€1,
(V) either Xy = 0 and <xj,yj> =  sup <xj,dj>,
dJEIH

or %y >0 andyl €3g;(xd/%y), 3€U,

fi

(VI) gy (xl) =0, i €1, and x4hs(yd) =0, € J.

We formalize this characterization as the following corollary.
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Corollary 6A2. Suppose that the geometric dual problems Ajy(0,0) and
B;(0,0) are both consistent and 0 = ¢;(0,0) + $1(0,0). Then arbitrary
vectors (x, %) and (y,*) are optimal solutions to problems A](0,0) and
B1(0,0) respectively if, and only if, (x, %) and (y,)) satisfy the ex~-
tremality conditions (I-VI),

The proof of this corollary is an immediate consequence of Theorem
6A and the conjugate transform relation Bgo(xo) & Do that was described
in Sec. 3.

The extremality conditions (I) are simply the vector space conditions
for problems A1(0,0) and B;(0,0); and the extremality conditions (II)
are simply the constraints for problems A1(0,0) and B1(0,0). The ex-
tremality conditions (III-V) are termed the subgradient conditions; and
the extremality conditions (VI) are, of course, termed the complementary
slackness conditions.

Note that the subgradient conditions (III-V) have several equivalent
formulations that result from the symmetry of the conjugate transforma-
tion. In particular, the condition y € Bgo(x ) can be replaced by the
equivalent condition x0 € Bho(yo) the conditions yl € A agi(xl), i€1,
can be replaced by the equivalent conditions xi € 3hy (yl/kl), i€ 1; and
the conditions VJ € BgJ(xJ/ x3), j € 3, can be replaced by the equlvalent
conditions xJ € x43h§ (yJ), 3 E J.

In our fundamental Lemma 6a the reader probably noticed the appear-
ance of the "Lagrangians" G(x, ®) + z Aigi(xi) and H(y,A) + z thj(yJ)

I J

for problems A1(0,0) and B;(0,0), respectively. Indeed, Lagrangians
and their associated "Kuhn-Tucker multipliers" and "saddlepoints' play
a fundamental role in geometric programming. We shall now indicate
those roles by relating Kuhn-Tucker multipliers to geometric program-
ming.

A consistent problem Ay(0,0) whose infimum ¢1(0,0) is finite can
usually be replaced by a minimization problem with the same infimum
$1(0,0), but without the inequality constraints gi(xi) <0, i € I. The
unconstrained minimization problem is obtained by introducing a Kuhn-
Tucker multiplier, namely, a vector A* in Eo(I) with the two properties

¥ 20, 1€T1,

and $1(0,0) inf La(x, x5 A%),
(x, x) €C(0)
x€X

v

where the Lagrangian Ly has the functional values
LA(X,X; X) é G(X, )() + z )\igi(xl).

I

The following theorem is fundamental in that it relates certain
"minimizing sequences" for problem B1(0,0) to the Kuhn-Tucker multi-
pliers for problem A;(0,0).

Theorem 6B. Suppose that the geometric dual problems A;(0,0) and
B1(0,0) are both consistent and 0 = ¢1(0,0) + ¢1(0,0). If there is a
minimizing sequence {(y%,)9)}7 for problem B;(0,0) [that is, each vec—
tor (y9,19) is in the feasible solution set T(0,0), and 11m H(y4,29)

¥1(0,0) ] such that 11m 29 exists, then the limit vector 2 * A %ig A4

is a Kuhn~-Tucker mu*tepller for problem A1(0’0)°
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Proof. The assumed feasibility of the vectors (y9,)4) and the de-
fining properties for the sets Di, i € I, imply that kqi 20,1€1,
for each q; so we infer from the hypothesis %ig A9 = A* that

M¥20, 1€TI.

The assumed feasibility of the vectors (yq,kq) and a sequential ap-
plication of the first two assertions of Lemma 6a show that

Glx, x) + ) Ag%g; (x1) + Hy9,09) + ] x3hy(y9D)
1 J

<x,yq>

IIA

G(x, X) + ) k{lgi(xi) + H(y%,)9)
I

1)

for each vector (x, %) € C(0) and for each q. Consequently, for each
vector (x, X) € C(0) such that x € X we deduce that

0 5 G(x, x) + ) Aiqgi(xi) + H(y3,2D
I

for each q, because the vectors yd € Y A xL. This inequality along with
the hypotheses lig H(y4,A9) = ¢1(0,0) and lig A9 = A* clearly imply that
q q

0 2 Glx, ) + ] A q (L) + 91(0,0)
I

for each vector (x, X) € C(0) such thft x € X. Using the defining
formula Lpa(x, %; A%) & G(x, x) + Y A" gi1(x1) and the hypothesis
1

0 =¢1(0,0) + ¥1(0,0), we infer from the preceding inequality that

61(0,0) < inf La(x, x; A%).
(x, x) €¢(0)
x €X

Now choose a minimizing sequence {(x%, x9)}7 for problem A1(0,0), and
then observe for each q that

LA(Xq,xq; >‘*) é G(Xq9 )(q),

because ki* 2 0 and gi(xi) £ 0, 1 € I. From the construction of the
sequence {(x9, ®9)}7 we know that the vectors (x9, x9) € C(0), the vec~
tors x3 € X, and ¢(0,0) = %ig G(x9, x9); so we conclude from the pre-

ceding two displayed inequalities that

$1(0,0) = inf Lalx, x5 A\%).
(x, x) € C(0)
x€ X

This completes our proof of Theorem 6B.

The following corollary to Theorem 6B is important because it shows -
that each optimal solution to problem B;(0,0) provides a Kuhn-Tucker
nultiplier for problem A;(0,0) when A;(0,0) and B)(0,0) are both con-
sistent and do not have a duality gap.

Corollary 6Bl. If the geometric dual problems A;(0,0) and B1(0,0)
are both consistent and 0 = ¢7(0,0) + ¥1(0,0), then each optimal solu-
tion (y*,)\¥) to problem B;(0,0) provides a Kuhn-Tucker multiplier A%

for problem A1(0,0).

To prove this corollary, simply choose the minimizing sequence
{(y9,19)}] in Theorem 6B so that all its vectors are identical to

(y*,A%).
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We shall devote the remaining part of this section to various inter-
esting examples.

Example 0. Interestingly, the geometric programming formulation of
duality is related to the various formulations of duality in linear pro-
gramming. We now specialize our geometric programming formulation to
obtain the well-known symmetric formulation in linear programming.

To do so, choose the functions g,:Cy, k € {0} U I U J, by letting

gg:E; ~ {01,
gj:{l} > {aj}, jeJ,
gi:E] - R such that gi(x}) A xt -by, 1i€T1,
where the numbers aj and bj are components of given vectors a and b re-

spectively. In addition, choose the vector subspace X to be the column
space of a specially structured matrix, namely,

0
X A column space of | M |,
U

where O denotes a row of zeros, M is a given matrix with o(I) rows and
0(J) columns, and U is the o(J) x o(J) identity matrix.

Then the resulting specialized family Ay consists of the following
linear programming problems Aj(u,p).

Problem A)(u,u). Using the objective function

G(x+u,)() é ): aj)(j
J

and the feasible solution set S(u,u) consisting of all those vectors
(%, ®) that satisfy both the conditions

(1a) xK + uk € Ey k € {0} U1,
(2a) %; 2 0 and xJ + 0l = "5 i €J,
x0 =0
(32) Xi = Z Miij i€1,
J
xJ = 25 j€J

and the constraints

(4a) xl g by - (g +ud) i€1,
calculate both the problem infimum
$pp(u,p) 2 inf G(x + u, x)

© (%, %) € S(u,n)
and the optimal solution set
$*(u,u) & {(x, %) € S(u,m) |G(x + u, %) = ¢y (u,m)}.

The constraints (4a) show that the parameters ul, 1 € I, are redun-
dant, so we can set them equal to zero, The conditions (la) are auto-
matically satisfied, so we can ignore them. The conditions (2a) and
(3a) show that the variables xJ and z; depend on X3, SO we can elimi-
nate xJ and z; in favor of X ;. Then the constraints (4a) become
§ Mij’(j £by -py+ § MijuJ, so the parameters ul, j € J, are obviously
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redundant and hence can be set equal to zero. Thus the linear pro-~
gramming family A; consists essentially of computing

¢y (n) 4 inf <a, x>
XES' (1)

where S'(m) A {x € Egegy[Mx < b -y and x 2 0}.

The computation of the infimum function ¢;' is frequently referred to
as ''parametric linear programming."

The conjugate transforms hyp:Dy, k € {0} U 1UJ, of our chosen func-
tions gy:Cy, k € {0} U I UJ, are clearly obtained by letting

hi:E} » R such that hj(yj) A vyl - aj, jeJ,
hy:{1} ~ {bs}, 1€l

Moreover, the orthogonal complement Y of our chosen vector subspace X
is easily seen to be the column space of a specially structured matrix,
namely,

1 0
Y = column space of o ut s
0 -MT

where UT is the o(I) x o(I) identity matrix, and -MT is the negative
transpose of M.

Thus, the corresponding specialized family Bj consists of the follow-
ing linear programming problems Bj(v,v).

Problem Byj(v,v). Using the objective function

H(y + v,A) B ) bjhg
I

and the feasible solution set T(v,v) consisting of all those vectors
(y,?») that satisfy both the conditions

(1) y9 + v0 =0 and yJ + vi€ E j € J,
(2b) A; 2 0 and vyl + i = Aq i€1I,
v = 2o
(3b) yi =z i€ 1,
yj = —Z Mtjizi jE€J
I
and the constraints
(4b) vyl g ay - (vy + vl) 3 €7, )
calculate both the problem infimum
Pp1(v, ) A inf H(y + v,))

T (y,\) €T(v,V)
and the optimal solution set
T*(v,v) A {(y,)) € T(v,v)IH(y + v,2\) = Py(v,v)
The constraints (4b) show that the parameters vi, j € J, are redun-

dant, so we can set them equal to zero. The variables yo and zg appear
only in the first condition (1lb) and the first condition (3b), which
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show that yo and zg must be fixed and equal to the parameter -v0; but
v0 appears nowhere else in problem By (v,v), so yo, zo, and vO can be
ignored. Moreover, the remaining conditions (lb) are automatically
satisfied, so we can ignore them. Now the conditions (2b) and (3b)
show that the variables yl and z; depend on Aj, so we can eliminate

yi and zi in favor of Xj. Then the constraints (4b) become

wz Mijki £ aj - vj —% Mijvi, so the parameters vi, i € I, are obviously

redundant and hence can be set equal to zero. Thus, the linear pro-
gramming family B; consists essentially of computing

p1"(v) A inf <b,A>
TAET (V)

where T'(v) & {X € EO(I)i—MtA < a=~vand A 2 0},

These symmetric linear programming dual families have been thoroughly
studied in Peterson (1970a), and nothing new about them will be brought
to light here. It is, of course, easy to see that the rather unorthodox
dual linear problems A;(0,0) and By(0,0) are equivalent to the classical
symmetric dual linear problems: simply observe that problem A;(0,0) ac-
tually consists of minimizing <a,x> subject to the constraints -Mx 2 -b
and x 2 0, whose classical dual consists of maximizing <-b,y>, subject
to the constraints -Mty < a and y 2 0. It is then clear that the clas-
sical dual is equivalent to problem Bl(0,0), because max <-b,y> = -min
<b,y>.

We shall now specialize our geometric programming formulation of
duality to obtain the well-known unsymmetric formulation of duality in
linear programming. To do so, choose the functions gy:Cp, k € {0} U I
J J, by letting

go:E; =+ R such that go(xo) A xo,
gj:El -+ {0}, h € J’
gi:Ey = R such that gi(xi) A xi - b;, 1¢T1I,

where the numbers b; are components of a given vector b. In addition,
choose the vector subspace X to be the column space of another specially
structured matrix, namely,

X A column space of | M |,
- U
where a is a given row vector, M is a given matrix with o(I) rows and
0(J) columns, and U is the o(J) x o(J) identity matrix.

Then, the resulting specialized family A1 consists of the following
linear programming problems Aj(u,n).

Problem Aj(u,u). Using the objective function

G(x + u, %) A x0 + 40

and the feasible solution set S(u,u) consisting of all those vectors
(x, %) that satisfy both the conditions

(1a) xK + uk € gy k € {0} U 1,
(2a) xjz2 0 and xJ + ud € ijl j €3,
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x0 = z ajzy
J
(3a) xi = ¥ Mj jz3 i€ 1,
J
xJ=zj j€yJ
and the constraints
(4a) xi g by - (uy + ul) i€r1,
calculate both the problem infimum !
¢1(u,u) A inf G(x + u, n)

(x, %) €S(u,u)
and the optimal solution set
S*(u,u) & {(x, x) €S(u,m)|G(x + u, %) = ¢;(u,u)}.

The constraints (4a) show that the parameters py, i € I, are redun-
dant, so we can set them equal to zero. The conditions (la) are auto-
matically satisfied, so we can ignore them. The variables LE TN € J,
appear only in the conditions (2a) whose second parts are automatically
satisfied when each i > 0; hence, the conditions (ga) can be ignored.
The conditions (3a) show that the variables x0 and xi depend on the
variable zy, so we can eliminate x0 and x! in terms of z;. Then the ob-
jective function xO + w0 becomes <a,z> + uo, and the constraints (4a)
become Z Mjjz3 £ by - ul, Thus, the linear programming family A con-

sists essentially of computing

¢1"(UO,UI) A inf <a,z> + u0
z € §"(ul)
where S (ul) A (z € EO(J)IMZ s b - ul}.
Notice that this family Ay has the characteristic feature of unsymmetric
duality in linear programming; that is, the components z5 of z are not
restricted to be nonnegative.

Now the conjugate transforms hy:Dp, k € {0} U I UJ, of our chosen
functions gy:Cy, k € {0} U I U J, are clearly obtained by letting

ho:{l} -+ {0},
hy:{0} » {0}, j€ 3,
hy:{1} > (by), i€1.

Moreover, the orthogonal complement Y of our chosen vector subspace X
is easily seen to be the column space of a specially structured matrix,
namely, -

1 0
Y = column space of 0 vt s
—at _Mt

where UT is the o(I) x o(I) identity matrix, -at is the negative trans-
pose of a, and -M! is the negative transpose of M.

Thus, the corresponding specialized family Bj consists of the follow-
ing linear programming problems By(v,v).

Problem By(v,v). Using the objective function
H(y + v,)) é Z biAi
I
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and the feasible solution set T(v,v) consisting of all those vectors
(y,X) that satisfy both the conditions

(1b) yO +v0 = 1 and yj +vi=o0 j € 3,
(2b) A;{ 2 0 and y1 + vl = ay 1 €1,
0 = zg
(3b) yi = z; i€1
yl = -ajzp -~ Z MTjiZi j €3,
I
and the constraints
(le) 0 LY —\)j j € J,
calculate both the problem infimum
Y1(v,v) A inf H(y + v,})

T (¥, € T(v,V)
and the optimal solution set

T*(v,v) 4 {(y,3) € T, [HGy + v,}) = u1(v,0)}.

When the parameters v; £ 0, j € J, the constraints (4b) are automat-
ically satisfied and, hence, can be ignored. The conditions (1b) and
the first condition (3b) show that the variables yo, yJ, and zp must be
fixed and equal to the parameters 1 - vO0, —v3, and 1 - vO, respectively,
The second parts of conditions (2b) and (3b) show that the variables yi
and z; depend on }i, so we can eliminate yl and zi in favor of Xi. Then
the last of conditions (3b) become —Z Mtjiki = aj - vi - ajvO - ) Mtjivi, S0

the parameters v0 and vi, i € I, are obviously redundant and hence can
be set equal to zero. Thus, the linear programming family B1 consists
essentially of computing

v (v A inf <b, x>
AE T (vI,V)
@ if vy > 0 for at least one i € J
where T"(VJ,V) A

D EEgqyl-Ma=a-v)and A 2 0} if v5 50, j € J,

These unsymmetric linear programming dual families have not been
studied as thoroughly as the symmetric linear programming dual families.
Moreover, the theory given here can be strengthened considerably in this
special case, but the details will be omitted here.

In our remaining examples the index set J is assumed to be empty.
Then the vector parameter uJ, the vector variables x9 and X , and their
corresponding conditions do not appear in problem Aj(u,u). Moreover,
the vector parameters vJ and v, the vector variable yJ, and their cor-
responding constraints do not appear in problem By(v,v). We shall even-
tually see that this lack of constraints tends to make problem Bj(v,v)
more computationally attractive than problem Aj(u,u).

Example 0+. We now indicate the generality of geometric programming
by showing that 'ordinary mathematical programming' can be viewed as a
special case.

To obtain all ordinary mathematical programming problems, choose the
vector subspace X to be the column space of a specially structured ma-
trix, namely,
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X 4 column space of

Qe O

J

where the o(I) x o(I) identity matrix U appears in a total of 1 + o(I)
positions. Then, the resulting specialized family Aj; consists of the
following mathematical programming problems Aj(u,n).

Problem A](u,u). Using the objective function
G(x + u) A go(xo + uo)

and the feasible solution set S(u,u) consisting of all those vectors x
that satisfy both the conditions

(la) x* + uk € ¢ k € {0} U I,

(3a) =z k € {0} U 1,

and the constraints
(4a) gi(xi+ud)y + 45 <0 i €I,
calculate both the problem infimum

¢1(u,u) & inf G(x + u)
" x€5(u,u)

and the optimal solution set
S*(u,u) & {x € S(u,u)[G(x + u) = ¢7(u,n)}.

The conditions (3a) show that we can eliminate the vector variable x
in favor of the vector variable z so that the mathematical programming
problem Aj(u,p) consists essentially of computing

¢1(u,n) A inf golz + u®)

z€ S'(u,u)
where S'(u,u) A {z €N (C - uk)lgi(z +ul) < -y, 1 € 1}.

We term the subfamily that results from choosing the perturbation vec-
tors uk = 0, k € {0} U I the ordinary mathematical programming family
because its problem A)(0,0) and its perturbation vector u have been the
focus of most of the past work in mathematical programming.

The orthogonal complement Y of our chosen vector subspace X is easily
seen to be the column space of a specially structured matrix, namely,

[ U ~U +ev U ]
U 0 ¢« O
Y = column space of ? v . s
Y U

where the o(I) x o(I) identity matrix U appears in a total of 2 o(I)
positions, and the o(I) x o(I) zero matrix O appears in the remaining
positions.
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Thus the corresponding specialized family By consists of the follow-
ing unconstrained convex programming problems Bj(v).

Problem Bj(v). Using the objective function

H(y + v,)) 4 hg(y0 + v0) + § hy*t(yi + vi,n))
I

and the feasible solution set T(v) consisting of all those vectors (y,})
that satisfy the conditions

(1b) y0 + 0 €y,

(2b) (yi + vixy) en;?t i€ 1, ’
g0 = -7 wi

(3b) I
yi:wi i€ 1,

calculate both the problem infimum

P1(v) & inf H(y + v,))
(y,2) €T(v)

and the optimal solution set
T*(v) & {(y,2) € TV |HGy + v,2) = y(N}.
The conditions (3b) show that the convex programming problem Bj(v)
consists essentially of computing

N 8 inf  {hg(y9+v®) + ] nytyi+ vl ( 6.4)
(y,A)€ T(v) I

m

where T(v)

e

{(y,0)[y0 + vO € py;
(yi + viap) engt, i€ 1

and y0 + Z yi = 0}. ( 6.5)
I

ft

It is informative to relate the preceding geometric dual problem
B1(0) to the "ordinary dual problem" B8, which is defined as follows.

Problem 8. Using the objective function

HO) A inf La(x;))
T x€ECONX

and the 'feasible multiplier" set J consisting of all those vectors
A 2 0 that satisfy the condition

(0a) inf HA(x;A) is finite,
xe€Cc(O)NX

where the Lagrangian

La(x;A) A go(xo) + z Aigi(xi)
I

and the set C(0) N X consists of all those vectors x that satisfy the
conditions

(1a) xK € ¢y k € {0} U I,
(3a) xK = 2 k € {0} UTI,
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calculate both the problem supremum

¥4 sup M)
\ET

and the optimal multiplier set
I*s ez [HO) = vl

The conditions (3a) show that we can eliminate the vector variable
x in favor of the vector variable z so that problem B consists essen-
tially of computing

¥ 4 sup inf  {gg(z) + ) rigy(2)} C(6.6)
AET z €nCy I

where 74 {A 2 0| inf {gg(z) + Z Aigi(z)} is finite}. (6.7)
N z€N Cyp I

To tie the geometric dual problem Bj(0) to the ordinary dual
problem B, recall from the conjugate inequality ( 6.1) that

<z,y0> < go(z) + ho(yo) when z € C5 and y0 € Dg»

with equality holding if y0 € 3gp(z). Also, for each i € I, recall
from the geometric inequality ( 6.2) that

<z,yi> < Aigi(z) + hi+(yi,ki) when z € C; and (yi,ki) € Di+’

with equality holding if yi € Xy9gi(z). Adding these inequalities, we
see that

0 5 {gg(2) + ] ryei(2)} + {hg3®) + ¥ hytyl ) ( 6.8a)
I I
when z €N Cy; y0 € Do (Yi,ki) € Dy4F, 1€ I
and y0 + ) yi =0, ( 6.8b)
I

with equality holding if
y0 € 3gp(z) and yl € ry3g4(z), 1 € 1. ( 6.8c)

These relations ( 6.8) bind the geometric dual problem Bj(0) directly
to the (original) Dennis-Dorn-Wolfe version (Dennis, 1959) of the or-
dinary dual problem B8, namely, "the dual problem" B' that consists of
computing

vt a sup  {go(2) + ] Mgy(2)},
(z,\)€ Z I

where the feasible solution set

Z o {(z,))]z €N C; Ay 20, 1 €T; and 0 € 3gg(2) + | Agdgy(2)}. -
I

[Notice that for each (z,)) € Z the subgradient condition 0 € agp(2)
+ Z A{3gq(z) implies that X € Jand W(}) = ggo(z) + 2 Aig1(2); so each
1 I

feasible solution (z,)) to problem B' provides a feasible solution A to
problem B, but the converse is generally not true. Actually, in the
original "Wolfe formulation" (1961) of problem 8', only differentiable
convex functions gy:Cy, k € {0} U I, were considered; in which case the -
subgradient condition O € ago(z) + Z Aiagi(z) reduces to the more

I
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familiar gradient condition 0 = Vgo(z) + E Angi(z). Falk (1967) seems
I

to have been the first person to remove the differentiability restric-
tions and broaden the definition of the ordinary dual problem by re-
placing problem 8' with problem 8.

In particular, the preceding definition of Z shows that each feasible
solution (z,1) to problem B' produces at least one vector {(y,A) that
satisfies both the equation y9 + Z yi = 0 1in condition ( 6.8b) and all

I
of condition ( 6.8c). Such a vector (y,2) must also satisfy the remain-
ing relations in condition ( 6.8b) by virtue of the definition of Di+-
Hence, each feasible solution (z,\) to problem 8' produces at least one
feasible solution (y,X) to problem By(0) such that inequality ( 6.8a)
is an equality. Consequently, introducing the feasible solution set

Ts() A {yl(y,)) € T(D},
we deduce from inequality ( 6.8a) the validity of the identity

0 = {gg(2) + Z Aig3(z)} + submin {ho(yo) + Z hi+(yi,li)}
1 y € Tg(Q) 1

for each (z,X) € Z. This identity shows that the (original) ordinary
dual objective function is essentially a subminimized and hence. re-
stricted version (in the function-theoretic sense) of the corresponding
geometric dual objective function. However, the subminimization and
resulting restriction may not be desirable because they tend to suppress
the vector variable v and hence conceal important sensitivity analy-
ses. Moreover, unlike the feasible solution set T(0) for the geometric
dual problem B)(J), the feasible solution set Z for the (original) or-
dinary dual problem 8' is generally not convex. However, the (broadened)
ordinary dual problem { does not share this disadvantage in that a
rather elementary computation (left to the interested reader) shows

that its feasible solution set J is always convex, as is its objective
function A£. Nevertheless, problem £ is clearly a max-min problem and
hence difficult to treat numerically.

Detailed discussions of other aspects of ordinary mathematical pro-
gramming have been given by Falk (1967), Gould (1969, 1971), and
Geoffrion (1971). The preceding tie between the ordinary and geometric
dual problems is generalized and strengthened in Peterson (1971).

Example 1. We now begin our study of the minimization of posynomials
subject to the upper-bound posynomial constraints (i.e., ''prototype geo-
metric programming'). To make our notation consistent with the notation
already in the literature, let

I=1{1,2,...,p} 4P,
Then, choose the functions g, :Cy, k € {0} U P, to have the form

g(x) 4 1In (] cie’l) where ¢y > 0,
i

and let X 4 column space of (ajj),

where (ajj) is an arbitrary n x m real matrix. Such functions g are
known to be closed and convex even though the function 1ln is concave.
We could proceed without introducing the 1ln into g (as we did for the
unconstrained Example ! in Sec. 2), but we introduce the ln here so
that the geometric dual problem will turn out to be the generalized
"chemical equilibrium problem.”



40~
The resulting specialized family A consists of the following convex
programming problems Aj{(u,u).

Problem Aj(u,u). Using the objective function

G(x + u) 4 1n Z (cieui) e*i
fo]
and the feasible solution set S(u,u) consisting of all those vectors x
that satisfy both the conditions

(la) xk + uk ¢ Eny > k € {0} UP,
(3a) X{ = jgl ajj In tj where ty > O, i : ;: g: : :
and the constraints
(4a) In §  (cqe'Dye™ < -y, k € P,
(k]
calculate both the problem infimum
o7 (u,u) 4 inf G(x + u)
x & S{u,u)
and the optimal solution set
S*(u,u) A {x € S(u,p) |G(x + u) = 61 (u,u) .

Here the index set [k, termed "block k," is defined as

(k] A {my, me + 1, ..., myl, k € {0} U P,

where 1 A my £ ng, ng + 1 Am £y, ..., np-1 +14 m, £ 0, = n.

Using the monotonicity of the 1n function along with the laws of
exponents, we see that the convex programming problem Aj(0,0) is actu-
ally equivalent to the ncnconvex programming problem that consists of

m
a, .
minimizing the posynomial Z cy ™ tjiJ subject to the upper-bound
o]  i=1
-

Ay .
posynomial constraints Z c{ 7 tjiJ £ 1, k € P. Moreover, it is

(k] =1

obvious from the formula for ¢1{u,u) that the components of u constitute
logarithmic perturbations of the coefficients ci; and it is clear that
the components of 1 constitute logarithmic perturbations of the con-
straint upper-bounds 1. Notice that the perturbations u are redundant
in that there is no need to explicitly consider perturbations of the
constraint upper-bounds 1; a posynomial constraint with a (positive)
upper-bound other than 1 can always be divided by that upper-bound and,
hence, can always be replaced by an equivalent posynomial constralnt
with the upper-bound 1 and appropriately perturbed coefficients cje ui,

To obtain the geometric dual B; of the precedlng family A1, we now
compute the conjugate transform h:D of In cie X1, To do so, observe
that

‘h(y) = sup {<y,x» -~ 1n ) ciexi}
X i

1s finite only if y; 2 O for each i, and Z y; = 15 in which case an
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elementary maximization via the differential calculus produces the
function value

Y1
h(y) = ] y{ 1n {EI],
i
y
with the understanding that y; 1In [E%J = 0 when y1 = 0. It follows
then that the function domain

D = {yly; 2 O for each i, and Z yi = 1}.
1

Thus, the corresponding specialized family B] consists of fhe follow~-
ing linearly constrained convex programming problems Bj(v).

Problem Bj(v). Using the objective function

y.+v.

H(y + v,}) = E (yi + v{) 1ln {'E—EI—&'
(ol

vy +
+ ] [&Z (yg +vy) In PJLEIY£] - 1n Ak]
P k]

and the feasible solution set T(v) consisting of all those vectors
(y,2) that satisfy the conditions

(Ib) y; +v; 20,1 € [0], and [Z] (yq + vi) = 1,
0

0, 1 € [(kJ, and 3 = ] (yy +vy), kE€P,
(k]

aijyi=0, i=1, 2, ..., m,

v

(2b) yi + Vi

(3b)

O~

i=]
calculate both the problem infimum

b1 (v) A inf H(y + v,})
(y,2) € T(V)

and the optimal solution set
T*(v) & {(y,)) € T(W)|H(y + v,2) = yp(v)}.

In contrast with the "primal program'" A;(0,0), notice that the "dual
program’ Bj(0) has no constraints and only the following linear condi-
tions: the "positivity conditions™ y; 20, 1 =1, 2, ..., n; the "nor-

n
mality condition" Z y{ = l; the "orthogonality conditions” Z ajjyi = 0,
(o] i=1
j=1, 2, ..., m; and the conditions A, = z yi,» k=1, 2, ..., p, which
k -
can, of course, be used to eliminate the explicit use of the vector
variable .

It is worth mentioning that, when [0] = {1}, dual program B1(0) is
the "chemical equilibrium problem" that consists of minimizing "Gibbs'
free energy function" ﬁ(y,k(y)) subject to the '"mass balance equations”

n

izzaijyi= -a)j, i=1, 2, ..., m, to obtain the "equilibrium mole frac-
tion" y*{/A*; for each "chemical species’ i that can be chemically
formed from the m "elements'" present in 'phase’ k of a p-phase "ideal
chemical system." This fact and many of its consequences were first
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established by Passy and Wilde (1968), and have been included in Appen-
dix C of Duffin, Peterson, and Zener (1967). More recently, the corre-
sponding specialized primal program Aj;(0,0) has been intimately related
to the Darwin-Fowler method in statistical mechanics by Duffin and
Zener (1969), who also treat more genmeral chemical systems in Duffin
and Zener (1971).

The original geometric dual program formulated by Duffin and Peter-
son (1966) is essentially the same as dual program Bj(0), and consists
of maximizing the objective function

n Ci |% Xk
exp {-H(y,\)} = = i T A
i=1 k=1

subject to the positivity, normality, and orthogonality conditions.
The original geometric primal program is, of course, essentially the
same as primal program A1(0,0), and consists of minimizing the objec-
tive function

m a, .
exp {G(x)} = 7§ c; T tjiJ
(0] j=1

subject to the upper-bound posynomial constraints.

The reader should have no trouble now introducing quadratic and Qp
constraints into Example 2 given in Secs. 2 and 3. The resulting
classes of ''quadratically-constrained quadratic programs” and "&p-
constrained lp-regression problems' have been thoroughly studied by
Peterson and Ecker (1968, 1969, 1970a, 1970b, 1971).

The reader should also have no trouble introducing location con-
straints into Example 3 given in Secs 2 and 3. The resulting classes
of facility location problems are being studied by Wendell and Peterson.
The special unconstrained problems that employ only the Euclidean norm
have a long history, beginning with the work of Fasbender (1846) and
including the more recent work of Kuhn and Kuenne (1962), Kuhn (1967),
and Francis and Cabot (1971).

The dynamic programming problems alluded to as Example 4 in Secs. 2
and 3 are being studied by Dinkel and Peterson (1971) who were stimu-
lated by the work of Bellman and Karush (1962, 1963a,b).

The multicommodity network flow problems alluded to as Example 5 in
Secs. 2 and 3 are being studied by Morlok and Peterson who expect to
apply the results to the analysis and planning of transportation net-
works. The more specialized single commodity (electrical) network flow
problems have a rather long history, beginning with the (Kirchoff-
stimulated) work of Weyl (1923) and including the more recent work of
Duffin (1947), Bott and Duffin (1951, 1953), Minty (1960, 1966), and
Rockafellar (1970). For related work, see Duffin's recent survey
papers (1969, 1970).

Although stimulated mainly by Zener's initial work (1961, 1962) on
geometric programming, Duffin's initial work (1962a,b) on geometric
programming was primarily a mathematical outgrowth of his earlier work
on electrical networks and mechanical systems.

This completes our survey of the mathematical foundations of geo-
metric programming.

7. POSYNOMIAL. PROGRAMMING ALGORITHM-

A posynomial program Aj(0,0) and its geometric dual program B1(0) are

a,
3 "o ~ m 1
said to be ''degenerate' if at least one of the posynomial terms Cy Tty ]
j=1
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can approach zerc without causing any of the other posynomial terms to

approach plus infinity. Programs A(0,0) and B;(0) that are not degen-
erate are said te be 'canonical," because Sec. VI.3 of Duffin, Peterson,
and Zener (1967) "reduces'" the study of degenerate programs to the study
of equivalent canonical programs., Actually, it seems that all posynomial
programs arising in technological design are canonical to begin with;
but in any event we need only restrict our attention to canonical pro-
grams.

For canonical dual programs B)(0), Sec. VI.4 of the same reference
shows that a linear programming algorithm can be used to construct dual
feasible solutions with strictly positive components (which, incidently,
do not exist for degenerate dual programs). Such dual feasible solu-
tions are numerically desirable because the dual objective function V
defined by the formula

V(y) A - H(y, A (y))

is differentiable (in fact, "analytic") only at points with strictly
positive components. Moreover, the set of all strictly positive dual
feasible solutions is clearly the (relative) interior of the dual fea-
sible solution set, and it is not difficult to show that V is continuocus
on the (relative) boundary of that set,.
Hence, any of the efficient numerical algorithms for maximizing an

“analytic concave function subject to linear constraints can be used to
generate a strictly positive maximizing sequence {yd}F from a given
strictly positive dual feasible solution y0 (that can be determined by
linear programming). Such a maximizing sequence may, of course, con-
verge to an optimal solution that does not have strictly positive com-
‘ponents.

These maximizing sequences can be terminated by the algorithm stop-
ping criterion discussed in Sec. 4 because Sec. VI.4
of Duffin, Peterson, and Zener (1967) proves that canonical programs do
not have duality gaps. But such procedures require the simultaneous
generation of a minimizing sequence for program Ay (0,0), presumably by
an appropriate numerical algorithm for minimizing convex functions sub-
ject to nonlinear convex constraints, Such algorithms are known to be
relatively slow and sometimes unreliable, so alternative procedures are
desirable. ‘

One alternative procedure employs the extremality conditions (Edi-
tor's note: The extremality conditions are stated explicitly in Sec. 6
of this paper.) corresponding to programs A; (0,0) and ’

51(0), namely:

(1) x € X and yEY,
X.
(1) Iejed gl kep,
(k]
X X4 .
(1I11) yg Leged =ce, ie tol,
Lo]
A (y)eqe -
(IV) y1=—LZ__£T* I.E[k_!, kGP,
: L c;e 3
[k}

(V)
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Of course, some of the extremality conditions, such as (V), do not appear

sup
because the index set J i1s empty, and because the Ck‘EEnk<ick,yk>

is finite 1f, and only if, yK = 0, Furthermore, by using the equation
Ak(y) = [Z]yi, it is not difficult to show that conditions (IV) and (VI)
k

are equivalent to the conditions
) X4

whose validity when A, (y) > O clearly implies the validity of the cor-
regsponding condition (II) as an equality (i.e., the corresponding primal
constraint is "active”).

Now, Sec. VI.4 of Duffin, Peterson, and Zener (1967) guarantees the
existence of an optimal solution x* to a consistent canonical program
A,(0,0); and, when A;(0,0) has a Kuhn-Tucker multiplier [(which 1s, of
course, the case when A;(0,0) is super-consistent], Sec. VI.4 also guar-
antees the existence of an optimal solution y* to the corresponding dual
program Bj(0). Such optimal solutions x* and y* must satisfy the ex-
tremality conditions (I-III), conditions (IV') and the objective func-
tion condition

v") log T cied = v(y)
og L cye =V(y),
[0] 3

because of the lack of duvality gaps. In particular, observe that x* is
immediately determined from y* when y* has strictly positive components,
by simply taking the logarithm of conditions (III) and (IV') while tak-

ing account of condition (V'). If y* has a zero component, say, y*; = 0
for some i € [k], then the corresponding condition (IV') implies that
Ak(y*) = 0 and hence that y*i = 0 for each 1 € [k]; in which case, X*i
for each 1€ [k] cannot be determined by taking the logarithm of condi-
tions (IV') [although such unknown components X*i can sometimes be de-
ter%ined from the known components of x* by using extremality condition
(m 1.

Generally, we do not have a dual optimal solution y* at hand, so we
must work only with a strictly positive maximizing sequence {yQ}8 such
that y4 » y*. Using such a sequence {yqQ}y and the (obviously) continu-
ous extremality conditions (III), (IV'), and (V'), we can generate an
image sequence {XQ}8 such that x4 + x* when y™ has strictly positive
components. Of course, the vectors x% may not be feasible solutions to
program A1(0,0); so the algorithm stopping criterion must also include
tolerance limits for the primal constraints, each of which is active
when y* has strictly positive components.

The preceding algorithm has been quite successful only at solving
those programs Aj(0,0) and B;(0) that have active primal constraints,
because the resulting positivity of the Kuhn-Tucker multipliers X*k im~-
plies that the optimal solutions y* to program Bl(O) are strictly posi-
tive. However, Kochenberger (1969) has discovered how to extend this
algorithm to those programs A)(0,0) and BI(O) that have inactive primal
constraints, by essentially taking up the slack in such constraints,

To do so, he adds "'slack variables" Ty to the posynomials that appear
in potentially inactive constraints; and then he adds their reciprocals
ka"l to the posyncmial objective function. The coefficient parameter
b is chosen to be positive sc that the positive variables T, will tend
to become as large as possible and hence make the correspondinz



constraints active. Consequently, this "augmented" posynomial program
can be solved by the preceding algorithm for each choice of the posi-
tive parameter b. In particular, Kochenberger and Woolsey (in private
comnunication) state that when b is very close to zero, the resulting
optimal solutions are very good approximations to the (desired) optimal
solutions to the original programs Aj(0,0) and Bj(0). More recently,
Duffin and Peterson (1971d) have shown that these approximations can,
in fact, be made arbitrarily accurate by choosing b sufficiently close
to zero. In addition, they have used this device to give a new and
somewhat simpler proof of the fact that canonical programs do not have
duality gaps.

Since the primal constraints in the augmented program are known to
be active, they can clearly be replaced by the corresponding equality
zonstraints without changing the augmented optimal solutions. These
equality constraints can then be solved for Ty and hence eliminated
by substituting the resulting expression for T, into the augmented ob-
jective function. This substitution produces an equivalent unconstrained
program that is not a posvnomial program but has the same objective
function used in the ''penalty function' methods of Carroll, Fiacco, and
McCormick (1969).

Clearly, there are many posynomials like ka"l that produce active
constraints when added to the original posynomial objective function;
the only requirement is that such posynomials are not themselves mini-
mized by any Ty < 1. Each posynomial corresponds to a different penalty
function, and each penalty function is known to produce a numerical
method [Fiacco and McCormick (1969)] for solving the posynomial program
A1(0,0) directly. Perhaps a hybrid of the purely penalty function
method and Kochenberger's method would be most effective. Such a hybrid
method could conceivably exploit the fact that a primal constraint is

inactive when its corresponding dual positivity conditions are active.

Actually, it is worth mentioning that Kochenberger and Woolsey no
longer use the posynomial ka‘l because their experience indicates that
it is numerically better to introduce an additional positive parameter
r and use the posynomial bT T + ka‘r. In particular, they have ob-
tzined sufficiently accurate approximate optimal solutions to a number
ot programs of practical significance by choosing b = r = 0.01.

Finally, we should mention that these and other techniques have been
coded and studied by Thomas Jefferson who intends to use them to solve
the "northeast corridor transportation probliem" as part of his Ph.D.
thesis at Northwestern University. His computer software can, of
~ourse, be used to solve any posynomial program (and, hence, any alge-
traic program by virtue of the developments described in the next sec-
tion). A very comprehensive software package, including a postoptimal
censitivity analysis for the coefficients , 1s now commercially
available.

8. SIGNOMIAL PROGRAMS TREATED BY GEOMETRIC AND HARMONIC MEANS

Although geometric programming with posynomials provides a powerful
method for studying many optimization problems in technological design,
many other important optimization problems can be modeled accurately
only by using more general types of algebraic functions. Hence, the
question of extending the applicability of geometric programming to
those larger classes of programs has received considerable attention.

In particular, Sec. ITI.4 of Duffin, Peterson. and Zener (1967) pre-
sents various technicues for transforming a limited class cf algebraic
programs into equivaicnt prototype geometric prowrans, but many of the
most important optimizaticon problems are not withiir that limited class.
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Initial attempts at rectifying this situation were made by Passy and
Wilde (1967). They generalized some of the prototype concepts and theo-
rems in order to treat "signomial programs'; but most of the important
prototype theorems are not valid in that more general setting. Never-
theless, their work was subsequently advanced by Duffin and Peterson
(1971a) in such a way that those difficulties have been at least par-
tially overcome, even in the still more general setting of algebraic
programs. By employing the well-known elementary transformations from
mathematical programming and by using rather obvious extensions of the
transformations given in Sec. III.4 of Duffin, Peterson, and Zener
(1967), each well-posed algebraic program can be transformed into an
equivalent signomial program — and, hence, ultimately into an equivalent
posynomial program by exploiting the transformations to be described
here. Due to the inherent difficulty in giving a general analytical
description of the class of algebraic programs, we only illustrate their
transformation into equivalent signomial programs with an example in
Sec. 3. Here we confine our attention to the more easily described,
but much smaller, class of signomial programs.

A signomial is a (generalized) polynomial

a12 aim

1 to I

N a
f£(ty, tgy ..., tp) A z cq t) 1
: i=1

(with arbitrary real exponents aij) whose independent variables ty are
all restricted to be positive. It 1s convenient to arrange the terms
of a signomial f(t) so that those with positive coefficients cj (1f any)

‘appear first in the summation. Then each signomial f(t) 1s seen to be
either a posynomial (i.e., all coefficients cy are positive), the nega-
tive of a posynomial, or the difference of two posynomials.

By using the well-known elementary transformations employed in mathe-
matical programming, we can easily transform each signomial program into
an equivalent signomial program in which a signomial is to be minimized,
subject only to upper-bound inequality signomial constraints. Moreover,
each of the resulting constraints can be formulated in one of three forms:

f£(t) £ -1, f(£) 20, f(t) g1. g.1)

We now show how to transform each of these signomial programs into an
equivalent posynomial program in which a posynomial is to be minimi:zed,
subject only to inequality posynomial constraints hdving one of these
forms:

g(t) s 1, g(t) 2 1. (8.2)

Unless the objective function is already a posynomial, we first
transform it by introducing a new positive independent variable tp. To
see how this is done, suppose we wish to minimize a signomial fg(t),
subject to inequality signomial constraints. The transformation to be
used depends on the sign of the constrained infimum of fn(t). TIf this
sign 1is not negative, we should minimize the positive independent vari-
able tp, subject to the original constraints and the additional con-
straint fo(t) < tgp; in which case the constrained infimum of ty clearly
gives the constrained infimum of fj(t). 1If the constrained infimum of
fo(t) 1s negative, we should maximize tp, subject to the original con-
straints and the additional constraint fo(t) + top £ 0: in which case
the negative of the constrained supremum of tg clearly gives the con-
strained infimum of fo(t). Now, maximizing tgy can obviously be accom-
plished by minimizing to‘l; so in all cases we are left with an equivalent




i T -

program that consists of minimizing a posynomial, subject only to in-
equality signomial constraints.

0f course, vhen the sign of the constrained infimum of fp(t) is not
known in advance, we should probably make an educated guess at the ap--
nrcpriate sigr and, hence, the appropriate transformation., If the first
rransformation is chosen and the resulting infimum turns out to be zero,
then the second transformation should also be tried in order to see
vhether the desired infimum is actually less than zero. If the second
transformation is chosen and the resulting program turns out to be in-
consistent, then the first transformation should also be tried in order
to see whether the original program is actually inconsistent or just has
a nonnegative infimum. In any event, clearly the additional signomial
zonstraint can be formulated in at least two of the three forms (2.1).

The additional transformations required to obtain an equivalent posy-
nomial program are most easily described within the context of a special
case in which there are only three signomial constraints, each repre-
senting one of the three possible forms (8.1). Thus, suppose we wish
to minimize a posynomial gnp(t) subject to the signomial constraints

E() £ -1, £(0) 50, f£3(0) 51

If £;(t) is a posynomial, the constraint f;(t) < -1 clearly camnnot
be satisfied, so the program is inconsistent. If f;(t) is the negative
of a posynomial, this constraint is equivalent to the posynomial con-

straint -f;(t) > 1, which already has the second of the desired forms
(2.2). Hence, we need to give further consideration only to the case
in which f,(t) is the difference of two posynomials.

If £f,(t) is a posynomial, the constraint f,(t) < O clearly cannot be
satisfied, so the program is inconsistent. I f,(t) is the negative of
1 posynomial, this constraint is automatically satisfied and, therefore,
can be ignored. Hence, we need to give further consideration only to
the case in which fz(t) is the difference of two posynomials.

If f4(t) is a posynomial, the constraint f4(t) < 1 is already a posy-
'omial constraint that has the first of the desired forms (2.2). If
“{z) is the rnegative of a posynomial, this constraint is automatically
satisfied and, therefore, can be ignored. Hence, we need to give fur-
“her consideration only to the case in which f3(t) is the difference of
two Tosynomials.

Thus, suppese we wish to minimize a posynomial gp(t), subject to the

astraints

|
-

hy(t) - h,(t) g -1
hz(t) - hS(t)
h3(t) - h6(t)

A
o

kA
—
-

where the h,(t), k =1, 2, ..., 6, are posynomials and t = (ty, tj,
tp) - Introducing three new positive independent variables tgi1, tp42,
and tp+3, we see that t is a feasible solution to these constraints if,
and only if, there are positive values for tp41, tysp, and tpyg such
that the augmented vector (t, tp41, tp4o, tpe3) is a feasible solution
to the constraints

L+h(t) £ oty £h(8),
ho(t) s t .o £ ho(t) ,
hy(t) £ tpyq £ hg(t) +1
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But these constraints are clearly equivalent to the constraints

gk(t, tm+1, tm+2, tm+3) < 1, k=1, 2, 3,
Bk (ts toprs topos tma3) 2 1 'k =4, 5, 6,
where
-1 _
rtm+k [1 + h ()] k=1
-1 -
gk (ts toyls oo toey) B -1 ~ }
-1 _
[ Pmrk (k-3) [hy (£) + 1] k = 6.

Moreover, it is obvious that these functions g (t, t, i1, tp+2, tm+3)
are posynomials and that each of the preceding six constraints has one
of the two desired forms (8.2).

It is now apparent that each signomial program can easily be trans-
formed into an equivalent posynomial program in which a posynomial gn(t)
is to be minimized, subject only to inequality posynomial constraints
having one of the two forms (8.2). Hence, there is no loss of general-

ity in restricting our attention to this special class of posynomial
programs, so we make this simplifying restriction in the following de-
velopments, .

Such posynomial programs have been termed ''reversed geometric pro-
grams'" because some of their inequality posynomial constraints have a
direction g(t) 2 1 that is the reverse of the direction g(t) < 1 re~
quired for prototype geometric programs.

The most general reversed geometric program is now stated for future
reference as:

Primal Program A. Find the infimum My of a posynomial gnp(t) subject
to the posynomial constraints

gr(t) =1, k=1, 2, ...,p,
and gk(t) >1, k=p+l1, ...,p+rAq.
Here, gk(t) A I ui(t) , k=20,1, ...,q,
- k]
a, a a,
| © cyty il ty iz tn m-o3e [k], k=0,1, ...,p,
an ui 4] -a.: -a.: —-a-:
ety e, 2 e M g e (K], k=op+l, ...,q,
where k] A {mk, m + 1, ..., nk} , k=20,1, ...,4q,
and 1 Amg sng, ng+1Am g0y, ..., Ng-1 +124 Mg £ ng An

The exponents ajj and -ajj are arbitrary real numbers, but the coeffi-
cients ¢y and the independent variables ty are assumed to be positive.

We have placed minus signs in the exponents for the reversed con-
straint terms in order to obtain a notational simplification in the en-
suing developments.



“49-

To provide other neotational simplifications, we use the index sets

{1, 2, ..., pl,

RA{p+1, ..., q},

e e

and (kJ]a v [k] for each K C {0} U P UR.
" kek

For purposes requiring pronunciation, [K] is called "block K."

In terms of the preceding symbols, primal program A consists of min-
imizing the "primal objective function,” gp(t) subject to the prototype
"primal constraints" gp(t) <1, k € P, and subject to the reversed primal
constraints gk(t) > 1, k € R, where: the posynomial gk(t) A T ui(t)

(k]

for each k € {0} U P U R; the posynomial term uy(t) A citlail tzaiz
tmaim for each i € [0] U [P]; and the posynomial term uj(t) A citiail
t;aiz . t;aim for each 1 € [R].

As in prototype geometric programming, each posynomial term uq(t)
in primal program A gives rise to an independent 'dual variable" yy,
i € [0]J v [P] U[R]; and each posynomial g, (t) gives rise to a dependent
dual variable A, (y) A [ﬁ]yi, k € {0} U P UR. To define the "geometric

dual" of primal program A, it is convenient to extend the notation of
the preceding paragraph by introducing the symbols

K(y)
and [K1(y)

{k € K | A (y) # 0} for each KC {0} U P UR,
{1 e [K] l Yy # 0} for each K C {0} U P UR.

e >

Then; corresponding to primal program A is the following geometric dual
program:

Dual Program B. Find the supremum Mp of the dual objective function

[ BT 6L B

v(y) A :
Lol RANCY) [RIC(y)
]“'r AL (V) I | A ()
x ‘[ )\k(}’) k } [ Ak(}’) k ]]
P(y) R(y)
subject to the positivity conditions
y; 20, ie{l, 2, ..., n}=[0]ulP]uUlR]
the normality condition
Ao(Y) =1 »
and the orthogonality conditions
n
z aijyi =0 y j = 1, 2, e ey M.
i=1
Here Ay (y) A . ke {0, 1, ..., g} = {0} UP UR,

Ly
[xI*
and the numbers ajij and ¢ are as given in primal program A.
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The dual constraints are identical to their analogs in prototype
geometric programming; and they are linear, so the dual feasible solu-
tion set is either empty or polyhedral and convex. The dual objective
function differs from its analog only by the presence of minus signs in
the exponents of the factors ¢orresponding to the reversed primal con-
straints; but those minus signs result in very large theoretical and
computational differences between reversed and prototype geometric pro-
gramming.

In particular, the logarithm of the dual objective function v is no
longer concave, because the minus signs make the terms corresponding to
the reversed primal constraints convex. Consequently, unlike prototype
geometric programming, reversed geometric programming is not essentially
a branch of convex programming. Moreover, this lack of (total) convexity
will force us to be content with studying "equilibrium solutions" that
need not always be optimal.

Thus, the preceding remarks and the extremality conditions (I-III)
and (IV') (given in Sec. 3) for prototype geometric programs help to
motivate the following definition:

Definition. A feasible solution t* to primal program A is termed a
primal equilibrium solution if there is a feasible solution y* to dual
program B such that

y*180(t*) = ug (t*) , - 1€ [o],

and v¥ = A 5Mug (8%, 1 € [x] k € P U R;

in which case y* is termed a dual equilibrium solution. Given corres-
ponding primal and dual equilibrium solutions t* and y*, the numbers

Ep 4 go(t*) and Ep A v(y*) are said to be corresponding primal and dual
equilibrium values.

In view of our previous discussion of prototype geometric programs,
we might guess that equilibrium solutions are intimately related to the
Lagrangian for primal program A. Actually, those relations serve as a
convenient vehicle for establishing two illuminating facts that indicate
the practical relevance of equilibrium solutions: first, the set of all
equilibrium solutions to primal program A is identical to the set of all
those primal feasible sclutions that are "tangentially optimal" in a
certain weakly global sense; and, second, almost every ''locally optimal”
solution to primal program A is also a primal equilibrium solution.
These and other facts are established and further discussed in Duffin
and Peterson (197la). In particular, corresponding primal and dual
equilibrium values are shown to be equal, and dual equilibrium solutions
are characterized as the solutions to certain "equilibrium equations."
The equilibrium equations generalize the ''mass action laws" for the
chemical equilibrium problem, and they also provide "indirect methods"
for computing equilibrium solutions.,

The study of each reversed geometric program will now be reduced to
the study of either of two different corresponding families of approxi-
nating prototype geometric programs. This reduction is based on the
classical inequalities relating the arithmetic, geometric, and harmonic
means [Hardy, Littlewood, and Polya (1959) |. For our purposes, it is
convenient to state those inequalities in somewhat disguised form as the
following lemma.
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Lemma Ba. If u;, ..., uy are positive quantities, and if a7,

-y QN
are positive numbers such that

N
Z Gi =1 y
1=1
N -1 N R L T P
then | ] ug| s % s 1 |5 -
1=1 i=1 |~ i=1

Moreover, these insqualities are strict unless

N
uy = o z u{i » i=1, ..., N,
i=1
in which case they are equalities.

Proof. Given positive quantities Ty, ..., Ty and the positive
"weights" ay, ..., ay, Cauchy's arithmetic-geometric mean inequality
asserts that

N N
a 1
Jogrgle [T apt (8.3)
i=1 i=1

with equality holding if and only 1if

- N
Ti = leajTj , i=1], ..., N. (8.4)

(Actually, this inequality is equivalent to the conjugate inequality

N
X
when g(x) A log 2 e 1.) Replacing the positive quantities T; with
i=1
their positive reciprocals Ty
mean inequality

1 gives the classical geometric-harmonic

N N -1
l T‘ aj T -1

(Ti) 1 2 Z aiTi > (8.5)
i=1 i=1

with equality holding if, and only if,

N
7l = '§1ajT51 , i=1, ..., N, (8.6)
j=1

N
Moreover, it is easily seen that the normalization Z aj = 1 implies
i=1

the equivalence of the equality conditions (8.4) and (8.6). Now, choose
T{ = ui/aq for i = 1, ..., N, and invert each of the inequalities re-
sulting from (8.3) and (8.5) to complete our proof of Lemma 3a.

Given a posynomial

N
g(e) & ] up(®)

i=1
and positive weights o], ..., ay, the corresponding geometric inverse

g'(*;a) of g, and the corresponding harmonic inverse g''(-;a) of g, are
posynomials defined by the following formulas:
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N oy
g'(t;a) & [T [11 ]

A
= q=p i(®
' T ay?
and "(t;a) A —— .
g ) A 121 O

Then, Lemma 8a shows that
1/g(t) ¢ g'(t3a) g g"(t3a)
for each t > 0, so we have the following implications:
g'(t;a) 1 =g(t) 21, (8.7)
and g'(t;a) s 1= g"(t;0) s 1=g(t) 21. (8.8)

A

Given a reversed geometric program A, the implication (8.7) suggests
the introduction of a condensed program A'(a) in which the reversed in-
equality constraints g(t) 2 1 are replaced by the corresponding proto-
type inequality constraints g'(t;a) < 1. Then the resulting condensed
program A'(a) is a prototype geometric program, and the implication
(2.7) shows that the infima M, and Mgt (q) for programs A and A' (o),
respectively, satisfy the inequality

MAi(a) 2 MA .

A detailed analysis of the family of all condensed programs A'(a)
was, in essence, first given by Avriel and Williams (1970), although
similar analyses for somewhat smaller classes of programs were inde-
pendently made by Broverman, Federowicz, and McWhirter (personal com-
munication), Pascual and Ben-Israel (1970a), and Passy (1971). Actually,
the condensation process can be further exploited to reduce the study
of each reversed geometric program to the study of an infinite family
of approximating linear programs. In particular, that process combined
with the duality theory of linear programming provides another alterna-
tive proof [Duffin (1970) ] of the fact that canonical prototype programs
do not have duality gaps.

Given a reversed geometric program A, the implication (8.8) suggests
the introduction of a harmonized program A" (a) in which the reversed
inequality constraints g(t) > 1 are replaced by the corresponding proto-
type inequality constraints g''(t;a) < 1. Then the resulting harmonized
program A'"(a) is a prototype geometric program, and the implication
(2.8) shows that

MA"(G) 2 MA'(Q) 2 MA ,
where Mpn(y) is the infimum for program A"(a).

A detailed analysis of the family of all harmonized programs A'(a)
was first given by Duffin and Peterson (1971b), although a few of their
results were independently obtained by Passy (1971).

Condensed programs and harmonized programs have many common features
that we will now summarize. The most fundamental common feature is
that each approximates a reversed geometric program with a prototype
geometric program — actually, with an infinite family of prototype geo-
metric programs because the weights a are not unique.

The approximations are clearly conservative in that the arithmetic-
geometric mean inequality and the arithmetic-harmonic mean inequality
imply that each feasible solution to an arbitrary geometric program in
the approximating families is also a feasible solution to the reversed
geometric program. Thus, the infimum for each of those geometric pro-
grams is not less than the infimum for the reversed geometric program.
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The approximating families are robust in that each feasible solution
to the reversed program turns out to be a feasible solution to at least
cne cf the approximating programs in each family. Hence, the infima
for the geometric programs in each family come arbitrarily close to the
infimux for the reversed program.

Under suitable conditions, a sequence of approximating programs can
be chosen from either family so that the corresponding infima sequence
converges monotonely to the infimum for the reversed program. Thus,

a reversed geometric program can frequently be solved by solving a se-
quence of approximating geometric programs, each of which can be solved
by the techniques of prototype geometric programming (as discussed in
Sec. 2).

The harmonic-mean approach has an important feature not possessed by
the geometric-mean approach in that its approximating exponent matrices
clearly depend only on the reversed geometric program being approxi-
mated, and not on the given approximation. Only the posynomial coeffi-
cients change with the approximation, so many matrix computations need
not be repeated during the solution of a sequence of approximating pro-
grams. This feature also leads to a variety of strategies for deter-
mining such program sequences. For example, we can employ the coeffi-
cient sensitivity analyses alluded to in Sec. 2 and developed in Appen-
dix B of Duffin, Peterson, and Zener (1967). Those sensitivity analyses
cannot be used with the geometric-mean approach because of its lack of
invariance for the exponent matrix.

However, the geometric-mean approach has potentially useful features
not possessed by the harmonic-mean approach. In particular, we have
already seen that its approximations are generally not as conservative
as those in the harmonic-mean approach, so it may require fewer itera-
tions. Furthermore, 'it tends to reduce the "degree of difficulty"
(page 11 of Duffin, Peterson, and Zener (1967)], an invariant in the
harmonic-mean approach; so its approximating geometric programs may be
easier to solve.

Consequently, the relative computational merits of the two approaches
may not become apparent until considerable computational experience is
oobtained.

Finally, we mention that Charnes and Cooper (1966) have proposed an
independent and completely different approach for approximating signom-
ial programs with prototype geometric programs. However, the errors
involved in their approximations have never been investigated.

9. EXAMPLE OF ARBITRARY ALGEBRAIC PROGRAM

We now illustrate with an example how to transform an arbitrary al-
gebraic program into an equivalent signomial program so that it can be
further transformed into an equivalent posynomial program with the aid
of the transformations introduced in Sec. 4,

Without loss of generality, we assume that the independent variables
are restricted to be positive, a condition that can, of course, always
be achieved by replacing each unrestricted independent variable with
the difference of two new positive independent variables.

Thus, suppose that we wish to minimize the algebraic function

/\/ N £1(t) + f3(t)] / [\/ £o(t) + fa(t)} , (3.1)

(. P
where the f (t), k = 1, 2, 3, 4, are signomials and t = (t], t2, ...,
ty) - To keep imaginary numbers from being generated and, hence, make
this a well-posed algebraic program, we must obviously include the
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constraints

(@]
IA

s £,(0) (3.2)

and 0 g fy(t) (3.3)

A

For the same reason, we must also include either the constraints

05 A/ E(E) + f3(t) (9.4a)
and 02 A/E,() + f,(0) , (3.5a)
or the constraints

A/ E1(E) + £5(8) 20 (9.4b)
and NE,(E) + £,(t) 20 . (3.5b)

In general, more than a single program must be solved to solve one al-
gebraic program. In our example we must solve both the program P, with
constraints (9.4a) and (9.5a), and the program Py with constraints
(9.4b) and (9.5b); after which we must choose the smaller of the two
optimal values. 7To be concise, we shall illustrate our additional
techniques on only one of these two programs, namely, program P, whose
congistency we shall assume.

To test for the possible occurrence of the indeterminate form "V 0/0,

we should first minimize just the numerator [ V’fl(t) + f3(t)], subject,

of course, to the constraints (9.2), (9.3), (9.4a), and (3.5a). This
program P,' has an optimal value that is either zero or positive by vir-
tue of constraint (9.4a). If it is zero, then constraint (9.5a) shows
that either there is a minimizing sequence such that the denominator

[ \/fz(t) + fa(t)} is bounded from below by a positive number, or

3
E\/fz(t) + f4(t)J approaches zero from above for each minimizing se-

quence. In the first case, the optimal value of program P, and, hence,
the original program P is zero; in the second case, there is presumably
a common factor that needs to be removed from the numerator and denomi-
nator, a situation that should not arise when the original program P is
properly formulated. The remaining possibility is that the optimal
value for program P_,' is positive; in which event the indeterminate
form 0/0 cannot occur, and we must consider both the numerator and
the denominator simultaneously, that is, program P,.

Before proceeding, we should observe that program P,' 1s generally
not a signomial program; but for the sake of conciseness we shall not
carry out its transformation into an equivalent signomial program. In-
stead, we assume that 1ts optimal value is positive so that we must ac-
tually come to grips with the more complicated program P,.

Introducing an additional positive independent variable tpy, we see
that program P, consists essentially of minimizing the posynomial

VAT (9.1a)

subject to both the constraints (3.2), (3.3), (3.4a), (3.5a), and the
additional algebraic constraint

-
[/\/ £,(0) + f3(t)]/ 'L'\/fz(t) + f4(t)]

which can conveniently be rewritten as

(17N

to >
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0 < —l\/flzt) + tg f\/fzfti - £5(t) + tyf, (¢) (9.63a)

by virtue of constraint (9.5a). To achieve our goal, we must still
transform the algebraic functions in constraints (9.4a), (9.5a), and
(9.6a) into signomials. Toward that end, we introduce two additional
positive independent variables tp4] and tpyp so that (9.4a) and (9.5a)
can be replaced by

0 s AfTtpy *+ £3(0) , (9.4al)
and 0 < «/tm+2 + f4(t) . . (9.5al)
tr S f5(0) . (9.5a2)

Finally, we introduce another positive independent variable
tn+3 So that (9.6a) can be replaced by

- NTEs t tg AT, - f£3(8) + tf, (1), (9.6al)
(3.6a2)

0

nA

fl(t)

A

tm+3 .

Thus, program P, actually reduces to minimizing the posynomial (9.1a),
subject to the signomial constraints (9.2), (9.3), (9.4al), (9.4a2),
(9.5al), (9.5a2), (9.6al), and (9.6a2). This program is obviously a
signomial program which can be further transformed into a posynomial
program with the aid of the techniques given in Sec. 4.

The variety of optimization problems that can be expressed as well-
posed algebraic programs is worth stressing. For example, by virtue of
the Stone-Weierstrass approximation thecrem, each program involving
continuous functions with bounded domains can be approximated with ar-
bitrary accuracy by a rather limited class of algebraic programs,
namely, the class of polynomial programs.

-
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