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ABSTRACT

This paper studies the implications of using standard models
of production and cost to amalyze technology when that technology is
noisy, i.e. the production process is stochastic. A model of a competi-
tive, expected profit-maximizing firm facing a stochastic production
process is posed and analyzed. Two implications for the analysis of
such firms based on the usual observables of output levels, input levels
and prices, and costs are presented. Direct analyses of technology via
estimation of a production function will typically be plagued by mis-
specification unless the models reflect a special type of separability.
Analyses of technology based on cost models are also affected: here
the standard model of cost using observed output will only be consistent
with a constant returns-to-scale technology. Cost functions based on
expected output will provide all relevant technological implications.

Examples are provided.



1. Introduction

Most production processes are stochastic in nature. Many firms func-
tion by setting production goals and developing output control procedures
to help the firm come close to their goals. In general while enterpreneurs
may plan to produce some specified level of output, they often do not
exactly fulfill their plans: shortfalls or overages occur. In many firms
output control is an everpresent part of the firm's activity; automotive
manufacturers, food processors and transportation companies are obvious
examples.*

Randomness in the production process is not a new topic. Zellner,
Kmenta and Dreze [23] resurrected the direct estimation of the Cobb-Douglas
model by considering a multiplicative term and firms that maximize ex-
pected profit. Feldstein [9 ] considers a more general Cobb-Douglas case
and derives results for the estimation procedure and implications for
factor shares of returns—from—production. While there have been a number
of papers concerned with stochastic input prices, Rothenberg and Smith
[15] appear to be the first to trace out some of the general equilibrium
resource allocation effects of assuming the noise to be in input vari-
ables rather than the prices. More recently a number of papers ( see, e.g., [13
and [16]) have been concerned with estimating stochastic production func-
tions to provide insight about issues of efficiency in production.

What is new in this paper is the direction of the inquiry. While for
the most part the literature has been concerned with the econometrics of

analyzing cost and production, our interest will concern the models of cost

%
In fact the impetus for this paper comes from ongoing work concerned with
estimating multi-product cost functions for railroad firms, where some of

the outputs include speed of delivery and schedule reliability.



and production themselves. Specifically we study some of the implications
of using standard models for analysis of technology when there is noise
(i.e. random disturbances) in the production process. It is shown that
ignoring noise corresponds to an implicit, and severe, restriction of the
admissible class of models of production processes. This sheds light on
how such stochastic effects must be accounted for in analyses of produc-
tion and cost.

The randomness being analyzed is not the type that is usually addressed
(except as noted above) by econometric analysis. We are not concermed for
example, with problems of measurement error or differences amongst firms.
We consider noise that enters the production process that the enterpreneur
acknowledges, plans for, and acts upon: failures of machines, variability
of labor quality, imperfections in quality control schemes (as well as
quality control itself), theft, accidents, etc. We examine the issue for
model functional structure that recognizing (or not recognizing) noise in
the process implies.

In what follows we examine the implications of assuming particular
functional structures to represent production or cost functions. Two

types of analysis will be addressed:

1. Direct analyses of production wherein some form of the
production function is chosen (e.g. Cobb-Douglas,
CES [ 1], Translog [ 6] or Generalized Leontief [ 8] ) and

estimated.

2. Analyses of production via a cost function, relying upon
the duality ([11], [17]) between production and cost to

provide the link.



In both cases we assume a firm that maximizes expected profit and chooses
inputs accordingly. Observed output will fluctuate according to a distri-
bution that, while assumed to be known to the entrepreneur, is unknown to

the economic analyst. Thus the analyst has the following observed infor-

mation at his disposal:

1. Observations on output, y, and cost C
2. Prices of input factors, q.

3. Levels of input factors purchased, x.

We shall refer to the standard approach as one wherein either a pro-
duction function F(x) or a cost function C(y,q) is posed (i.e. a functional
form posed) and estimated (see, e.g. [22, Ch. 4]). We will see that by so
doing we ignore the fact that the entrepreneur may have faeced a stochastic
production problem and that in many cases our model will be seriously mis-
specified and produce very misleading results.

Section two provides a simple model of an expected profit-maximizing
firm that will be used in the rest of the paper. Section three provides
two analyses. First we examine the conditions under which standard analyses
of production functions (ignoring noise) will be correct if the actual pro-
duction function is stochastic; we then provide an example wherein this would
not be true. Then we turn to analyses of technology via cost functions.
Here we find that cost functions must be estimated using expected output
instead of observed output (as is usually done), Extending the production

example shows that failure to do this may result in major estimation errors.



2. A Model of Stochastic Production and Cost Minimization

In this section we present a model of a firm producing a stochastic
output and choosing the deterministic inputs so as to maximize expected
profits. The first order conditions are then used to define an implicit
cost minimization problem that the enterpreneur faces that relates fac-
tor level usage to expected output and factor prices. The relationships
between the stochastic production function, the expected production
function and the cost function will be explored in the rest of the paper.

Consider a firm producing a single output y wusing an input vec-
tor* X, X E R:, which it purchases at given prices qe R:+- Produc-

tion follows a production function f:Ri X D+ R+, represented as f(x,w),

with the following properties:

1. £f(0,w) =0 w eD

2. D& R

3. f is continuous with continuous first and second
derivatives in x and w.

v
4, fo(x,w) >0 w € D

Furthermore, @ is distributed G (i.e. ® ~ G), with G assumed known to the
firm.

Let p be the price of output; thus profits will be taken to be
T =7py - q9'x = pf(x,0) - q'x. We assume that the firm maximizes expected

profits, i.e. it chooses x that solves the following problem:

(PM) max f (pf(x,w) - q'x)dG
X D
*
R:L‘= & e Rn:xi_>0, i=1,...,n}, R_L = {x ¢ Rn:xi >0, i=1,...,n}



The first order conditions are straightforward:
(1) PID fidG = q; i=1,...,n

where fi = af(x,w)ﬁ)xi. Since, by assumption, fi £ R++ and q; € R++

then (1) implies that

[
[

) & " T e

fa]

¥
where E(fi)EE IDfidG, i. The n-1 ratios in (2) express the first order

condition that the marginal rate-of -technical-substitution of the expected
production function should equal the ratio of input prices. This can
be viewed as an efficiency-of-expected production condition that arises

from the following cost minimization problem (CMP):
(CMP) min q'x
S.T. E(f(x,0)) = u

with q as above and u parametric (u= E(y)). The result of (CMP) is
the cost function C(E(y),q); the first order conditions for (CMP) are

%
the constraint and the (n-1) ratios (2) above.

*
In all the above discussion we have implicitly assumed appropriate suffi-

cient conditions on E(f) are in force.



3. Functional Structure Implications

Noise in the production process implies that only in special cases
can we ignore its presence when performing an economic analysis. It
will be shown that our econometric models of production and cost must
be extended to allow for testing for the presence of noise that the
entrepreneur has accounted for in his choice of input and output levels.

In the sections that follow we will use basic notions of separability
due to Leontief [12] and Sono [18], to provide a notion of stochastic

separability. Most models of inherent noise have assumed, it turmns out,

stochastic separability for the processes modeled (see, e.g. [13], [1l6],

[23]). The second section provides a simple example of a production func-
tion that is not stochastically separable. Here we assume a Cobb-Douglas
production process with one of the output elasticities being random (see,

e.g. [ 9]). 1If this is what the entrepreneur actually faces and if the
analyst then attempts to directly estimate a Cobb-Douglas production func-
tion using the observable data listed in section one above, the analyst may end
up with the completely erroneous conclusion that the entrepreneur is operating
off of his expansion path. On the other hand, in general, estimating a cost
function of the form C(y,q) on the observed data will only be consistent

with the actual production process if it is homogeneous of degree one in
inputs, clearly something to be tested rather than assumed. The fourth section
extends the earlier example to examine analyses via cost functions.

3.1. Stochastic Separability and the Expansion Path

. Consider first an extension of the Leontief-Sono separability con-
dition to the problem of separability of the random variable from the non-random

inputs in the production process. For convenience of discussion, we will refer

to such separability as stochastic separability.



Definition. f(x,w) is stochastically separable (s.s.) if

a(fi(x,w){fj(x4u)) _ Y. ;

3w

Theorem 1. if f(x,w) is s.s. then there exist functionms k:Rp + R and

2

E:R + R (with % > 0) such that

1

£(x,0) = £(k(x),w)

This is a direct extension of separability in the deterministic

case. See [ 2] for the deterministic case.

From Theorem 1 we see that
£,(x,0) = k, (R)E (k(x),0)
= B(£,(x,0) = k (DE(E; (k(x),0))

Therefore, the first order conditions (2) for problem (PM) (and for (CMP))

are:

E(£) Kk (OE(E(k®,0)) g
B G eEE ke Y

He

fa)

i.e. (2) becomes

k; () Eﬁ. \B

kj(X) q

Thus, if f(x,w) is s.s. then the distribution of w (i.e. G) is irrele-
vant: we may proceed as if the process being studied was deterministic.
In other words, if f(x,w) is s.s. then we can proceed without modeling

the noise process itself (i.e. G and how w enters f).
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Clearly, the reverse issue is more important: what is the struc-
ture of f(x,w) such that the form of G can be ignored? The answer is
that f(x,w) must be s.s. To see this we require only that there be

. n
functions Tij'R+ g R++ such that

= i,j
T 50 foidG/fojdG

for arbitrary G. An obvious candidate is k(x) with Tij(x) = ki(x)/kj(X)-

The condition above is equivalent to

fD(fi(x,w) - Tij(x)fj(x,w))dG =0

Since this must hold for arbitrary G then we must have:

£, (x,0)
— = T,
£, (x,0) J
J
which implies s.s. Therefore s.s. is a necessary and sufficient condi-

tion for using a deterministic production function to model first order

conditions for a stochastic production process if G can be arbitrary:

. i .s. 1 if d :RT >
Theorem 2 f(x,w) is s.s. if and only if Tij R+ R++ s 1,3
such that

Ty = foidG/fojdG for all G.

p
2

is not. Certainly, a priori, there is no theoretical reason to prefer

As an example, fA(X,w) = (xlw)axB

9 is s.s. while fB(x,w) = (x1-+w)ax

one specification to the other. Thus, the real import of the above theorem
is that stochastic separability is a property that should be tested (by
using a model sufficiently general to accept or reject it) rather than
assumed. The cost of not testing is to misspecify the model and may re-
sult in very misleading results. An example in which the expansion path

of the firm is misanalyzed is shown in the next section.



3.2. A Non-S.S. Example

To illustrate the implication of s.s., we will examine a simple example
of a stochastic production process which is not stochastically separable.
Consider the production process represented by:

w B

f(x,w) = X %,
with 0 < w < a, a >0, w v U[0,a]. £f(x,w) is Cobb-Douglas in (xl,xz) with
w distributed uniformly on D = [0,a] (i.e., dG = dw/a ) and B non-stochas-

tic. The expected production function E(f(x,w)) is simply:

B
a dw (xa - 1)x
E(f(x,w)) = IO x?xg —_ = -——l———;—Ja %) £ 1
a lnxl

Finally, it is trivial to show that 1lim E(f(x,w)) = xB from both the

xl+l 2
left and right and thus E(f(x,w)) is continuous and given by
(x? - 1)xg
x, £ 1
Lox? 1
1
E(f(x,w)) =

P =

X, X 1

Now if f(x,W) were estimated directly (by, say, taking logs and estimating
the random coefficients regression model (see 0], [21])), then the re-
sulting estimated function would be f(x,E(@)), i.e., estimating

Lny = winx + Bnx

1 2 + £ would yield expected values of w and 8,

thereby implicitly providing f(x,E(w)). Thus, we will compare E(f(x,w))
and f(x,E(w)) for our example. To see this we express the first order

conditions as follows:

a, .a_ _a : * q
E(fl) ) ax, xl,Q,nxl % + 1 ) fl(x’E(m)l’Z(xl,a) _h
a_ a f.,(x,E(W
E(fz) Bxl (xl 1) Rnxl Z(X (w)) 99

where fl(x,E(w))= af(x,E(w))/le, fz(x,E(w)) = Bf(x,E(w))/xz and
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a a a
xllnxl - Xl +1
2 a a Xl 71
(x5 - 1)i&n x
1 1
Z(xl,a) =<
1 Xl =1
\
It can be shown that ¥
lim Z(x,,a) = zZ(1,a) a
1
x,>1
1
Y
lim Z(xl,a) =2 a
xi+*»
YV
lim Z(x,,a) =0 a
x,+0 1
1
> 1 x, > 1
1 Va
Z(xl,a)
‘< 1 xl <1
BZ(xl,a) Y
_ > 0 X #1 a
Bxl

Consider now the expansion path of the firm, i.e. let

p=1Ixe Ri: q,E(f)) = q,E(£,))

for a given q = (ql,qz)' and consider the following two rays from the

origin:

o>
]
N[
el
[u—

| 2 ~
{x ¢ Ry: 94Bx%; = q,

=
I

2 -
{x e R+. qlﬁxlb— q, a xz}

A is the "expansion path'" that would be associated with f(x,E(w)), i.e.

associated with the following cost minimization problem

min q'x

S.T. f(x,E(w)) = u

with u parametric. On the other hand B is the asymptote for P. From
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f(x,E(w)) =

» X

Figure 1

Expansion Path Relationships



12

the analysis of Z(xl,a) we see that P represents a continuous function
that starts at the origin, travels initially above A, cuts A at X = 1,

and asymptotically approaches B. This is illustrated in Figure 1 with
f= (ZBql/aqz)B providing the isoquant of f(x,E(w)) where P crosses A.
Therefore, by not explicitly modeling the presence of noise in the
production process (and instead having implicitly relegated it to a mul-
tiplicative error form) we might be misled into concluding that some
sort of input usage bias existed for the firm under study. Since the
firm will be operating on P (not A), observations of input combinations
will occur on (or about) P, not on (or about) A. This will become more
acute the greater the range of operation of the firm. Since the obser-

vations will not lie along A, an improper conclusion of bias in the use

of inputs might occur, when in fact the firm is acting efficiently

3.3. Cost/Production Duality and Stochastic Production Functional Structure

What are the implications of estimating a cost function rather than
the production function? We shall see that the "obvious" cost function
to estimate will only be consistent with an extremely narrow range of pro-

duction functioms.

To lay the groundwork for what will be shown, we observe that the
solution to (CMP) produces a production function which is the convex hull
of E(f). To see this we consider a (expected) production possibility set

yc Rn+1 and an inputs requirement set V(E(y)):

VE®E) = {x e R:(EG),-x) e Y1,

with expected isoquants Q(E(y)):

A
QE()) = {x e Kt x e VE®)),x ¢ VE) +) a>0},
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and finally we consider the cost function-implied technology V*(E(y)):
* n ' V }
V(E(y)) = {x € Ri:q'x > C(E(¥),q) q> 0

where the cost function is C(E(y),q), the result of (CMP). The above
sets are direct extensions of their non-stochastic counterparts in the
literature (see [11], [17], and [22]). C(E(y),q), V(E(y)) and V (E(y))
have the usual regularity, monotonicity, etc. properties (see [22],
Chapter 1). These will not be repeated here, except to note that the
above functions and sets are well-defined and come from a specified
technology (which we denote {f(x,w),G}) and a given vector of input prices q.
Now, returning to the first section of the paper, if an analyst ob-
serves output (y), costs (C), input prices (q) and factor levels (x) then
the "obvious" cost function to estimate is C(y,q), perhaps augmented by
factor demand equations x = x(y,q). It has been argued that C(y,q)
should have as general a form as possible but it should be noted that

the supposedly obvious cost function C(y,q) is a function of the trandom out-

put y, not the expected output E(y). This is because we observe realiza-
tions of y and not E(y). If, for example, C(y,q) is estimated via a re-
gression model then the resulting estimated model is E(C(y,q)). Note

that E(C(y,q)) = C(E(y),q) if and only if*
C(y,q) =y 2(q) + d(q)

n n . . .
where 2.R++ - R+ and d.R++ - R+. Since all inputs are variable and C(E(y),q)

must be a cost function, it follows that C(0,q) = O and therefore d(q) = O.

Thus C(E(y),q) = E(y)2(q). Finally, since cost functions should be posi-

*This is true since we must allow for arbitrary distributions on y which re-

flect the fact that we did not start with a specific technological description
{f(x’m) ’G} L]
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tively linearly homogeneous ( PLH ) in prices, £(q) is a homogeneous
function of degree one. Hence, using a well-known result of Shephard [17],
E(f(x,w)) must be homogeneous of degree one in the inputs (x). Stated

more exactly we have the following theorem:

Theorem 3: Estimation of a cost function C(y,q) of noisy output y and
given input prices q is consistent with an underlying stochastic
production process {f(x,w),G} with G arbitrary only if f(x,w) is

(PLH) in x.
f(x,w) must be (PLH) since if E(f(x,w)) is required to be (PLH) then by

Eulers theorem

[pE=,0) - [, (x,0)x,)dG = 0

for arbitrary G. Thus f(x,w) must be (PLH) also.

3.4. Implications for Estimating Cost Functions: An Example

In the previous section we found that:

(1) Cost is a function of expected output, and not observed output;

(2) cost functions estimated using observed output will provide
valid technological information only if the firm faces con-

stant returns to scale.

The use.of cost functions to provide technological information (e.g.
returns-to-scale) has become a standard analytical tool. Cost functions have
been estimated for such diverse areas as electric utilities[5], railroads
[4]1, hospitals [14], the Canadian Economy [7], and garbage collection [19] to
name but a few.

In general, most such studies* have used observed output. From the an-

alysis above we know that if output is stochastic then using observed output

*Two exceptions are [3] and [10].
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is incorrect; expected output should be used instead. Clearly, however, it
is important to attempt to see how bad such a misspecification might be. It
is certainly possible that even though the use of observed output is theore-
tically incorrect, it is not particularly damaging in pracfice.

Such a proposition is difficult to address theoretically, since the
associated cost functions are very difficult to derive. Instead, we will ex-

amine a simple example based on the example from section 3.2 above. Let

f(x,w) = x. x

w _B
1 72

again with wU[0,a], a > 0. As was shown earlier, the expected production function

is : (Xa 1) xB
1 2
Xl#l,
E(f(x,w)) = a
in X
1
3 X = 1.

In particular, let a = 1 and let 8= .5, While the cost function dual to
E(f) is not easily derivable one can use a computer to simulate a firm
with such a technology; this is precisely what was done. Prices q1 and q,
were independently drawn from a uniform distribution on [10, 20]. Optimal
input levels were computed so as to minimize cost subject to meeting a re-
quired expected output level (eight levels were used: E(f) = 2,3,4,5,6,7,
8,9). Six price pairs were drawn, providing 48 observastions. The density,
U[0,1] was sampled 48 times (independent draws) to provide realizations of
w.. These were used, with the (x:, x;) values to produced "actual" output.
Finally, after the cost was compuated, a normal (0,1) deviate was added to

the cost. Thus, a simulated data base providing observed cost, observed actual
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output, expected output, input prices, and input levels was constructed pro-
viding 48 observations on a cost-minimizing, price-taking firm facing the
stochastic production function specified above.

A transcendental-logarithmic cost function was fit to the data. The
cost function was augmented with a factor share equation (for variable 1) as

discussed by Christensen and Greene [5]. The cost model is as follows:
= +
(3) 2n C ey +—azlnz a tngy + a,2nq,
+a_(nz)2/2 + o (tng)%/2 + o, (ing.)2/2
2z 11479 224719,

+ alenZanl + a anlnq2 + alzznqllnqz

2

(4) S1 = o + alllnql + alzlnqz + azllnz
where
C = observed cost/sample mean,
z = output/sample mean,
9y = observed input i price/sample mean,
S1 = price of input one x quantity of input one/observed cost.

This system was estimated via full-information maximum likelihood using the
WYMER package, written by Cliff Wymer, available on Northwesterns CDC6600.
Since we are estimating a cost function, homogeneity in factor prices was

enforced by adding the constraints:

al + uz = 1
all +-a12 = 0
u12 3+ a22 = 0
o + a = 0.
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Two functions, were estimated: one with output as E(f) and one with output

as f(x,w). Table one provides the estimation results (asymptotic standard

errors are provided in parentheses)

TABLE 1
Parameter Expected Qutput Model Actual Qutput Model
4, -.440216 ~.429391
(.141938) (.171476)
a, 1.254480 .656391
(.294479) (.224451)
ay .579532 .579670
(.090284) (.096495)
o, .420468 .420330
(.090284) (.096495)
@ .142559 .018345
(.499665) (.321297)
% -.190921 -.114360
(.174750) (.197385)
%y -.190921 -.114360
(.174750) (.197385)
@1 -.226397 -.150679
(.164960) (.128745)
@ 5 .226397 .150679
(.164960) (.128745)
%o ‘ .190921 .114360
(.174750) (.197385)

One of the major uses of a cost model is to provide implications

about returns-to-scale. 1In a single output model, returns are simply (for the
-1 ) ,
translog model) a if we are evaluating the returns at the point-of-means,
i.e. for all variables taken at their sample means. In the case of the ex-
1

pected output model our scale-economies prediction would be (1.25) " or .8.

In the case of the actual output model we get a prediction of over 1.5. These
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are vastly different predictions. In one case we find decreasing returns-to-
scale, while in the other case we find increasing returns-to-scale. If this
were infact a study aimed at providing policy implications, then the use of
actual output, instead of expected output, would reverse the implication.

Now, it might be argued that the standard errors forfé are relatively

large and that infact neither model rejects constant-returns-to-scale. This
argument would be wrong. The appropriate way to test for constant-returns-
to~scale is to so restrict the model and then perform a log-likelihood test
(see Theil [21]). 1If we do this we find that the critical type I error value
for the expected output model is approximately .11 while the critical value
for the actual output model is less than 0.005. In other words, in order to
reject constant-returns-to-scale in the expected output model, one would
have to risk a type I error of at least .ll, while in order not to reject
constant~returns-to-scale in the actual output model one would have to require
a type I error level of less than .005.

Thus, the two cost functions provide very different implications. From

the theory developed above we know that the cost function using expected output

is dual to the technology relevant to firm decisions (the expected production
function) and thus it provides useful information. From this example we can
see that not_only is a cost function based on actual output not dual to the ap-
propriate technology (when output ié stochastic), it can provide grossly mis-
leading results in terms of statistical analysis. In short, using expected
output (in cases where output is stochastic) is not only theoretically correct,

it is critical from the viewpoint of practice.
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4. Summary and Conclusions

In the preceeding sections both the first order optimizing conditions
and the cost function were derived for a competitive,expected profit-maximizing
firm faced with a stochastic production process. The subsequent analysis showed
that models of technology for such firms based on the usual observables (costs,
input prices and levels, output levels) can be severely biased unless the
stochastic nature of the technology is properly accounted for.

In the case of direct anal}ses of technology via estimation of a pro-
duction fﬁnction we found that only under special conditions_(i.e. stochastic
separability of the production function) would the standard approach to
estimating a production function be appropriate. Am example of a non-
stochastically separable production function showed how misrepresentation
of the firm's expansion path was possible if the stochastic nature of the
production function was not explicitly modeled.

An alternative approach to analysis of technology has often been
available via estimation of the cost function of a firm. Here again we find
that not properly accounting for the stochastic aspects of a technology
may result in a misspecified model: the cost function estimated on the observables
of input prices and output levels will only be consistent with a constant returns-
to-scale technology. This is because commitments on input factors are made in
anticipation of an expected output level, thereby linking cost with planned
output and committed purchases of inputs.

Extending the non-stochastically separaﬁle example used earlier, we saw
that estimation of the cost function using standard procedure (i.e. using ob-
served costs, input prices and observed outputs) provided estimates that re-
versed'the technological implications that were actually present: even though

the firm did not enjoy returns-to-scale (at the point-of-means), the standard
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procedure predicted returns-to-scale. Thus, applied studies using such pro-
cedures may produce grossly inaccurate technological implications, thereby
providing incorrect policy prescriptionms.

In general then, cost function analysis can be used to characterize the
relevant aspects of firm technology, if the cost function is correctly posed
as being a function of input prices and expected output. Then the cost function
is dual to the expected production functions, which is all that the expected

profit maximizing firm needs to know anyway.



21
REFERENCES
Arrow, K..J., B.H. Chenery, B.S. Minhas and R.M. Solow, "Capital-Labor

Substitution and Economic Efficiency," Review of Economics and

Statistics, Vol. 43, No. 3, 1961, pp. 225-250.

Blackorby, C., D. Primont and R. Russell, Duality, Separability, and

Functional Structure: Theory and Economic Applications, North-

Holland, New York, 1978.

Braeutigam, R., A. Daughety and M. Turnquist, "Estimation of a Hybrid
Cost Function for a Railroad Firm," Working Paper 425-07, The
Transportation Center, Northwestern University, 1980.

Caves, D., L. Christensen and J. Swanson, "Productivity in U .S. Rail-

roads, 1951-1974," Bell Journal of Econmomics, Vol. 11(1), 1980,

pp. 166-181.
Christensen, L. and W. Greene, "Economics of Scale in U .S . Electric

Power Generation,' Journal of Political Economy, 84, 1976, pp.

655-676.
Christensen, L., D. Jorgenson and L. Lau, 'Transcendental Logarithmic

Production Functions," Review of Economics and Statistics, Vol. 55,

1973, pp. 28-45,
Denny, M. and C. Pinto, "An Aggregate Model with Multi~Product

Technologies," in Production Economics by M. Fuss and D. McFadden,

1978.

Diewert, W.E., "Applications of Duality Theory," in Frontiers of Quanti-

tative Economics, Vol. II (M.D. Intrilligator and D.A. Kendrick,

eds.), North-Holland, New York, 1974,
Feldstein, M., "Production with Uncertain Technology: Some Economic and

Econometric Implications," International Economic Review, Vol. 12,

NO. 1, February 1971, pp. 27-38.



10.

11.

12.

13.

14.

15.

16.

17.

18.

22

Friedman, B. and M. Pauly, '"Cost Functions for a Service Firm with
Variable Quality and Stochastic Demand: the Case of Hospitals,"
Working Paper, Center for Health Services and Policy Research,
Northwestern University, 1980.

Fuss, M. and D. McFadden, Production Economics: A Dual Approach to

Theory and Applications, Vol. I and II, North-Holland Publishing

Co., Amsterdam, 1978.
Leontief, W., "Introduction to a Theory of the Internal Structure of

Functional Relationships,' Econometrica, Vol. 15, 1947, pp. 361-

375.

Meeusen, W. and J. vandenBroeck, "Efficiency Estimation from Cobb-Douglas

Production Functions with Composed Error,'" International Economic

Review, Vol. 18, No. 2, June 1977, pp. 435-444,
Pauly, M. "Effects of Medical Staff Characteristics on Hospital Costs,"

Journal of Human Resources, Supplement 13, 1978, pp. 77-111.

Rothenberg, T.J. and K.R . Smith, "The Effect of Uncertainty on Resource

Allocation in a General Equilibrium Model," Quarterly Journal of

Economics, Vol. 85, August 1971, pp. 440-459.
Schmidt, P. and C.A.K. Lovell, "Estimating Technical and Allocation In-
efficiency Relative to Stochastic Production and Cost Frontiers,"

Journal of Econometrics, Vol. 9, 1979, pp. 343-366.

Shephard, R.W., Theory of Cost and Production Functions, Princeton

University Press, Princeton, N.J., 1970.
Sono, M., "The Effect of Price Changes on the Demand and Supply of

Separable Gbods," International Economic Review, Vol. 2, September

1961, pp. 239-271.



23

19. Stevens, B. "Scale, Market Structure and the Cost of Refuse Collection,"

Review of Economics and Statistics, Vol. 60 (3), 1978, pp. 438-448.

20. Swamy, P.A.V.B., Statistical Inference in Random Coefficient Regression

Models, Springer-Verlag, New York, 1971.

21. Theil, H., Principles of Econometrics, John Wiley & Sons, New York, 1971.

22, Varian, H., Microeconomic Analysis, W NW. Norton, New York, 1978.

23. Zellner, A., J. Kmenta and J. Dreze, "Specification and Estimation

of Cobb-Douglas Production Function Models," Econometrica, Vol.

34, October 1977, pp. 784-795.



