Discussion Paper No. 348

A MATHEMATICAL PROGRAMMING GENERATOR SYSTEM IN APL
by

Edward A. Stohr

Revised June 1979

A MATHEMATICAL PROGRAMMING
GENERATOR SYSTEM IN APL

Edward A. Stohr
Associate Professor of Decision Sciences
Graduate School of Management
Northwestern University
Evanston, Illinois 60201

Abstract

This paper describes a mathematical
programming generator which interprets
problem statements written in the 'sigma
notation' found in journal articles and
textbooks. The syntax of the problem
definition language is outlined and
illustrative examples are given. The
system has been implemented in APL. A
unique feature is that the user can
define objective function, constraint
and right-hand-~side coefficients as APL
expressions. This leads to concise
problem statements and also reduces data
storage and processing requirements.

1. Introduction

The manual generation of the data for
mathematical’/ programming algorithms is a
particularly tedious task which lends
itself well to automation. 1In fact, for
the large linear programs often found in
practice, which may have thousands of
constraints and variables, it is hard to
imagine that this data could be generated
by hand within a reasonable amount of
time and with reasonable accuracy. There
are two possible approaches to automat-
ing this task: (1) specially written
programs which can read and validate the
data for a particular problem structure
and generate the required algorithm
input in either 'tableau' or 'sparse
matrix' form, or (2) mathematical
programming 'generators' which can
interpret any problem statement (not
confined to a given structure) and are
often combined with special data
display and report writers for displaying
the results of the algorithm [3], [5],
[6}. This paper describes a mathematical
programming generator written in APL
which allows the user to use the
capabilities and syntax of APL to help
in problem definition.

T .

The Mathematical Program Generator
System (called MPGEN) accepts problem
statements in the 'sigma' notation found
in journal articles and textbooks. The
problem statement is interpreted and the
data for the tableau is generated as
'data triples' in the form (i,j,v) where
i is the row index, j the column index
and v the associated tableau value. The
conventions adopted in generating the
data triples are those used by the MPOS
'"Multi-Purpose Optimization System' [2].
Thus the triples defining the right hand
side constants have the value j=0, while
the triples defining the objective
function have the value i=0. The
generated data triples can be used as
input to: (1) Control Data Corporation's
APEX (a large~-scale mathematical
programming system); (2) the MPOS system
(a versatile system for small to medium-
sized mathematical programming problems);
or (3) mathematical programming
algorithms coded in APL. The first
alternative employs an option available’
under MPOS which has the capability of
transcribing its input data into a format
acceptable by APEX. The MPGEN cystem has
been implemented in the APLUM [9],
version of APL on Northwestern
University's CDC 6600 computer.

The idea of using a 'sigma' notation
appears also in [4], which contains a
detailed language specification together
with a description of many other
components of their proposed system. The
language described and illustrated in
this paper has a quite different syntax.
One of its chief features is that .the
variable coefficients, right-hand-side
constants and variable indices can be
specified as expressions in the APL host
language. As the problem statement is
interpreted, values are substituted for
these expressions using the APL 'Execute'
(sometimes called 'Evaluate') function,
Q.l Using APL in this way helps to
provide a concise problem statement and
also reduces the need to preprocess the
data. As a result data storage require-
ments can be greatly reduced.

The use of the sigma notation allows
almost a direct transcription from the
mathematical statement of the problem to
the stored representation. The problem
statements can be documented using
'comment' statements so that the problem
definition can be readily understood; in
fact, the problem statement can represent
an abstract from the journal article,
textbook or operation researcher's
notebook in which the problem structure
was originally defined. The problem
statement is designed to 'look-like' a
conventional mathematical programming
statement in order to minimize the effort
in transcribing from the mathematical
statement to the input representation.
The alternative of developing an APL-
like syntax would represent a purer
approach from the APL point-of-view but
might be less acceptable to practicing
management scientists and make the
transcription less direct. The system is
most useful in an educational environ-
ment since it allows one to quickly form
a 'database' of linear and integer
programming problems to illustrate
applications in a wide range of areas
such as cash management, capital
budgeting, production planning and
scheduling, transportation, facilities
location, marketing and so on. 1In
addition to the use of the system in
defining mathematical programming
problems, it can be used without change
to generate systems of linear equations
or inequalities.

This paper focuses on the problem
definition language and especially those
features of the implementation which rely
on the capabilities of APL. The syntax
of the language is described and
illustrated in Section 2. The way in
which APL can be utilized to form
concise problem statements in a number of
situations is described in Section 3.
Section 4 briefly summarizes other
features of the implementation including
the provisions made for data entry and
display, revision of the problem state-
ments and storage of the output of the
algorithms.

2, The Problem Definition Language
We first illustrate the use of the
MPGEN system in the solution of a small

linear programming problem:

Maximize: 2x, + 3x2 + x

1 3
Subject to: X+ % <4
X, + x, + x4 <6
>0

10 %0 %3

Using MPGEN an APL character matrix (say
SAMPLEL1) could be used to define this
problem as shown in Figure 1:

SAMPLE1
* SAMPLE PROBLEM 1 - ALGEBRAIC FORM
*
VAR=X(I), I IN 13
*
MAXIMIZE
2X(1)+3X(2)+X(3)
*
X(1)+2x(2)<H
*
X(1)+Xx(2)+x(3)<6
* END

Figure 1
Algebraic Format

This is an algebraic form similar to that
.used by MP0OS [2], and a number of other
linear programming generators. Statements
beginning with an asterisk are COMMENTs.
The VAR= statement is a VARIABLE
DECLARATION which is used by the system
to assign columns to variables. The

APL 'index generator' operator (is used
to indicate that the INDEX SET for X is

1 2 3. Obviously, the above problem
definition is only useful for the
particular problem data shown. More
generally the standard form of a linear
programming problem:

COMMENT LINE

DATA DECLARATION
VARIABLE DECLARATION
‘OBJECTIVE DEFINITION
SUMMATION INDEX LINE

FOR INDEX LINE

'CONSTRAINT DEFINITION S ALI;JJX(J)<BLI)

N
Maximize: 2 C.X

je1 33

N
Subject to: Y2 a
3=1

ijxj < bi’ i=1,2,...,M

can be defined in MPGEN using 'sigma'
notation as shown in Figure 2.

Problem Statement -

SAMPLE2<DEFPROBLEM

« SAMPLE PROBLEM 2 - SIGMA NOTATION
*

DATA=M,N ,A(MxN) ,B(M),C(N)
*

VAR=X(J), J IN ¥ . DECISION VARIABLE

* At

MAXIMIZE

S CLJIX() VARIABLE INDEX EXPRESSION
J IN N™ r‘INDEX SET EXPRESSION

* 2 '

FOR I IN WM~

RHS CCEFFICIENT EXPRESSION

J IN 1N 1 : VARIABLE COEFFICIENT EXPRESSION
* END ‘

Figure 2

'Sigma' Notation Format and
Definition of Terms

Here DEFPROBLEM is an APL function which
allows the user to input a character
matrix line-by-line; when the last line
has been typed the user simply presses
carriage-return on the next line to end
the input. The APL variable SAMPLE2 then
contains the defined character matrix.
Modification and correction of the
problem statement is performed using an
EDIT function which invokes the APLUM
Function Editor.

The DATA= line is a DATA DECLARATION
statement (optional). It is used by the
system to check that the required data
(variables M,N,A,B,C) are present in the
APL workspace and that the wvariables
(A,B,C) have the indicated dimensions.
If either of these conditions are false,
the system will prompt the user either
to input the required data as each line
of the tableau is generated or to halt
the problem interpretation.

An 'S' followed by a blank in an
OBJECTIVE or CONSTRAINT DEFINITION line
represents the algebraic symbol, 'Z'.

The range for the summation is indicated
in the following SUMMATION INDEX LINE.

In Figure 2 we have: J in (N, meaning
that J takes values in the SET 1,2,...,N.
The rows for which a CONSTRAINT DEFINITION
is defined are given by one or more FOR
INDEX LINE's. 1In the example there is

one such line which specifies that there
are M constraint rows--I belongs to the
INDEX SET 1,2,...,M.

The problem definition in Figure 2
obviously applies to any linear program;
it is only necessary to define the
appropriate cost and right-hand-side
(RHS) coefficient vectors and the
constraint coefficient matrix A. Thus
the 'sigma' notation has two great
advantages: (1) it is a more compact
notation which corresponds almost
exactly to the format used in the
statements of Operations Research models,

(2) the problem definition is general in
the sense that it is independent of the
dimensions of the problem (number of
variables and constraints involved). The
disadvantage of the standard format for a
linear program shown in Figure 2 is that
it ignores any special structure which
might apply to a particular class of
problem. Thus, the user is required to
construct the matrix A from the constraint
equations of the problem. This is a
laborious task and also requires the
input and storage of unnecessary data
since this matrix is generally quite
sparse in practice.

Having defined the problem as above,
the user can then run it using an APEX,
MPOS or APL linear programming algorithm
as illustrated for a more complex problem
in Figure 4.

Before proceeding to a more compre-
hensive example we outline the rules for
defining a linear (or integer) programming
problem using MPGEN. A more complete
description is given in [7].

The INDEX SET, VARIABLE INDEX, RHS
and VARIABLE COEFFICIENT EXPRESSIONS (see
Figure 2) can be defined by the user
using the APL language. These
expressions are evaluated when the problem
is interpreted using the APL 'Execute'
function. 1Imbedded in the expressioné
will be the data variables and constants
which define a particular instance of the
problem. With the exception of certain
reserved names, the user can employ any
valid APL variable names for the APL data
variables, INDEX VARIABLES and DECISION
VARIABLES.

Note that the indices for the linear
program DECISION VARIABLES X1,%9,X3 in
the above were enclosed in parentheses in
the problem statement--X(1),X(2),X(3) in
Figure 1 and X(J) in Figure 2. The MPGEN

System uses the names in the VARIABLE
DECLARATIONS plus the parentheses to
recognize DECISION VARIABLES when
interpreting CONSTRAINT and OBJECTIVE
DEFINITIONS. 1In the current
implementation a DECISION VARIABLE can
be indexed by up to five indices
separated by commas. Each INDEX can be
a constant, a variable appearing in a
SUMMATION INDEX or FOR INDEX LINE, or
any non-parenthesized APL expression
which returns a scalar result. During
interpretation the MPGEN system evaluates
each index in the VARIABLE INDEX
expression separately using the APL
'Execute' function.

As will be illustrated later, allowing
the user to employ APL statements within
the problem definition helps in forming
concise problem statements and reduces
both data storage requirements and the
need for preprocessing data. The danger
in allowing this freedom, of course, is .
that error detection may become more
difficult because the MPGEN system does
not check the syntax of the APL
expressions--this is done by the APL
processor during the evaluation. This
potential drawback is mitigated, if not
eliminated, however by (1) 'trapping' any
such error and providing an error
message which displays the expression
where the error occurred, and (2) by
checking the presence and dimensions of
all required data using the DATA
DECLARATION statement.

OBJECTIVE and CONSTRAINT DEFINITION
lines differ only in that the latter must
contain one of the relational operators
£, =, or = together with a RHS
COEFFICIENT EXPRESSION. The OBJECTIVE and
CONSTRAINT DEFINITIONs consist of one or
more VARIABLE TERMS separated by '+' or
'-' operators A VARIABLE TERM has the
following form

B i e B

One or more . . .
ff
Summat ion S bol;][Coe icient Expression]

Varname (Variable Index Expression)

where the square brackets indicate
optional components. For example, the
second constraint in Figure 1 has two
VARTABLE TERMS - X(1) and 2X(2) while the
CONSTRAINT DEFINITION in Figure 2 has
only one - S C[{J] X(J). Note that the
summation symbols 'S' apply to only one
variable; if more than one variable name
appears in an OBJECTIVE or CONSTRAINT
DEFINITION line, then each must have its
own summation symbols.

If an expression contains one or more
summation signs, it must be followed by a
SUMMATION INDEX LINE in which the corres-
ponding index variables and the values
they are to assume are defined by one or
more INDEX TERMS separated by commas. An
INDEX TERM has the form:

Index variable name IN Set expression.

The SET EXPRESSION may be any APL
expression which returns a positive scalar
or vector result, e.g. (N, in (Figure 2)
or I[K;] in Figure 4). The result of the
SET EXPRESSION defines the values taken on
by the INDEX variable during the summation.
The correspondence between summation signs
and INDEX TERMS is obtained from the order
(from left-to-right) in which the latter
appear in the SUMMATION INDEX LINE. Note
that the desired result of a SET
EXPRESSION may depend on the value of a
previously defined index. Thus, in
Figure 3, we have K IN K, I IN I[K;] where
K is an APL vector of index values for K
and I is an APL matrix in which the rth
row contains the index values for I when
K=r. Since trailing zeroes in an index
vector are ignored by MPGEN it is
possible for the number of values assumed
by the I index to vary with the value of
K. Other facilities for defining SET
EXPRESSIONS are defined in [7].

10

OBJECTIVE and CONSTRAINT DEFINITION
lines and SUMMATION INDEX LINES can be
continued if necessary on a succeeding
line prefaced by a colon, ':', as shown
in Figure 3 below.

The rows for which a CONSTRAINT
DEFINITION applies are defined by one or
more preceding FOR INDEX LINEs., These
consist of the word 'FOR' followed by an
INDEX TERM as defined above. Again, the
SET EXPRESSIONS can be dependent on
previously defined indices.

VARTABLE DECLARATION LINES also contain
INDEX TERMS - one for each index variable
(see Figure 3), The associated INDEX SETS
must specify the full range of values
which the index can take on in the problem
statement.

An OBJECTIVE GROUP consists of a line
containing the word MAXIMIZE (or
MINIMIZE), the OBJECTIVE DEFINITION line,
and (if the latter contains one or more
summation symbols) the associated)
SUMMATION INDEX LINE. A CONSTRAINT GROUP
consists of one or more FOR INDEX LINEs,
the CONSTRAINT DEFINITION line, and, if
required; a SUMMATION INDEX LINE. A GROUP
and its associated data triples form a
basic unit of data in the MPGEN system.
All GROUPS are preceded and followed by
one or more COMMENT lines. The user is
free to write any desired descriptive
"material in the comment lines. 1If the
user requests a print-out of the tableau
after the problem statement has been
interpreted the comment lines preceding
each GROUP can be used as sub-headings for
the report (the indexed variable names
form the individual column headings).

In addition to the statements which
define the mathematical program itself
the user may insert other commands in the
problem statement by the use of the
EXECUTE statement, This has the form:

EXEC: wvalid APL expression.

11

The EXECUTE statement can be used, for
example, to open, read and close files,

to erase data variables which are no
longer required and to perform conditional
operations on the problem data.

The MPGEN system interprets the problem
statement in one pass in line-by-line
order, As the data triples defining each
row of the tableau are generated they are
written as records on a sequential 'coded'
APLUM file. Thus core requirements are
kept to a minimum and the system has the
capability of generating quite large
mathematical programming tableaux. In
addition, to take advantage of the
efficiencies to be obtained from linear
programming codes such as MPOS which
utilize a variant of the simplex method
for variables with upper and lower
bounds, such constraints can be auto-
matically recognized by the MPGEN system.
Modified data triples in the format
required by MPOS [2] are then produced.’
The file of data triples and the APEX or
MPOS 'Problem Statements' (if any) are’
normal CDC SCOPE Operating System files
which can, for example, be read by
FORTRAN programs. Together they contain
all the information necessary to run the
mathematical programming algorithms. If
required, these files can be saved for
later use in sensitivity analysis. An
APL function, MODIFYDATA, can be used to

-retrieve and change individual data
triples and to rerun the algorithm.
Another function, MODIFYGROUP, allows
the user to selectively reinterpret parts
of the problem definition and to store
the results in the file of data triples.

3. The Use of the APL EXECUTE Function
in Defining Mathematical Programming
Problems

The problem definition language
described in the previous section is now
illustrated using a more complicated
example.

12

The sample problem, reproduced here in
its original form, is taken from [1]:

(20a)

max 2N [Z z > vijkl?,xijkl,
xijkl’yikﬁ k€K T|LEL JGJZ 1EIk
L G R MY NS PRI R LSS

L€L €y, i€1, rERjL

-2 2 (I q 84107
.~ P sfSshik’7ik4
L€L 1€Ik sES’Z

subject to:
(20b),
N X m, X, . S_ M, >
k€K ¥ 1€1, ik ijlt = 34
Y jE€ JL’ L €L
(ZOC% N DI < T
I AN < ’
kex © 1€17 b7 ikd = 74
L €L
(204d) 5)
z xujkz - lUk(l)]yikl =0,

uEUk(i) jEJL

¥ iexi,JzEL,kEK

(20e)
b b =1 ,
LEL jEszijkL
Y i€ Ik’ k € K
(20%) .
z vy, = s
g€, L

Y i€ Ii, k €K

The above is actually a sub-problem of
a 'system' pricing problem in which
competing computer centers, £, attempt to

13

choose optimal prices, Prjz and qgy, for
various computing resources such as CPU
time and space on auxiliary storage
devices, The MPGEN problem definition is
stored in the character matrix USERPROBLEM
as shown in Figure 3. 1In translating from
the algebraic statement given above,
variables represented by small letters in
the original are represented by capital
letters and variables represented by
capital letters are represented by
'understruck' APL characters.

To form the objective function for
MPGEN, the two terms in x in (20a) are
combined to form a single VARIABLE TERM.
The coefficient

z

rERL

is represented by the APL statement

MV g - Priarieind)

(N[K] X V[I;J;K5L] - P[;J;L]1+ X H[;J;L;1;K])

which utilizes the 'inner product
operator + + X to perform the multipli-
cation and summation over r. The
VARIABLE COEFFICIENT EXPRESSION for y is
formed in a similar fashion. In most
current LP Generators the expressions for
these coefficients would have to be
evaluated and steored in a prior processing
run, Allowing these operations to be
evaluated by the APL host language at the
time the tableau is generated eliminates
both this prior processing step and the
necessity to store the computed data.

Constraint (20d) also illustrates the
use of an APL expression. Here, the
vector U[K;I;] represents Uy (i) (the set
of data sets required by program i in
-'usage class', k). Noting again that the
system will ignore trailing zeroes in an
index set, we obtain the cardinality of
Uk(i) using the APL expression +/0<U[K;I;].

14

USERPROBLEM
[1111111111711111111/1PRICING PROBLEM/////1/111111111111111111] *

USER PROBLEM

-~y e o v - wp o -

ASSIGNMENT OF DATA SETS AND PROGRAMS TO MINIMIZE COSTS
FOR GIVEN PRICES SET BY COMPUTER SYSTEMS.

* o % o

MATH CENTER WORKING PAPER NO 168
DEFINED AUGUST 2, 1978 E. 4. STOHR

veees DATA DECLARATIONS ve...

ok ok ok ok b A ot

DIMENSIONS

DATA=LK KN ,JN ,IN,IPN,UN ,SN,RN

*

* INDEX SETS

DATA=L(LN) ,K(KN) ,J (LN*JN) ,I (KN*IN) ,IP(XN*IPN) ,U(XN=xIPNXIN)
* 1

* USER PROGRAM AND DATASET DATA

DATA=N(KN) ,G(SNXLNxIN*KN) ,H(RN*JNXLN*IN*KN)
DATA=V (INxJN*KNXLN) ,M(INxKN) ,T(TENxKNx L)

*

* SYSTEM PRICE AND CAPACITY DATA
DATA=P(RNxJNXLN) ,@(SWXLN) ,M(JNxLN) ,T(LN)

eeoes VARTABLE .DECLARATIONS

X(I,J,K,L)Y=1 IF DATASET I OF USER K IS STORED ON DEVICE
J OF SYSTEM L, 0 ELSE

VAR=X(I,J ,K,L), L IN L, K IN K, J IN J[L;1, I IN I[K;]

*

*x Y(I,K,L)=1 IF PROGRAM I OF USER K IS RUN ON SYSTEM L, 0 ELSE
VAR=Y(I,K,L), L IN L, K IN X, I IN IP[K;]

*

* ouve. OBJECTIVE FUNCTION o....

*

* MINIMIZE COST OF STORING DATASETS AND RUNNING PROGRAMS
* EQUATION (204)

*

MINIMIZE

S S S S (NKIxVII:;K;L]~PL s L1+ xHL 33 L3113 K])X(I J.K, L)
L IN L, K IN K, J IN JLL;1, I IN I[K;]

SSS (N[K]xQ[L]+ xGL ;L3 I3K1)Y(I,K,L)

LINL, KINVK,IIN IPLK;]

ok b o

*

* CONSTRAINTS
*

Figure 3
Definition of Pricing Problem

15

* EQUATION (20B) - SIZE CAPACITY CONSTRAINT

FORLIN L

FOR J IN JLL;]

S S (WIKIxMLI;kX(I,J,K,L)sMLJ;L]

K IN K, I IN IlK;]

*

* FEQUATION (20C) - TIME CAPACITY CONSTRAINTS

FORL IN L

S S (NIKIxT{IsksL1)Y(I,K,L)ST(L]

K IN XK, I IN IPLK;]

*

*x EQUATION (20D) - DATASETS AND PROGRAMS ON SAME SYSTEM
FORL IN L

FOR K IN K

FOR I IN IP[K;]

S S8 Xx(U,d,K,L) - (+/0<ylK;I;1Y(I,K,L)=0

U IN ULK;I;]), J IN JLL;]

*

* EQUATION (20E) - DATASETS MUST BE ASSIGNED TO ONLY ONE DEVICE
FOR K IN K :
FOR I IN ILK;]

S S X(I,J,K,L)=1

L IN L, J IN JUL;]

*

* EQUATION (20F) - REQUIREMENT THAT ALL PROGRAMS ARE RUN
FOR K IN K

FOR I IN IPLX;]

S Y(I,K,L) = 1

LINL

*

* [[[11/777/111111/1/] END OF PROBLEM [///1/1117111111111110107000707077%

Figure 3
(continued)

16

Figure 4 illustrates the user inter-
action when running this problem. Note
that four problems have previously been
stored in the 'Library' and that the
'USER PROBLEM' described above has been
given the identifier, 'PRICE'. The re-
quired data is already present in the
workspace as verified by the DATACHECK
listing. Figure 4 also shows the re-
trieval of another problem 'SAMPLE 1'
from the library during the same ter-
minal session. The problem statement is
simply displayed ready for editing.
However, the great reduction in human
data preparation activities argues over-
whelmingly for the use of the system -
especially for large problems.

There are many other situations in
which the power of the APL language can
be utilized to help develop a concise
problem statement. A few more examples
are listed below:

(1) Logical Conditions: Suppose that.
the index variable I appears in one of
the FOR INDEX lines for a CONSTRAINT GROUP
and that the RHS coefficient should equal
zero when I=1 and should equal one
otherwise. 1Instead of generating a data
vector for the RHS of zeroes and ones, the
RHS COEFFICIENT EXPRESSION can be stated
as I#1.

As another example consider the
constraint set:

a.jx.. <b. ,1<i<n

Since the INDEX SET EXPRESSION for j can
depend on the value of i, these
constraints can be handled in MPGEN by

- letting the index set for j be an

(n X n-1) matrix with the appropriate
coefficients for j in the ith row or
~(preferably) by the APL expression:

(~(LN) € 1I)/'N

17

(2) Direct access to data via Random
Access Files: Suppose constraint
coefficients, aji, are updated periodically
and stored on an APL random access file
with 'file-tie number', FN. If the user-
defined function POS 1I,J returns the
relative position of aj3 in the file, the
constraints in Figure 2 can be represented
by:

FOR I IN (M

S (FREAD FN, POS I,J) X(J) < B[I]

J IN (N

This avoids the necessity to store data in
the workspace and gives MPGEN the
capability of generating extremely large
tableaux. However, accessing data items
individually in this way is time-consuming.
A compromise solution is to use the
EXECUTE statement to insert data retrieval
(and erasure) commands into the problem
definition before (and after) OBJECTIVE
AND CONSTRAINT GROUPS. 1In this way,
input-output costs can be reduced because
larger amounts of information can be

moved to and from direct access storage.

(3) User Defined Functions and Other
APL functions: As illustrated above, any
APL statement which returns a scalar can
be inserted in a COEFFICIENT EXPRESSION.
These statements can be regarded as real-
valued functions of the index variables
which define the row and column position
of the coefficient in the tableau. The
APL functions that might conceivably be
used include the 'matrix divide' function
which computes regression coefficients.

(4) Interactive Input of Data:3 If
objective function, constraint or right-
hand side coefficient expressions vary
from run to run (perhaps for sensitivity
testing purposes) this data may be input
interactively during problem interpreta-
tion using the MPGEN 'ASK' function.
Thus the constraint in Figure 2 could be
replaced by S (ASK) X(J) < B[I]. As
this constraint is interpreted the user
will be prompted to input the A[I;J]
coefficients from the keyboard.

18

KRUNPROBLEM
OPTION? (OR TYPE ‘'HELP!')
HELP :
TYPE:
LIBRARY - T0 DISPLAY LIST OF PROBLEMS IN LIBRARY
GET (PROBNAME) - TO START WORK ON PROBLEM (PROBNAME)
PROBLEM - T0 DISPLAY/MODIFY PROBLEM STATEMENT
INTERPRET - TO INTERPRET PROBLEM DEFINITION
TRIPLES - T0 DISPLAY/MODIFY DATA TRIPLES
TABLEAU - T0O DISPLAY PROBLEM TABLEAU
SAVE - T0 SAVE PROBLEM STATEMENT/TRIPLES/RESULTS
RUN - TO RUN FROBLEM
MODE - TO CHANGE MODE (APEX,MP0OS, OR APL)
SET CONTROLS - TO CHANGE REPORT AND LP CONTROL VARIABLES
STOP - TO STOP
OPTION? (OR TYPE ‘'HELP')
LIBRARY
PRICE . .
SAMP1
SAMP2
"SAMP21

OPTION? (OR TYPE 'HELP')
GET PRICE

OPTION? (OR TYPE 'HELP')
INTERPRET

~-~ LIST OF INTERPRETED STATEMENTS ---

DATA CHECK LN,KN,JN,IN,IEN,UN,SN,RN

DATA CHECK L(LN) ,K(KN) ,J (LNxJN) ,I(KNxIN) ,IP(KNxIPN),U(KNXxIPNXIN)

DATA CHECK N(KN),G(SNXLNxINXKN) ,H(RNxJNxLNx INXKN)

DATA CHECK V(INXJNxKNXLN) ,M(INXKN) ,T(IPNxKNxLN)

DATA CHECK P(RNxJNxLN) ,Q(SNxLN) ,M(JNxLN) ,T(LN)

5SS S (WIKIxVLI;J3K;3L)-PL3d; L1+ . xHL 33 L3 T3K1) X(I ,J,K,L)-8 S S (NIKIx+/QL 3LIxGL
sLsI:K1)Y(I,K,L)

5 S (NIKI*MI;K1)X(I,J,K,L)<M[J;L]

S S (WIKIxTLI3K;L))Y(I,K,L)<T[L]

S 8 X(U,J ,K,L)-(+/0<U[K3I31)Y(I,K,L)=0

S S X(I,J,K,L)=1

S Y(I,K,L)=1

--- END OF PROBLEM INTERPRETATION ---

APEX, MPOS, APL OR STOP?
APL

TITLE FOR REPORT?
PRICING PROBLEM

Figure 4
Running the Computer Pricing Problem

OPTION? (OR TYPE 'HELP')

TABLEAU

-5 /29/1979 11.,30.48

PRICING PROBLEM

IAIATATAIA

OPTION? (OR TYPE 'HELP')
GET SAMP1

. OPTION? (OR TYPE 'HELP')

19

PAGE 1

X1211 X2211 X1121 X2121 X1221 X2221 X1112

VZ456789012245678901224 5678301224567

* SAMPLE PROBLEM 1 - ALGEBRAIC FORM

PROBLEM
(121 [0O3v
[1]
[2] *
3] VAR=X(I), I IN 13
(4] = %
[5] MAXIMIZE -
[6] 2X(1)+3X(2)+X(3)
(7] *
[8] X(1)+2Xx(2)<4
9] *
[10] Xx(1)+x(2)+X(3)<s6
[11] * END
v

OPTION? (OR TYPE 'HELP')

STOP

Figure 4 (continued)

20

4, Other Features

The problem definition language
described in this paper provides a
convenient and concise means for defining
linear and integer programming problems,
Because of its labor-saving character-
istics, it should allow the operations
researcher to implement models more
easily and to experiment with alternative
formulations, . However, to provide a
complete 'decision support system', many
other facilities must be supplied,
including: (1) routines to aid in data
entry and to manage the processing of
primary data to the form required by the
model, (2) report generation routines
which provide comprehensive and readable
summaries of results and sensitivity
analyses and (3) a system to help the
user manage the exploration of a multitude
of alternative models and assumptions and
to maintain the links between the results
of different runs and their data inputs.
Data base management system techniques
involving the use of a 'nmetwork' data
model as described in [8] will be used in
conjunction with MPGEN to achieve these
objectives.

21

Footnotes

1

The Execute Operator executes APL
instructions written as a character
string.

The equation numbers correspond to
those given in [1].

3I am indebted to Dr. Melvyn H. Schwartz

of Vogelback Computing Center for this
suggestion.

22

References

1.

7.

Balachandran, V. and Edward A. Stohr,
“"Optimal Pricing of Computer Resources
in a Competitive Environment," Working
Paper No., 268, Center for Mathematical
Studies in Economics and Management
Science, Northwestern University, 1978

~ Cohen, Claude and Jack Stein, "Multi-

Purpose Optimization System, User's
Guide, Version 3," Vogelback Computing
System, Northwestern University, 1976.

Control Data Corporation, APEX II
Reference Manual, Publication
No. 59158100, 1974.

Fourer, Robert and Michael J. Harrison
"A Modern Approach to Computer Systems
for Linear Programming,' Working Paper
988-78, Alfred P. Sloan School of

Management, Massachusetts Institute of

Technology, Cambridge, Massachusetts
March 1978. :

Haverly Systems, Inc., LP 360/370 -
Linear Programming System: User and
QOperating Manual, Sixth Edition,
November 1977.

IBM Corporation, IBM Mathematical
Programming System Extended (MPSX/370)
Program Reference Manual,

No. SH19-1094, 1976,

Stohr, Edward A., "MPGEN User Manual,"
Graduate School of Management,
Northwestern University, 1978,

Tanniru, Mohan, '"'The Design of a
Decision Support System,' Ph.D.
Dissertation, Graduate School of
Management , Northwestern University,
1978.

Wiedmann, Clark, "APLUM Reference
Manual," University of Massachusetts
Computing Center, Amherst,
Massachusetts, 1975.

