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Abstract

This note gives a sufficient condition under which the average
sum of a large but finite number of sets in an arbitrary normed linear
space is approximately convex. The result can be deduced as a simple
corollary of an analogous result for a nonstandard universe. The latter
has independent interest.

*

These results were reported in an invited lecture at the Iowa
City Symposium and Workshop on A. Robinson's Theory of Infinitesimals
held May 31 - June 5, 1977. I would like to thank Bob Anderson for his

comments.




In [ 3], building on the work of Brown, [ 1], and Starr, [10], it
was shown that the average sum of a large but finite number of subsets
of a finite space is approximately convex if the sets have uniformly °
bounded non-convexities. This theorem has found application in the de-
velopment of a theory for economies with a large but finite number of
agents; see, for example, [4] and [ 6]. In this note, I extend this
result to sets in arbitrary normed Tlinear spaces. The motivation under-
lying this extension is the development of a corresponding_theory for
economies with ;n arbitrarily large but finite number of commodities and
agents. Section 4 below expands on this remark. Sections 1 and 2 de-

velop the results for a nonstandard universe and Section 3 presents the

standard asymptotic version.
1. Preliminaries

We work in a nonstandard universe. For a comprehensivé introduction
to nonstandard analysis, the reader is referred to Stroyan and Luxemburg,
[11].

Let *9 be the nonstandard extension of 77, a normed linear spaﬁe

over the field of real numbers R. For any x in *9, Tet || x || denote
the norm of x. Let *N be the nonstandard exfension of N, the set of all
positive natural numbers, and *R the nonstandard extension of R. Let
T be an internal subset of *N where | T|, is w, some infinite natural
number. Without any loss of generality we assume T to be the set
(1, 2, ..., w), we *N-N.

. _
Let G : T 2 Xbe an internal correspondence. Define (1/w) Y G(t)
_ teT
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as the set of points which are average sums of all internal selections

from 1 G(t). For any set G in *y, we shall take (1/w) } G to mean
teT A teT

the average sum of a constant correspondence.

A set B in *7n is said to be s-convex if for all x, y € B and any
A e *(0,1), there exists a z € B such that || z - (Ax + (1-1)y) |] = O.
For any two elements a, b in *R, a = b means a differs from b by an in-
finitesimal. If the definition of S-convexity, we replace = by_=,’wé
shall say that B is O-convex. For any internal set B, Q-con{(B) will de-
note the Q-convex hull of B. By transfer, it is the set of all star
finite convex combinations of points chosen from B. Note that B is S~
convex if for all y € Q-con(B), there exists z € B such that || z - y || = ©.
__The:converse is, in general, false. We shall accordingly say that a set
B in *9 is strongly S-convex if for all y € Q-con(B), there exists z such
that || z - y || = 0.

We shall continue to work with Starr's measure of non-convexity.

Let x € Q-con(S), £ (x,S) = {| Ac S | x € Q-con(A)} and rad(S) = Inf r(x)

Xe$S
where r(x) = {r e *N | B{x,r) =2 S} and B(x,r) ={y e *2 | || x -y || < rl.
We can now define a measure of non-convexity of S, R(S), as Sup
xeQ-con(S) -
Inf rad A.
Ac

We end this section with two remarks.

' *
Remark 1: Let G be a correspondence from T into RV the v-fold copy of

*R, v € *N. Then irrespective of the magnitude of v, (1/w) } G(t) is
teT

*R

not, in general, S-convex. Consider, for example, G : T ~ 2 = such



that for all t e T, t #wG(t) = {1} and Glw) = ({1}, {w}). Then

(1/w) § G(t) consists of the two points {1} and {2 - 1/w} and is obvious-
teT "

ly not S-convex.

Remark 2: Remark 1 is valid even for the case of a constant correspon-

dence. Let G(t) = ({13}, {w}) for all t € T. Then 1/w § G(t) is not
teT

S-convex.
2. Principal Results

We begin by making precise the condition that there are "many sets

of every type" in the range of the correspondence G.

Standfng Hypothesis: Let G(t) = G; for all t in T, and for all

i=1, ..., p, p € *N where

p
(i) T-= ig]Ti, Ti n Tj

d, Ti internal

(ii) For all i, | T, | = w(i) & *N-N.

Note that we do not require (w(i)/w) # 0 for any i. We shall also

need the following assumptions

Assumption 1: For all i, (R(Gi)//ﬁ) = 0

[]
n o~
p-J
=
o
1]
-
1]

Assumption 2: For all i, there exist n{i) ¢ N such that G;

Aij are convex subsets of *% and n(i)/vw(i) = 0.

We can now state the principal result of this paper.

Theorem 1: Under Assumptions 1 and 2, (1/w) ) G(t) is strongly S-convex.
teT ' :



The proof is in a series of lemmas. Let A = {X ¢ *gK l

k
A. >0, ) A, =1}
J— j='| J

o~

i)
1

n
Lemma 1: Let 67 = {x e *5 | x = }

J J
; ij > An(i)’ xY € A..}. Then

1]

Q-con(Gi) = Gg.

Proof: We first show that G? is convex. Let x and y be elements of G?.

Then -
n(i) j j ’ .
X = .Z ij xY € Aij’ A€ An(1)
j=1
n{i) j
y = JZ] ij y € A1J, u. € An(1)
Then for any 8 € *[0,1]
n(i) . .
Bx + (1-B)y = ) Br.xY + (1-B)u-yJ
j=1 J J
n(i)
. = .+ - .. i . . = 1.
Let Y BAJ (1 B)uJ Certainly 0 < YJ-i 1 and jzl Y 1
n(i) . .
Thus, Bx + (1-B)y = } (y.xJ + (1-Y.)yJ)Y.. Given convexity of A, .,
j5 0 i | i]

we cén see that Bx + (1-B)y is an element of G%.

Since Q-con(Gi) is the set of all star-finite convex combinations
of points chosen from G.» G? c Q-con(Gi). From above, G? 2 Q-con(Gi).

Q.E.D.



w(i)
Lemma 2: Under Assumptions 1 and 2, Hy = (1/w(i)) }

Gi is strong]y
t=1

S-convex.

Proof: Certainly H, c Q-con(Gi). This implies that Q-con(Hi) c Q-con(Gi).
We thus need only show that for any y € Q-con(Gi), there exists z € H,
such that || z -y || = 0. By Lemma 1, there exists A € An(i) and

. n(i) .
yJ £ Aij such that y = jZ1 Aij, Without loss of generality, assume Xj >0
and xJ = yj - y] for all1 1 < j < & < n(i). Note that given Assumption 1,
11 x3 || #Bi) = o.

Consider the set T, of the natural numbers 1 through w(i) and for

any internal subset L of T. define n(L) = Y (1/w(i)). It is easy to see
tel

by a transfer argument that for all Aj > 0, there exist internal sets
Sj c Ti such that | Aj - p(Sj) | < 1/(w(i)). One can alternatively show
the existence of the sets Sj by successive application of a one-dimensional

version of Loeb's Theorem [ 7]. Now define the function
h(t) = x3 (Yt e $)(3=1,....0).

Certainly h is an internal function from Ti into *7 such that for all

tin Ty, h(t) +y' e 6;. Now
7 w(i) 1 [ .
I (1/0G) Y (h(t)+y') - 7 xj(x3+y ) 1] =
=1 =1
w(i) L.
[l (1/e(i)) ) h(t) - T r.xd || =
t=1 j=1



L

% | .
[l (1/e(i)) T T h(t) - ] ijJ 1l <

j=1 teSj j=1
5 : i L .
J_Z] | Is5170(i) = a5 |11« ] 5jzlw/(w(1)> x5 1 <
(Max 1] x; 11 (v/(i)) = 0 0.£.0.
1<j<2

Remark 3: Note that the last step in the proof hinges crucially on the
fact that n(i)/v(i) and || xJ || //&(i) are infinitesimals.

The following lemma is essentially due to Robinson; see Brown, [1].

The proof produced in [ 1] for *Rn, n € N, can be straightforwardly ex-

tended.

Lemma 3: Let'{At}teK be an internal family of nonempty subsets of *% and

B = thAt’ the internal set of internal selections from the At' Suppose
{¥,}, ¢ an internal function such that (vt e K)(Ezt €A) | TRERA || = 0,
then there exists g € B such that vt ¢ K, || g(t) - }t || = 0.

Proof: The following sentence is true in the standard universe U: for
every positive § € R, (VK< NV{A k> Aps T Mvf e (n ) vt € k)

(b, & A(][F(t) - b || <8)= (age thAt)Ovt e K)(]]g(t) - f(£)]| < o).

Hence this sentence is true when translated into *U, the nonstandard uni-
verse: for every m € N, (Egm € (B)N) (Vt e K)(llgm(t) - }tll < 1/m).

Hence we have a sequence ¢ : N > B such that ¢n =g Under the assumption

n’
of a 77 -saturated model, we can extend ¢ to p : *N »B such that v € *N-N

* M
such that g e (B) " and || g (t) - ¥, 1l <1 =0, Q.E.D.

Lemma 4: Let X € Ap, p € *N and At’ tekK-={(1,2,...,0) be an internal

- family of nonempty, strongly S-convex, subsets of *# . Then J AtAt is
. tek



strongly S-convex.

Proof: Pick x from Q-con Z AtAt. Since the operators Q con and Z

tek tek

commute, x = ) A tX¢ Where x, € Q-cpn(At). Since A, are strongly
teK |
S-convex, there exist z, e Al such that || x; - z, || =~ 0. Now by
Lemma 3, we can find an internal selection g from &HKA ) such that
£

] g(t) - z, l4 = 0. Let h(t) = g(t) - x,. Since both g.and X are
internal, h is internal and thus h = Max || h(t) || is well-defined and

teK

equal to an infinitesimal. Thus || x - F A.a(t) [} < } Al ||
tekK tek

Xy - g(t) ]| = 0, Q.E.D.
We can now furnish a

Proof of Theorem 1: Under the standing hypothesis, we can rewrite

A w(1)
(w(i)/w)(1/w(d Z G;. Since w(i) € *N-N, Lemma 2

t ~~10

(1/w) ¥ G(t

teT i=1

w(i)
allows us to deduce that (1/w(i)) } Gi is strongly S-convex. Application
t=1

of Lemma 4 completes the proof. ' _ Q.E.D.

Remark 4: Let the internal fami]y'{At}téK, AL = *N be essentially finite-
ly spannable if for all t ¢ K, for all y ¢ Q—con(At), there exist n(t) € *N,
n(t)//TK] = 0; xj > At’ =1, ..... » 2 <n(i); and X ¢ A2 such that

2 . .
y= 73 ijJ. If n(t) is independent of t and an element of N, the famil-
j=1 '

{A.}

t}iek is said to be uniformly finitely spannable. It is obvious that



Theorem 1 is valid with the replacement of Assumption 2 by the requirement
that the fami1y'{Gi}?=] is essentially finitely spannable. Given

. *n . .
Caratheodory's Theorem, it is also obvious that At € R, ne N implies

that the family {A is uniformly finitely spannable without any further

t}teK
assumptions.

Remark 5: Assumption 2 is not necessary for the validity of Theorem 1.

In the remaining part of this section, we expand on Remark 5. We
* v
shall now assume that the Gi’ 2=1, ...., p, are subsets of R”, v € *N-N.

By transfer of Caratheodory's Theorem we know that for any i, for all

y € Q-con(Gi), there exist xJ ¢ Gi’ j=1, ...., v+1, such that
v+1 . _

y = Z ijJ. We shall say that the family {Gi}$=] is basically spannable
J=1

if there exists n € N, such that for all i and all y, for all coordinates
s =1, ...., v, the number of elements in the set {xJ}gi} with non-zero
sth coordinate is less than n and these elements have all other coordi-

nates zero.

Theorem 2: Under Assumption 1 and the assumption of basic spannability,

(1/w) ) G(t) is strongly S-convex.
teT

Proof: Note that we needed Assumption 2 only in the proof of Lemma 2.
It can be easily checked that we can prove Lemma 2 under the substitution

of the assumption of basic spannability for Assqmption 2. Q.E.D.
3. An Asymptotic Interpretation

In this section we show how Theorems 1 and 2 can be used to derive



standard results on the approxfmate convexity of the average sum of a
large number of subéets of a normed linear space or a space with an -
arbitrarily large but finite dimension.
Let {G(t)}§£¥) denote a family of yt(k) sets identical to G(t) and
(k) .
thus the total number of sets in the family are sz vt(k) = y(k) say.

When G(t) are subsets of 97, a normed linear space, we shall denote the

5% and when they are subsets of g (k)

family by , we shall denote the
. 7k _ ek 9 _ ik

family by ¥°. Let 4 = {% Heen and B = { Yeen We shall need the

following condition of & and B, with the concepts defined exactly as

in the previous sections.

Assumption 4: For all k, for all G(t) in 4% or FX, Limit R(G(t))/n = O.

n > o

In addition, £ is uniformly finitely spannable and B is uniformly finite-

ly or basically spannable.

We shall say that Ac R¥ is e-convex if Vx, y € A, VA € (0,1), there

exists z € A such that || z - (Ax + (1-A)y) || < e. We can now state

Theorem 3: Under Assumption 4, (V¥ € > 0)(am e N}{vk € N, k > m) the
k)

Y(
average sum of sets in 5% or }:k, i.e., (1/v(k)) )} G(t) is e-convex.
' t=1

Theorem 3 is a far-reaching generalization of the standard result
presented in [ 3] or the one that can be derived from [1]. Note that it
can be generalized slightly by relying on a standard version of essential

finite spannability instead of uniform finite spannability.

Proof of Theorem 3: Follow the argument used in [ 3] to deduce this




10

result from Theorems 1 and 2. To see that Limit R(G(t))/n = O implies

n >
Assumption 1, one has to use Robinson's Theorem [10, page 60, Theorem

3.3.7]. : _ Q.E.D.
4., Remarks on Applications

In showing that core allocations can be sustained as price equilibria,
we_consider a correspondence whose range is a union of a point and a set
of preferred elements; see for example, [2, page 133] or [4]. If we
assume convexity of preferences, a natural assumption in this content
(see Section 3.2 in [2]), our condition of uniform finite spannability
is automatically fulfilled. The average sum of sets in the carrespondence
is thus approximately convex, allowing us to apply the separation theorems.
In this way, the core equivalence theorem can be generalized to arbitrary
narmed linear spaces.

In proving the existence of a competitive equilibrium, it is a natural
procedure to take the average sum of maximal eiements in each.trader's
budget set; see for example [1]. If the sets of maximal elements is
finitely spannable, uniformly or essentially, the average sum is approxi-
mately convex, opening the way for the use of fixed point theorems. How-
evér,;we do not have any conditions on the preferences which are suffi-
cient for the set of maximal e]emehts to be finitely spannable. On the

other hand, if the preferences are such that the "better-than set is
S n 2
given by {x e R, [ ] x> a}, o € R, then the set of each agent's
i=

maximal elements will be basically spannable.

Both of these applications will allow the development of a point of



11

view that is novel. It is assumed in the literature that for the above
two results to extend to spaces of arbitrary dimension, one needs to
restrict the commodity space relative to the number of agents in t.he
economy; éee, for example, [ 6] and [8, page 265]. Using the results of
this paper in the man.ner indicated above, one can show that all one re-
quires is that there be many agents of the same type, and that the
number of agents of any given type need not be a non—negligible fraction

of the number of all agents in the economy.
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