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STOCHASTIC EQUILIBRIUM AND OPTIMALITY WITH ROLLING PLANS

by Daniel F. Spulber and David Easley Ly

1. Introduction

There has been intensive discussion in the literature on macroplanning
and growth about the appropriate time horizon for the economic decision-maker.
The infinite planning horizon approach has served as a convenient standard
of optimality, although the planner may be required to obtain and process
too much information regarding future preferences, resources and technology.
While the finite horizon approach has proven to be operational and provides
a mathematically tractable framework, the length of the planning horizon and
the terminal stock conditions are necessarily arbitrary. An interesting
alternative is the 'rolling plans' approach 2/ which is used in many countries
by government planners (see Taylor [1975, p. 105], Johansen [1977, p. 108], and
Zauberman [1967, p. 283]). A decision maker using the rolling plans approach
faces a finite planning horizon of the same length in each period. The first
period policy function, associating the optimal action with the state of the
economy, is implemented in each period.

The rolling plan restricts the information requirements to those of the

1/

=" This research was supported by the National Science Foundation, Grant No.

SOC 76-20953. The paper benefitted from the suggestions of anonymous referees.

In the literature on macroplanning, quite a number of terms have been used

to describe this approach- 'rolling" plans in Goldman [1968, p. 145], Radner
[1975, p. 95] and Mirrlees and Stern [1972L p. 284], "roll-over" planning

in Taylor [1975, p. 105], 'sliding" plans in Johansen [1977, p. 209], “"moving"
plans in Frisch [1976, p. 135], in "rolling horizons" in Zauberman [1967,

p. 283], and so on.
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finite horizon problem, an important consideration when uncertainty is present.
It is possible that the length of the rolling horizon may be determined by the
planner based on computation requirements and other cost considerations. 3/
Assuming sufficient stationarity in the types of uncertainty faced by the decision
maker (or equivalently a state space of sufficient size) the rolling plan shares
the stationarity property of the infinite horizon plan. Thus, when the length of
the rolling horizon is determined, there is no need to recalculate the optimal plan.
The planner must only reassess the current state of the economy and use the
optimal first period action of the finite-horizon rolling plan.

The stationarity property of rolling plans also has computational
advantages over decision-making procedures which follow finite horizon plans
to completion and then recalculate the next plan. Johansen [1977, p. 209}
points out two additional advantagés. First, the initial period decision rule
of a medium -- or long-term plan will be more "reliable and relevant,' while
the decision rules of later periods become increasingly inaccurate as the effects
of uncertainty accumulate. Secondly, the division of time into periods of four
to five years '"may tend to generate cycles in investment starting and completion
vhich are not efficient from an overall point of view" (Johansen [1977, p. 2091).
This paper will demonstrate that for a rolling horizon of sufficient length,
following the stationary rolling plan in each period is approximately optimal 5/

in comparison with the stationary infinite horizon policy.

The uncertainty faced by economic plamners with regard to future preferences,

A similar argument is made by Radner [1975, p. 1131.

Mirrlees and Stern [1972, p. 284] consider the qualities of a finite horizon
plan followed to its completion but conjecture that "a 'rolling-plan’' procedure

is presumably superior, perhaps far superior, to the one we have assumed; and

may well be satisfactory even for a short planning horizon."
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available resources and technology emphasizes the need for a state-dependent,
recursive decision procedure such as dynamic programming. The existence
and optimality properties of rolling plans will be examined within the
framework of stochastic dynamic programming in discrete time of Blackwell
[1965], Maitra [1968], Strauch [1966] and Hinderer [1970]. The first period
policy function and shadow prices will be shown to converge to the optimal
infinite horizon policy function and shadow prices as the planning horizon is
lengthened. Under additional assumptions, explicit forms may be obtained for
the derivatives of the rolling plans.

Goldman [1968] has examined a deterministic, one sector growth model in
continuous time where the planner is allowed continual revisions of a fixed
horizon plan. Goldman finds that, for a fixed 'target'" capital-labor ratio,
there is convergence to a quasi-stationary state which is sensitive to the
value of the 'target" capital-labor ratio. When the terminal capital-labor
ratio is chosen to equal the existing capital-labor ratio, the resulting growth
program is the same és for an infinite horizon planning period. The results
presented here examine convergence in the space of policy functions and con-
vergence of probability distributions on the state of the system when rolling
plans are followed. Further work would be needed to explore the relationship
between these convergence results and the optimum paths observed by Goldman.

The stationarity of rolling plans implies that the evolution of the system
will obey a stationary Markov process. The transition equation for this
process, formed through the interaction of environmental uncértainty and rolling
plans can be used in analyzing the asymptotic behavior of the economic system.

Using a discounted dynamic programming approach, Brock and Mirman [1972],

Mirman [1972 and 1973] and Mirman and Zilcha [1975] have shown convergence to an
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invariant probability distribution on the size of the capital stock in a
one-sector model of economic growth. These results were recently examined
in an n-sector growth model by Brock and Majumdar [1978]. For the case of two
controls, convergence to a stochastic equilibrium is shown here for a more
general constraint correspondence and transition equation using the stronger
properties of rolling plans (especially differentiability). The proof
involves a detailed argument showing that the stochastic process on the states
of the system can be restricted to a collection of disjoint invariant sets.
The invariant distributions which are obtained induce "equilibrium" or
steady-state distributions on the actions of the decision-maker, on the
immediate returns to those actions and on shadow prices. Knowledge of
these invariant probabilities is important for empirical work since they
are the only observable results of actions taken by the decision
maker.

In Section 2 the dynamic programming problem under uncertainty is
defined and a general proof is given of the existence and optimality of a
stationary plan for the infinite horizon problem. Then it is shown that
under very general assumptions the finite horizon plan exists and converges
to the infinite horizon plan. The continuity and convergence of rolling plans
are then used to show that rolling plans with a horizon of appropriate length
are ¢-optimal. 1In Section 3, conditions are examined which guarantee
differentiability of the finite and infinite horizon value functions. These
results are seen to imply that the shadow price for the rolling plan converges
to the stationary infinite horizon shadow price. 1In Section 4, the finite
horizon problem is reconsidered and it is shown that for appropriate utility
functions, the finite horizon plan and shadow prices are differentiable, and

explicit forms of the derivatives may then be obtained. Noting that rolling
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plans are stationary and have the properties of the finite horizon plans,
the existence of steady-state distributions on the state of the system, when
rolling plans are used, is demonstrated in Section 5 for the case of two
policy instruments. Section 5 shows that the evolution of the system follows
a Markov process and indicates how the state space can be divided into
invariant and transient sets. The question of convergence to steady-state

distributions on the invariant sets is examined in detail.

2. Existence and Optimality of Rolling Plans

The optimality of rolling plans will be considered within the framework
of discrete time stochastic dynamic programming when utility is discounted.
A general theorem on the existence and continuity of a stationary optimal plan
for the infinite horizon problem will be presented. Then it will be shown
that finite horizon plans converge to the optimal infinite horizon plan.
These results are of some independent interest. As a rolling plan involves
the repeated use of the first period decision rule of a finite horizon plan,
the convergence of finite horizon plans to the infinite horizon plan will be
used to show the ¢-optimality of rolling plans.

The Markovian decision model presented here is general enough to handle
the one-sector growth models under uncertainty of Brock and Mirman [1972],
Mirman [1972 and 1973] and Mirman and Zilcha [1975] as well as the multi-sector
growtﬁ model of Brock and Majumdar t1978]. The results are not directly comparable
with uncertainty models without discounting which employ alternative optimality
criteria or which do not obtain represenfations of the optimal policy such

as Radner [1973], Dana [1974] and Jeanjean [1974].
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2.1 The Finite and Infinite Horizon Dynamic Pfogramming Problem
We begin by introducing the discrete time dynamic programming problem
with Markov disturbances.

Definition 1. A stationary Markov decision model is given by the tuple

((S509) > (E,*,90), (qu))_ u,g,b) where:
(i) S describes the state space of the system, s ¢ S. S has
g-algebra . .

(ii) E 1is the random events space, m ¢ E. E has g-algebra &£. Let

@: Exg » [N 11 Fefine the Markov transition probability on (E,%).

(iii) A 'is the action space for the decision maker, a € A. A has

og-albebra . .

(iv) The function u: S X E x A R, is the immediate reward, i.e.,

u(s,y,a) 1is the reward to the decision maker of taking action a
when the system is in state (s,y).

(v) The function £f: S ¥ A+ S 1is the transition equation.

(vi) The correspondence b: S x E+ A 1is the constraint correspondence,

i.e., the set b(s,y) describes the feasible actions available to
the decision maker when the system is in state s after the random

disturbance ¢ has occurred.

We will assume throughout that S,E and A are Borel subsets of
complete separable metric spaces. It is important to note that (iv) implicitly
assumes that utility is additively separable over time. We will assume that
utility is discounted at rate «. From (iv) and (vi) it is evident that
problems involving uncertainty with regards to preferences, endowments and
technology can be handled.

We will now give a more precise definition of what is meant by "optimal plan"
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for the infinite horizon problem. Let X = S x E denote the state of
the system where x = (sn,mn) is an element of the state space at date n.
For comparable definitions in the dynamic programming literature see

Blackwell [1965], Maitra [1968], Strauch [1966] and Hinderer [1970].

Definition 2.

(a) A plan f is a sequence £ = (fn) which selects an action on

th
the n  day as a function of the history Hn = (xl,al, cees an-l’xn) of the
system by associating with each history Hn (Borel measurably) a probability
distribution fn(- \Hn) on the Borel subsets of A.

(b) A deterministic admissible plan is a sequence £ = (fn) of

measurable maps fn: X" 4 A with the property that
fn(xl’XZ’ ey xn) € b(xn) x € X.

(c) A stationary (deterministic admissible) plan will be denoted by
f = fcm). The plan f: S x E 4 A selects an action a ¢ b(s,y) regardless

of how the current state (s,yp) was arrived at.

Given the previous two definitions, when the plan £ solves a discounted
dynamic programming problem, then the plan f associates with each state

(s,w) an expected discounted total return.

Definition 3.

Given the plan £, an expected discounted total return is represented by

@©

(1) IO (ssw) = Eluls,msE(s,m)) + niza“‘lusn,mn, £(s_sw 1.

We are now ready to define an optimal plan.



Definition 4.

*
A deterministic admissible plan f will be called optimal if
*
I(f )(s,w) > I(£)(s,p) for all deterministic admissible plans f
and (S,p) € S x E (see Blackwell [1965] and Maitra [1968]).

Another definition which will be useful is that of the optimal value function.

Definition 5.

The maximal expected reward V: S x E o ]H- will be defined by
(2) V(s,0) =sup {{u(s,p,a) +a [ V(g(s,a),w)dBG |w)] : a € b(s,w)?-

We will now state all of the assumptions which will be used in this

. 5
section. =

Assumption 1. The action space A 1is compact.

Assumption 2. a. The immediate reward u 1is nonnegative and bounded above.
b. u 1is continuous.
¢. u 1is strictly concave in a, concave in (s,p), and

increasing in (s,w,a).

Assumption 3. 0= a < 1.
Assumption 4. a. The transition function g is continuous.
b. g 1is strictly concave in a, concave in s, and
increasing in s,a.

Assumption 5. The constraint correspondence b 1is continuous. Also, b(s,y)

is a convex set for any state (s,p) and b(- ,py) has a convex

graph for each .

5/
For a discussion of state dependent preferences, see Hildenbrand [1970]

and Bewley [1972].
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Assumption 6. The measure @(- ‘w) is continuous in the weak topology.

To establish the existence of a continuous stationary optimal plan °

the following lemma will be useful.

Lemma 1. Given Al, A2a,b, A3, A4a, A5, A6:
(i) There exists an optimal wvalue function V: S ¥ E E&_
which is continuous and bounded on S x E.
(ii) There exists a stationary optimal plan f: S x E+ A which

is upper-semicontinuous on S x E.

The proof will be given in Appendix A and draws upon the approach of
Blackwell [1965], Strauch [1966], and Maitra [1968].

Given Lemma 1 it remains to show that £ 1is single-valued, since a
function which is upper-semicontinuous and single-valued is continuous.

The proof of the following theorem is also given in Appendix A.

Theorem 1. Given Al to A6:

(1) There exists an optimal return V: S ¥y E B&+ which is
continuous and bounded on S x E and concave on S.
(ii) There exists a stationary optimal plan f: S x E4 A which

is continuous on S ¥ E.

The infinite horizon plan obtained in Theorem 1 may be used as a standard
of optimality. The optimal policies for a finite horizon plan will be
’characterized for the discounted finite horizon problem with a general 'scrap-
value" on stocks remaining in the final period. Using arguments similar to

the proof of Theorem 1 it will be shown that the finite horizon plan converges

to the infinite horizon plan.
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An important consideration for economic planners is the sensitivity
of optimal investment plans to the length of the planning horizon or to the
size of final stock requirements (see, for example, Chakravarty [1969] and
Blitzer, et. al. [1975]). Our convergence result may be considered as
a generalization to the policy space of the insensitivity results of Brock
[1971], Brock and Mirman [1972], Nermuth [1978] and Nyberg and Viotti [1973]. 6/
et W: Sy Ex Ao Ig_ denote the terminal condition on the actions of the
decision maker. Clearly, if W were identical to the expectation of the value
function for the infinife horizoﬁ plan, the solutions to the finite and infinite
horizon problems would be identical. Any iterative search for this ''correct'
scrap-value would be equivalent to solving the infinite horizon plan. Thus,
while the determination of W may depend on the computational and informa-

tional limitations of a particular economic planner, we restrict our attention

to an arbitrary W satisfying:

Assumption 7. The terminal value W: S x E x A 5 R, 1is continuous and bounded

on S v Ex A and concave on S x A.

The value function for the finite horizon problem will now be introduced.

Definition 6. The maximal expected reward for a decision problem for T

periods is given by

é[M.odi.gli.ani. and Hohn [1955, p. 65] suggest that for particular problems,

"it may be useful to single out the factors that tend to limit the size

of the relevant planning and expectation horizon.'" See also Chakravarty {1962
and 1966] and Manneschi [1966a and b] for a discussion of sensitivity.

On the relationship between initial consumption and final capital requirements

in models of economic growth see McFadden [1967] and Bliss [1971].
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T
T t-1 - T+l-t T- 1
3 Vispwp = max Bl 2 atlulsugeal )+ @ Wsmga )]
T 1,t=1
(a”,...,a")
41 - +1-t
where altl-t € b(st’wt) and where Ser1 g(st,aT ),T > 1.

Let (al) = (a,a’ Y, ..., a’) be the optimal plan for the T-period

problem given by definition 6. This plan is characterized in the next theorem.

Theorem 2.1/ Given Al to A7:
(1) There exists a T period optimal plan (aT) which is continuous on
S x E.
(ii) There exists a T period optimal return VT: S x Eo ﬂ{F which is
continuous and bounded on S x E and concave and nondecreasing on S.
(1ii) 1lim al = & where a® 1is the stationary optimal plan for the
T

infinite horizon problem.

(iv) 1lim VT =V where V 1is the optimal return for the infinite
T—Ocp

horizon problem.

Proof. (The approach is similar to the proof of Theorem 1.)

Let CS(S x E) be the space of continuous and bounded functions on S x E

which are also concave and nondecreasing on §S. CS(S x E) 1is a Banach space

(as noted in (v) 1in the Appendix). As noted in Appendix (vi), the

operator M defined by

=" A major step in the procf of Theorem 2 is the demonstration of the fact
that a cluster point of the sequence of finite horizon plans is a plan which
solves the infinite horizon problem. This result has been shown by
Hammond and Kennan [1976] under their assumption of '"valuation
finiteness,'" which is satisfied here. Theorem 2 further demonstrates
that under our assumptions (particularly discounting and strict concavity)

the finite horizon plans actually converge to the infinite horizon plan.
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(Mv) (s,w) = max [u(s,p,a) + a [v(g(s,a),w)dd(w | w)]
“HE b(s,w)
for v e CS(S x E) takes CS(S X E) into itself and is a contraction
mapping. Let C(S x E) be the space of continuous and bounded functions
on S x E. The operator L(f) on C(S x E) takes v ¢ C(S x E) into

L(f)v € C(S x E) where L is defined by

(4 (LE)V)(s,m) = u(s,w,f(s,p)) +a f V(g(S,f(S-m)),&)dG(g\ w) -

By remark (iv) of the Appendix, it follows that there exists a continuous

and bounded map aT € C(X) such that VT = MVT“1 = L(aT)VT-l.

This

. T T .
implies that a and V° exist and are optimal.

By the Banach fixed point theorem, M has a unique fixed point.
Let V ¢ CS(S x E) be its unique fixed point, i.e., MV = V. From

. aae . T T-11
definition 6, we may write V (s,w) = (M "V)(s,m). Thus,
T . T-1.1
(5) 1lim V (s,w) = lim (M" V) (s,w) = V(s,w).
T T4

By Theorem 1 there exists a continuous function a ¢ C(X) such that
MV = L(a)V. Since V 1is the unique fixed point of M, L(a)V =V. So
V=1I(a), and MV =V can be rewritten as

(6) I(aoo)(s:(l)) = max [u(s,w,3) +a r I(am) (g(s)a)¢~(l))d¢((~l).‘ w)].
ar b(s,w) l

Since 1I(2”) satisfies the optimality equation, a” is an optimal

T -1 T- ' T-1
plan. Note that V = MVT = L(aT v 1 Hence 1lim L(aT)V = lim VT

T T4

) =V = L(a")V.

Further L(a)V® » L(a)V, uniformly in a, from the definitions of L and the

contraction M. This implies that L(aT)V + L(a®¥)V. To see this remark
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more clearly, note that by the triangle inequality

(7) LYV - LEDIVI < IL@D)V - L)V 1 + 1L@)ve b - La®)vy .

By the convergence results above it is possible, for any vy > 0, to select
A .
T such that both of the terms on the right side are less than +vy/2. Hence,

3

for any y > 0 there is a T  such that HL(aT)V - L)V < vy for all
*
T>T
It will now be shown that the convergence of the sequencé L(aT)V
to L(am)V implies that (aT) is a convergent sequence with limit a®.
Let F = {atX - A] a is measurablel, the compactness of F follows from the
Tychonoff theorem since A 1is compact. Hence (aT) has a convergent
subsequence (aTn) + a. Since L(- )V 1is continuous in a,
L(aTn)V 4 L(a)V. But L(a)V = L(a®)V and the uniqueness of a implies that

3 = a_. Therefore (aT) o 3%,

2.2 Optimality of Rolling Plans

Rolling plans are made by a decision maker who has a fixed finite
planning horizon at each date, say T periods in length. The decision maker
determines his optimal action in the current period by solving the T-period
dynamic programming problem and choosing action aT in the current period.
Due to our stationarity assumptions and the fact that the decision maker
always looks ahead the same number of periods, the function aT-S x E+ A is
employed in each period without any need for recalculation. Note that the
rolling plan obtained by employing the rule aT in each period will have all the
properties of the first period decision rule of the finite horizon problem.

As pointed out by Hammond [1975, p. 2], "a plan may be insensitive without
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being optimal." The optimality of rolling plans depends in an important

way upon the continuity of the finite horizon policy function as well as on

the convergence of the rolling plan to the infinite horizon plan. 8/

Theorem 3. Given Al to A7, rolling plans for a horizon of length T = T
R €

are ¢-optimal; i.e., for any ¢ > 0, ¥ T€ ¢ N finite, such that

for all T = T€)

ECz o u(e, o 80, o) - BCrat hu(e - LET (L ) = e
t=1 t=1

where f 1is the optimal stationary plan for the infinite horizon

problem and fT is the rolling plan for the T-period horizon.

Proof. By Theorem 2, fT + f. Also by Theorems 1 and 2, note that

fT and f are continuous.

We wish to show that

I(fT) + I(f) for fT + £, where I(°) 1is given by definition 3.

Applying definition 3 and rearranging terms yields:

As the approach taken here examines the value of following the first
period policy function, the result is not directly comparable with the
"agreeable'" or ''strongly agreeable'" plans criterion of Hammond [1975],
Hammond and Mirrlées [1973], or Hammond and Kennan [1976]. According

to Hammond [1975, p. 3]; "a plan is agreeable provided that the welfare
loss from the wrong start becomes insignificant as the horizon H tends
to infinity." This criterion is similar to the ¢-horizon examined in
Los [1967 and 1971] and Keeler [1974]. These papers focus on final stock

requirements.



-15-

(9) I(fT)(S;m) - I(5)(s,w) = U(S;m,fT(S;m)) - u(s,w, f(s,w))

T
n-1 T T, T
FEL 7o el g £ (awy) - (s 0 £ )]
T T T T
+ @ T(E) (spypswpyy) - @ L(E) (81 s0pyy)

T T T T T T
where s_ = g(s_ £ (s__,u_ 1)) and s, = g(s,f (5,0)).

Since I(fT) and I(f) are bounded and a? + 0 as T 4 », the last two terms
go to zero as T 4 ». The first term [u(s,m,fT(S,m)) - u(s,w,f(s,w))] + 0

by the continuity of u. So, we may limit our attention to an arbitrary

T

T T
term in the sum [u(sn,mn;f (Sn:w ) - U(Sn,mn,f(sn;wn))]- Note that

n
Sg + 5, = g(s,f(s,w)) as T + » by the continuity of g. By induction
(and using the continuity of fT),si > sn. So, by the continuity of

T
u, f and g,

. T T, T
(10) ;:m [u(sn)U)n)f (snﬂl)n)) = u(sn)(lJnyf(Sn)(Un)] =0

Thus,1im [I(fT)(s,w) - I(£)(s,w)] = 0 for any (s,m).

T

The ¢-optimality of rolling plans suggests that if the finite horizon
plan converges rapidly to the stationary infinite horizon plan then there
may be very small losses from the use of a short horizon in calculating the
rolling plan. Further research may be worthwhile comparing the information
costs of extending the planning horizon with the welfare loss of a shorter

horizon.
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3. Convergence of Shadow Prices

A system of shadow prices may be associated with the optimal actions
of the planner in both the finite and infinite horizon problems considered
in the last section. Given that the environmental disturbances form a
stationary Markov process, the sequence of states of the system and shadow
prices will also form a stationary Markov process. 9/ In this section
shadow prices will be obtained by applying Lagrangean techniques to the
recursive functional equation of dynamic programming. The shadow price
for the first period rolling plan will then be shown to converge to the
stationary shadow price for the infinite horizon plan given some
additional assumptions which guarantee the differentiability of the finite
and infinite horizon value functions. Thus the behavior of the shadow
price over time for rolling plans provides a good indication of the movement
of the shadow price for the optimal infinite horizom plan.

The stationarity of the infinite horizon price system was examined
by Radner [1973] and Dana [1974] within a general Arrow-Debreu framework
assuming a probability distribution on the set of sequences of states. 10/

The existence of prices supporting an optimal program has been established

by Zilcha [1976a,b and 1978] where environmental disturbances are independent

9/

=" As Radner [1976, p. 115] has pointed out, the sequence of prices alone

is not a Markov process.

RaZner [1973], Dana [1974] and Jeanjean [1974) examine Lagrange multipliers
in stochastic setting without an explicit consideration of first order
necessary conditions for an optimal policy. For a functional analysis

approach see Majumdar and Radner [1972].
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and identically distributed. In a similar framework , Brock and Majumdar

obtain a stochastic '"turnpike'" theorem. Follmer and Majumdar [1978]

examine prices supporting competitive programs in a general intertemporal

allocation model under uncertainty. An interesting set of papers by

Dynkin [1974], Evstigneev [1974], Kuznetsov [1974] and Tacsar [1974] have

considered optimal planning under uncertainty by applying concave programming

to the theory of controlled stochastic processes. 1In particular,

Tacsar [1974] has considered prices for stochastic programs with discounting.

The results derived here will focus only on the properties of the finite

and infinite horizon shadow prices as functions of the state of the system

and the last observed disturbance.

The following assumptions will be used to obtain differentiable value

T
functions V and V.

Assumption 8. The state space and random events space are

sc ]Rf'_ and Ec R'. At each date t, the optimal action a is

given by a_ = (ﬂt,gt) where us C'Ri, o, € mﬁ.

t

Assumption 9. The immediate reward u(s,w,n) is

continuously differentiable in .

Assumption 10. The transition equation is given by g:

_ 1
where Sep1 T g(st,gt) and ge C.

Assumption 11. The action (q,5) = (ﬁi,gl) s i=1,

(a1 bies,m - hieh - pleh) = 0

'-l

]
’—l

=

L
Ry

.«

£ £
X HH_-+ ]R.+

{ is constrained by
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where bi,hl,pi are continuously differentiable for all 1. Further,

hl'(ﬂ) # 0 for all ¢ Ri.
Mirman and Zilcha [1975] have shown differentiability of the value function

for gy = 1. Using the implicit function theorem, a generalization of this

result is obtained.

Lemma 2. The value functions VT and V are continuously differentiable in s,

given assumptions 1 to 11.

Given Lemma 2, the Lagrangean approach may be used to obtain the first order

necessary conditions for the infinite horizon problem.

(12) £ = u(s,0,m) + a T V(g(s.0) 0 )d0(n |w)

\Mivles,0) - hieh - ptehi.
1

+
i

Il >

Differentiating # w.r.t. to ﬁl, ci and ' yields

13) u (s,0m - ety <o
bl

(14) o [V (8(5,0) 0 )& {(5,0)d0(G |w) - %' 1) =0
S o. .

(15) bi(s,p) - hiY) - plsl) = 0

for 1 =1, ..., g. A similar set of first order conditions may be
obtained for the finite horizon problem. Then, rewfiting (13) and
suppressing the i superscript yields A\ = uﬂ(s,w,ﬁ)/h'(ﬁ). For the
finite horizon problem we obtain \T = uﬁ(s,m,ﬁT)/h'(ﬂT). By Theorems 1

and 2 there exist policies satisfying these conditions.
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Theorem 4. The finite horizon shadow price converges to the infinite

horizon shadow price.

Proof. Note from Theorem 3 that nT 4 . Since u and h are

continuously differentiable
T v, T '
(16) uﬁ(s:(l):ﬂ )/h ()~ uﬂ(sy(l),vﬂ)/h ().

Therefore, KT -+ AL

4. Differentiability of Rolling Plans

The assumptions on the immediate reward, the transition equation
and the constraint on the decision maker's actions must be strengthened
to obtain sufficient conditions for the differentiability of rolling plans.
For clarity of exposition,the case of two controls (x,5) ¢ ]Ri and one
state variable s ¢ R, will be considered. Also let ¢ € R, . The

following additional assumptions will be used.

Assumption 12. The immediate reward is a function of the action g
only, i.e., the state of the system does not affect the immediate
reward. So u:R, -+ R, . Also let ue C® and u'(yg) » o as
7+ 0. The terminal value W(s,s) 1s bounded and concave on

]Ri and W ¢ C”.
The assumption that u 1is infinitely continuously differentiable is

made to assure that the optimal plan is differentiable for any large (but

finite) planning horizon. This is not a very restrictive assumption since

it permits, for example, any utility function which is a member of the



-20-

exponential family such as exp (-B/n). Examples of these types of utility
functions have appeared frequently in the literature on optimal growth and
on portfolio theory. 11/

The transition equation and constraint correspondence will also

have special forms:

Assumption 13. The transition equation is given by g(s,5), g € C¥

where g 1is concave and strictly increasing.

Assumption 14. The action (x,5) 1is constrained by

(17) b(s,») - h(gx) - p(g) = 0, b,h,pe C° where h and p are
convex and strictly increasing and b 1is concave and strictly

increasing.

The next assumption will allow us to exchange the differential and

expectations operators.

Assumption 15. The disturbances (y) are i.i.d.r.v. with distribution

8¢ ).

v T T T-1 T-1 1 1
Given these assumptions, a plan (aT) = ({n o ), n s Yseoas (im0 7))

will be optimal if it satisfies
T

(18) max E[ 7 of 1 W
t=1

T+1-t

R

T+1-t
o

where Seq1 = g(st,gT+1-t)- The op@imal plan (nT,GT) and the shadow price

ir are differentiable and their partial derivatives w.r.t. s and ¢ have

explicit forms.

/

=

See Chakravarty [1969], Hahn [1970}, Leland [1974], Levhari and

Srinivasan [1969]}, Mirrlees [1974], Phelps [1962] and Tinbergen [1960].

y=0 .
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Theorem 5. Given the strengthening of assumptions 1 to 7 implied by

assumptions 12 to 15, for any T e w

T T ©

(i) (1 0 ) €C and AT € C”.

(ii) VT € ¢® and VT is increasing and concave in s.

2
Proof.l—/

(19) V' (s,0) = max [t + W(s,0 D st bs,w) - bn') - P = 0
(TT )O)

11 v 1 %* 1
implies thatn,0 € CT where ﬂ’=TT'(S;m) and ¢ =0 -(s,w) since uc¢ CT+1

and given . assumptions 12 to 1l4. So Vl(s,w) = U(nl(s,w))'FW(S,gl(S,w))

1 T
implies that V € C .

: and 51 ¢ (THI-(E-D).
Ee et yt ¢ ¢Tt Consider

t-1 +1-(t-1

Induction hypothesis. Suppose V € ct (t-1)
(11« t T+1-t

Then we will show that A~ € C s

f

20) Vo (s,0) = max [u(m) + o [ V¥ (g(s,0), )db(m)]
ugle

s.t. b(s,w) - h(g) - p(e) = 0.

Form the Lagrangean:

(21) £ = u(p) + o f Vt-l(g(s,o);$)d¢(;)) + Mb(s,w) - him) - PG))

The first order necessary conditions are then:

(22) u' - ' =0

12/
" The theorem is stated for u ¢ C° so that for any arbitrarily large

(but finite) horizon, the optimal policy will be differentiable. The

T+1 .
proof will show that for any T, u ¢ C implies that

T+1-t 1

(1) A, @teD ec forall t<T and (7 ,5') € C

and

II+ - "
i) viec™t foratl t<r and v'oecl
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@3) o [ vilg, - ApG) =0,
(24) b(s,w) - h(n) - p(s) = O.

The derivatives may be taken by the induction hypothesis.

The second order necessary conditions for a maximum are satisfied since

(25) \H| = -y [a Vts:;l(gz)z +af v:'lgzz- 'l - (YT u - s o,

Since ft is optimal and ft solves the above problem, then

+1- +1-
ft € CT 1 t,xt € CT 1 t. Substituting back into Vt we obtain

26) VE(s,0) = ulnt(s,0)) + @ [ Vo (g(s,05(s,0)),0)d0G) .

T+1-t

This implies that Vt € C Then, by induction:

+1- +1- +1-
AE g cTHImE 6f o (THIZE of o (THIE pr a1l e < 1.

By differentiating the first-order necessary conditions (22-24)
and applying Cramer's rule, we obtain explicit forms for the partial
derivatives of the plans 57 and g and the shadow price X\ with respect
to s and . Only g% and %i will be stated here since they will be

used to characterize the asymptotic behavior of the system:

@7) 35 == Tay 17 POl A e [V, le gy + @ [V e, D)

a 1 1 " 1"
(28) g"w— =TT f-p'b [u" - AR 1.

Given the optimal policy o(s,p) the transition equation for the

system is defined by 6(s,n) = g(s,o(s,m)). The effect of the current
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state s and disturbance ¢ on the state of the system will depend on
the properties of the transition functioﬁ g and the optimal policy .
Note that 8g = 8 + 850, - From assumptions 12 and 14, and

equation (28), ¢U)>»0. Since gy > O,Qw > 0, the derivative of 8
with respect to s can be shown to be positive given the following

assumption.

Assumption 16. The transition function g satisfies 0 and

812 =

0<g, <1

The following lemma will be used in the next section to examine the long-

run behavior of the systen.

Lemma 3, Given the assumptions of Theorem 5 and Assumption 16,
0 > 0.

Proof. Consider the derivatives of 5 w.r.t. s. Since u" < 0, h" > O,

p' >0, by >0, A> O,g12 >0 and h" < O,

2
29) §% > (-g,) (ar (o V80,

The term in brackets is less than one or equal to one so that

Then, since 0 < 9% <1,

- dg

5. Stochastic Equilibrium Generated by Rolling Plans
The stationarity of rolling plans implies that the sequence of

states and actions for the economic system forms a stationary Markov process.
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This process may be used to demonstrate convergence to an invariant distri-
bution on the states of the system. Formally, the transition probability for
the system, P:S X o+ [0 11 ic ‘efined by P/s,B) = @y ¢ E|0(s,w) € B} for
any s € S,B ¢ . P gives the probability measure on the next state, given
the current state, that is generated by the interaction of the randommness and
the optimal rolling plan. The transition probability P defines a Markov
process on the state space S. 13/ The convergence result will be obtained by
showing that P satisfies Doeblin's condition and that the stochastic process
is limited to a collection of disjoint invariant sets. The state space for

the Markov process will be "connected" by means of a link point in each

ergodic set, where a link point is defined as follows:

Definition 7. s, € S 1is a link point if for any integer k > 1, any

point s € S, and any neighborhood U of Sy there is an integer n

such that Pnk(s,U) > 0.

The method used to divide the state-space is a generalization of a fixed
point technique used by Brock and Mirman [1974]. Much of the analysis will

1/ The differentiability of the

draw upon the presentation of Futia [1976].
transition equation 8 distinguishes the approach taken here from the

convergence results of Brock and Mirman [1972], Majumdar [1975] and Green

and Majumdar [1975].

13/
The transition probability P defines a Markov process on state space S
if; (1) P(s, =) is a probability measure on (§,y) for all s ¢ S,
(2) P(- ,A) 1is a measurable function for all A ¢ ». Both of these properties
follow directly from the fact that § 1is a measurable function. The
measurability of 8§ results from the fact that the optimal rolling plan ¢

is stationary, deterministic, and single-valued.

The analysis here differs from Futia [1976,section eight] in the analysis
of the ergodic sets. Note that Futia assumes the differentiability of the
policy function for the infinite horizon growth model. This condition will not

hold in general.
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Without much loss of generality, the event space is restricted to

a compact interval.

Assumption 17. The event space is E = [y,B]. Let T denote the

Lebesgue measure on E and let f(yp) be any bounded, positive, measurable
function on E such that p(A) = (f(y) M (dv) for all A € & defines a

A
probability on E. Assume that @ =cy + (1-¢) where € 1is any

probability on E with E(y) strictly positive and 0 < ¢ < 1.

The set of all @ satisfying this assumption is an open and dense subset of

2 (E).

We will now place assumptions on the problem which will insure that the

relevant state space for the optimal process is compact and that the process

does not collapse.

Agsumption 18. a. g(0,0) = 0, b(O,p) = 0 for all € E, h(0) = 0, and

p(0) = 0.
b. There exists an s such that for all s > s, g(s,5) < s
for all feasible .

c. There exists an s > 0 such that for all s ¢ (0,s)

and for all w ¢ E, g(s,m) > s.

Assumption 18.a  simply normalizes the state space. Assumption 18.b insures

that there is some maximum sustainable state and Assumption 18.c insures that

the system does not collapse to zero. Parts b and ¢ can be derived from

Inada Conditions on the constraint equation. See Brock and Mirman [ 1972 ]
for a discussion of these conditions in an optimal growth problem.

By Assumption 18 the state space S can be restricted to the interval
[O,E]. The importance of Assumption 18 is that it allows us to restrict
our attention to a compact state space and not that any particular interval

is selected.
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The properties of the transition equation imply:

Theorem 6. Given assumptions 1, 2a,3, and 12-18, the transition probability

P satisfies Doeblin's condition, i.e., there 1s a probability 1,

an integer n, and an ¢ with O < ¢ < 1 such that if A ¢

and MA) < é, then Pn(s,A) < 1 ~-¢ for all s.

Proof. The result ew(s,m) > 0 for all s and ¢ and assumptions 17 and 18
are sufficient to insure that the conditions of Proposition 5.7vof
Futia [8] are satisfied and hence the linear operator defined by P is
quasi-compact. The linear operator defined by P 1is quasi-compact if and

only if P satisfies Doeblin's condition (Futia [1976,Theorem 4.9]).

The results obtained up to this point are sufficient to insure that there
exists an invariant probability or stochastic equilibrium and that the time
averages of the sequence of probabilities generated by the optimal Markov
process converges to an invariant probability. Let £(S) denote the space

of all probability measures on (S,).

Definition 8. Define the linear operator T:2(S) 4+ #(S) by, for any

N € ©(S), TA(A) = [P(s,A)A(ds) for all A ¢ 4.

Hence if the probability of A at date t 1is (A), the probability of A
at date t+l is TA(A). A stochastic equilibrium is a fixed point for

the mapping T.

Definition 9. A probability measure A on (S,s) 1is a stochastic equilibrium

if TA = A,

Theorem 7. Given assumptions 1, 2a, 3 and 12-18 there exists at 1eastkone

stochastic equilibrium and for any given initial probability i on (S, ),
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1%l og
the sequence of time averages { a 7 T"A} converges at an .arithmetic
i=o
rate to a stochastic equilibrium.
Proof. The result follows directly from VIII.8 Corollary 4, Dunford and
Schwartz, and the Corollary of Theorem 4, Yoshida and Kakutani, or see

Futia [1976] Section 3.

Although the time averages of the probabilities converge to only one

invariant probability for any given initial measure, there may be many

invariant probabilities. With different initial measures, various invariant
probabilities may be limit points. Theorem 7 demonstrates only convergence

of the time averages and not necessarily convergence of the basic sequence

of probabilities generated by the system. To obtain convergence of the

actual sequence of probabilities to a unique stochastic equilibrium for a given
‘initial state, the state space must be divided into invariant sets each of

which has a linkpoint. -

Definition 10. A subset C of S is called invariant if Pn(s,C) =1 for

all n and for all s ¢ C. A subset C of S 1is called transient if

2o}
b Pn(s,C) < o« for all s € C.
n=0

The expected number of visits to an invariant set from any point in that
set is infinite, for a transient set the expected number of visits is
finite. It will now be shown that the state space can be decomposed into
invariant and transient sets and that there is an invariant probability
relevant for each invariant set.
Since §:S x E+ S 1is continuous in s for each  and S can be
taken to be compact and convex, there are one or more fixed points s , for each
1

1
w. Let 8(*,n) =6gw(). Let SY and S, be the minimum strictly

B
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positive fixed points of eY and eﬂ respectively. There must be such
minimum fixed points, greater than zero, since (a) for some ¢ > O,
es(;’m) > ; for all ‘;g (0,¢) and for all : (b) the set of fixed points

for o is closed [suppose 6 (s ) = s and s_a s then by continuity
w w n n n

o (s) = s].
w
Lemma 4. S1 < Sl.
2
Proof. Clearly S1 # S1 otherwise g (Sl) =0 (Sl) contradicting 8
I Y B’ Yy B B 8
1 1
strictly increasing in . Suppose SY > SB. Then there is an

~

s > 0 such that BB(S) = eY(s) > s, since es(s,m) ~» 1 for all
. 1 1 1 1
and for s 0 iven > 0, and S =8 = S)=S,.
) € (0,¢) given some ¢ n GY( Y) Y eB( B) B

This implies that there is an s ¢ [s,Sé] such that eY(E) =g,.(s) as

B

ew is continuous for all . This contradicts ¢ strictly

. . . 1 1

increasing in . Hence, SY < SB.

The following outlines a technique for pairing up fixed points of eY
and QB to form minimal invariant and transient sets.

. 1.1

(1) Form the pair (SY,SB).

(2) After forming a pair of fixed points,consider the next point at
which the increasing sequence of fixed points of eY and eB changes type,
suppose it changes from vy type to P type. Let the next pair of fixed
points consist of the maximum fixed point of type vy before the switch
point and the mimimum fixed point of type B after the switch point, say

(S:;Sg)- If the change had been from f$ type to y type then the next

pair would have been (S;,S:). For example, suppose the sequence of fixed
i 1 . i+l _i+2 i+ i

points after (S_,S;) can be written as S. ,S. -, ..., S. ".SJ then
Y B Y Y Y B

the next pair of fixed points is (S¢+nasé)-
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(3) Continue this procedure, leaving all intermediate fixed points
unpaired, until there is no further change of type among the remaining
fixed points. Leave such remaining points unpaired.

These pairs of fixed points form closed intervals. Number these
intervals in increasing order as Il, I, ... Let the end points of
Ii have the superscript i, ignoring all fixed points in the interior of
Ii. See Figure 1 for a simple case similar to those considered by Brock

and Mirman [1972].

INSERT FIGURE 1

Lemma 5. If Si < S; then Ii is invariant. If S; < Si then I' is
transient.
. i i i i i i i
Proof. Consider I =[S ,S.]. Note that §S_ > s) > S 8)>S
[ Y B] 3_93( ) > YandSBzeY( )__ y
for all s ¢ Ii since Si =0 (Si) <8 (Si) = S1 and § 1is inereasing
: Y YUy BB B )

i
Therefore, p{(s,m) ¢ 1 for any s ¢ 1' and any .

Consider It = [S;,S;]» Let X = {s € S \s < S;l. There is an n > 0

such that P'(s_,X) > K" > 0, where K = 6(y) > 0, for all s € [s;,s;)

since gy(so') < s, for all such S, If so=SCiL then for any w>or,,ew(so) > S,
and this event has probability 1-K > 0. Hence, there is an integer n
such that the probability of leaving Ii in n steps is strictly positive.
Since Ii cannot be entered from (Ii)c the expected number of Visits to Ii
is finite. Hence, Ii is transient.

The following is a method for expanding the invariant sets to form
attracting sets- sets whose points eventually move into the contained
invariant sets. Consider Ii

(1) 1f the next paired fixed point above (or below) 1" is an end
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. Coi
point of a transient set, expand Il to include the interval (SE,SE 1]
i-1 i
S .
(or [SY , Y))

(2) 1If an adjacent paired fixed point is on another invariant set, I

cannot be expanded.
1
(3) Expand I to include (O,Si).
. i
(4) 1f 11 = [SY,SE] is the last interval (in the positive direction

on S) previously formed, expand it to include (S;,E]. If 1' = [SE,S;] is

the last interval previously formed then let Ii+1 = [Si,gl be an invariant

set, Label these sets Al, where A1 = Ii. This procedure decomposes

the state space into attraeting and transient sets. Examples are given in

Figures 2 and 3.

Lemma 6. For any At 5 Il, 1im Pn(s,Ii) =1 for all s ¢ At.

Proof. Let i # 1, 1t = [S;,S;]. Clearly if Al = Il, the result holds.

-1 i+l
»S
P

are symmetric, we will do the proof for

At most A" = [S I - [S;,Sg]. Since the cases of s ¢ [Si-l,sl)

Y

— e

or s ¢ (S;;S;+1

i-1 i i-1 i
S y8). For s e (S ,$7), > f 11 , si
se |l Y Y) o ( N Y). em(s) s for a w. since g

is strictly increasing in both s and . For s = Sl-l, B (s) > s
: w

Y
for all  # y. Hence, lim Pn(s,Ii) =1 for all s ¢ [Si-l,si).

we need to show that 1lim Pn(s.Il) =1 for all

If i=1
1
s € (O,SY). Since ew(s) > s for all  and for all s &£ (0,e¢) and
gince si is the first fixed point for GY we have § (s) > s for
w

1 1
all s ¢ (0 s(), for all . Hence, lim Pn(s,I ) = 1.

Note that em(s) < 8 for any s above the last interval if it is of
i R
the form I = [S:,SE], for all ¢, as otherwise @ (s.p) é S for some

such s. Hence, if the last invariant set is I = [S;,SE] it can be



-31-

expanded to include the interval to S. 1If the last interval is of the

form Ii = [S;,Si] there can be no further fixed points of type vy as
otherwise 0 (s,m) ¢ S for some s > Si. Hence. Si_f eY(s) <S and

si S'GB(S) < S for all s € (Si,gl as p 1is increasing in s and o .
Therefore, Si <8(s,w) < E for all ¢ and all s ¢ [Si,g] and [Si,g]

is an invariant set.

INSERT FIGURES 2 and 3

Convergence to a stochastic equilibrium will now be shown.

Theorem 8. If the initial state of the system S, is an element of A’
then the sequence of probabilities (Txas )n describing the
(o]

evolution of the system, converges to a unique probability y' with

i
support I .

Proof. Clearly the process P restricted to Ai is a Markov process on Ai
as P(s,Ai) =1 for all s ¢ Ai and P was earlier shown to be Markov.
By Theorem 6, P satisfies Doeblin's condition. Note that Si is a
link point since 6:(3) -+ Si and @(y) = K> 0. These results are
sufficient to insure that the conditions of Theorem 3.6 of Futia

[1976] are satisfied. The result then follows from the Corollary to

Theorem 4 of Yosida and Kakutani [1941].

If the initialrstate of the system is an element of a transient set
then the resulting invariant measure will be one associated with one of
the adjacent invariant sets. If the initial state of the system is
S, = 0 then the resulting invariant measure must be the point measure on 0,
5o Although the conditions presented here are not sufficient to insure
uniqueness (across initial states) of the invariant measure they do not

rule out such cases. For example, if I1 is the only interval of the type
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. 1 = .
formed earlier them A~ = (0,S] and the unique invariant measure(for
1
0 is .
S, # 0) v
Using an invariant probability, w, on states we can construct the

corresponding invariant probabilities on actions Vo shadow prices

Va2 and immediate returns A Define them by

(32) WA(B) (Woa)f(S,w) | (rio)(s.w) € Bl for all B¢ 4

(33) v, (B) = (¥ _8)((s,0) | "(s.w) € B for all B € R,

(3) v (B) = (v ) (s.w) |uln(s,w)) € BY for all B € Ay .

R

These equilibrium invariant probabilities have a number of interesting
interpretations. The invariant probabilities on the action (q,5) will be
analogous to steady-state consumption and investment in models of economic growth.
In models of renewable resource management, probabilities on' (rr,c) offer an
interesting parallel to the concept of sustained yield and optimal escapement.

The corresponding equilibrium probability distribution on shadow prices may

be useful in examining steady-state price distributions in market models. Finally,
the invariant probability which is induced on immediate returns may be of
interest to a firm manager concerned with '"average" profits or to a government
planner interested in the eventual steady-state utility of per-capital con-
sumption. Empirical observation of the actions of the planner may be con-

sidered as random draws from these steady-state distributions. Thus, further
specification of the form of these distributions is of particular interest. With
explicit‘forms for the utility function and the constraint, explicit forms

for the optimal finite horizon policy can be obtained (see, for example,.

Leland [1974]. 1f these policies were to be applied as rolling plans, then

under certain restrictions on random disturbances, explicit parameterizations

of the steady-state distributions could be derived. An interesting problem for
future research, would be to investigate the effects of changes in the underlying

parameters on the observed equilibriums probability distributions.
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APPENDIX
The approach taken in the proofs of Lemma 1 and Theorem 1 follows the
general outline of Maitra [1978]. The proof of Lemma 1 will employ the
following well-known results:
(i) The function %: X + R defined by

(1) m(x) = Max v(x,a)
acb(x)

is continuous and the correspondence f: X 4 A defined by

(2) f(x) = fa € b(x) ] v(x,a) =mMmx)
is upper semi-continuous given b:X 4+ A continuous, A compact,
and v continuous.

(ii) Given the metric |[lv-ull = sup |v(x) - u(x)|,
x€X

the class of all bounded and continuous functions on X,C(XS,
is a Banach space.
(iii) Define Tv:- X+ R for any v € C(x) by
(3) Tv(x) = Max [u(s,p,a) +a v(g(s,a)w ddo (@ |w)].
acb(x)
The fact that T maps CE) into C(X) follows directly from assumptions 2b,4a,5,6
and result (i). TFurther T 1is a contraction map on CX) and consequently

has a unique fixed point. See Maitra [1968], Lemma 4.3

Proof of Lemma 17» (Other than the result that the optimal return is
continuous this proof directly parallels the proof of the main theorem
of Maitra [1968].)
With any measurable f from X to A, associate the operator
L(f) from C(X) to C(X) defined by
(%) L(HVE) = U(s,m, £(s.w)) + o [ V(g £(s,0)).w Yo @ |w).
By Theorem 5.1 of Strauch [1966], L(f) 1is a contraction map on

C(X) and hence has a unique fixed point. TFurther this unique fixed
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point is TI(f°) where f” denotes the stationary plan
(£,£,£, ... ).
*
Let V  be the unique fixed point of T, see (iii). It then
follows from (i) that there is an upper semi-continuous function £
* * ¥ *
from X to A such that TV = L(f°)V . Therefore L(fn)V =V
#
and since the unique fixed point of L(f®) is 1(f9), Vc = I(f¥). Hence

* %
V. =V can be rewritten as

(5) I(f) &) = Max [u(s,w.a) + o [I(£)(g(s,a),0 )d¥ (» |w)].

Thus I(fm) satisfies the optimality equation so that by Theorem 6
¥
of Blackwell [1965] £~ is an optimal plan. Moreover, as V = I(f°)

%
and V € C(X) the optimal return is continuous and bounded.

We now turn to Theorem 1. The proof will employ the following results.

(iv) The correspondence f: X 4 A defined by

(6) f(x) = faecA-a¢€ b(x),v(x,a) = Max v(x,a')}
a'eb(x,a')

is single valued, given v strictly concave in a, and b continuous and
convex valued. (Note that if f 1is upper semi-continuous it will then be

continuous.)

(Note that if a ¢ R', v must be strictly concave in all but

one of (al, .oy an), say a,, and concave in ai.)
(v) Given the metric [lv-pll = sup |v(x) - p(x) | the class
x€eX

of functions that are continuous and bounded on X and nondecreasing and

concave on S,CS(X) is a Banach space.

(vi) Define Tv: X+ R for any v ¢ CS(X) by ,
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(1) (@(x) = Max [u(s,w,a) + a [ v(g(s,a).0 )& | w))
aeb (x) '

It is easy to show that T maps CS(X) to Cq(-'X‘),. Thea T has

a unique fixed point in CS(X) by (iii).

Proof of Theorem 1:

%
Let v € CS(X) be the unique fixed point of T in GSQK)‘
Given Lemma 1, there exists an upper-semi-continuous funetion f: X4 A
% * % -
such that Tv = L(f)v where (L(f)v )(%) 1is defined as before.

) % * ¥ %
So L(f)v =v and we can rewrite Tv = v as

@ 1) a= Max [uls,wa) +a P 1E®)(gs,a),5 )86 |01
- aeb(x)

Thus, I(f(“’)) satisfies the optimality equation and :f(a) is an optimal

plan. Since v* = I(fi(‘”)) and v € cs(x‘), the optimal return is

bounded and continuous on X and is nondecreasing and concave on S.

* *
Further, since f satisfies L(f)v = Tv we may write

9 ulsmEE) +al v (g(s,£()) 5 )06 | w)

= Max [u(s,w,a) +al v (g(s,a),m )b |wl.
aeb (x)

3 ~ ~
Since v € CS(X)’ it is concave in s, so the term «a ['v*(g(s,a),m )dd(w |w)

2
is concave in s and a since g 1is concave. Since u 1is strictly

concave in a, the optimal policy £(x) will be single-valued and,

therefore, continuous, by (iv).
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