DISCUSSION PAPER NO. 344

Transformations Between Relational Databases
by

Nancy D. Griffeth

Northwestern University
Graduate School of Management
Evanston, Illinois 60201

October, 1978

1, 1Introduction

An algorithm for transformations between two relational database systems

is developed in this paper. There are three cases which must be considered:

@)) Transformatidns between equivalent database systems (equivalent in
the sense that the class of derivable relations is the same in both
cases);

(2) Transformations between comparable database systems (comparable in
the sense that any relation derivable from one is derivable from
the other); and

(3) Transformations between incomparable database systems.

In the case that database systems are equivalent, a canonical database for
the equivalence class of database systems is used, The transformation from
the source to the target database requires transformation from the source to
the canonical database and then from the canonical database to the target
database. In the case of comparable databases, the canonical forms for the

databases may be different; therefore a transformation between canonical forms

is also necessary. If the source 'contains" the target, then the transformation

is analogous to projection in Cartesian space. If the target "contains"
the source, then some attribﬁtes must be assigned an undefined value in some
relations,

The most difficult problem arises in the third case, when the source and
the target database systems are incomparable. In this case, the source data-
base cannot provide all of the relations that can be derived from the target
database. Therefore, the real target of the transformation must be some
database contained in the intended target. Furthermore, since there are rela-
tions derivable from the source database but not from the target database, the
real target must also be properly contained in the source database. Informa-

tion loss can therefore be minimized whenever the source and target databases

have a greatest lower bound, using the partial order corresponding to the

intuitive idea of containment used above. This follows because the greatest
lower bound of the two databases is the "largest' database which is less than
both the source and the target.

In this paper, the idea of '"equivalence'" of database systems is formalized
and a canonical representation of an equivalence class is defined. Then the
idea of containment is formalized as a partial order, and it is shown that
the collection of equivalence clésses of database systems together with the
partial order corresponding to containment forms a lattice, Therefore, any
pair of equivalence classes of database systems have a greatest lower bound.
The greatest lower bound is the real target of a transformation between data-
base systems, The transformation algorithm is summarized in figure 1. This

approach is also developed in [5}.

(1) (4)

(Ryse-eoRy (51, P\S) (TyseeeT) (Uf;'...,un)

(2) (3

glb((sl""’Sz)’(T]_""’Tm))
Figure 1., The transformation algorithm.

In step (1), the database is transformed to the canonical representation
for the equivalence class to which it belongs. In step (2), the canonical
source database is projected onto the glb of the canonical source and canonical
target databases. 1In step (3), the glb is transformed to the canonical target.
In step (4), the canonical representation of the target database is t?ansformed
to the actual target database,

The paper is organized as follows:

Section 2, Framework. Relations, relational operators, and database systems

are defined.

Section 3. A Database Transformation Problem. An example.of the problems
arising in database transformations is described.

Section 4. Equivalence Classes of Databases. The equivalence relation on
databases is defined and the canonical representation for an equivalence
class is given,

Section 5. The Lattice of Equivalence Classes. The existence of a greatest
lower bound for each pair of equivalence classes of databases is proved.
‘The transformation algorithm is given.

Section 6. Discussion. The construction of the lattice is discussed.

2. TFRAMEWORK

The transformations studied take place in the relational model of data-
bases, defined by Codd in [2]. A relation R is defined over a set
o = {Al,...,An] of attributes. If the set of attributes must be specified
to avoid ambiguity, we will write R(a) or R(Al""’An) (omitting the curly
brackets in the latter case). Each attribute Ay is associated with a set
of values dom(Ai). This set qf values is called the domain of the attri-

bute. The definition of domain is extended to sets of attributes as follows:

dom(q) ={r|r is a function g — dom(Al) U...U dom(An) such that r(Ai) Edom(Ai)].

Each member of dom(a) will be called a "tuple'. For brevity, we will choose
an ordering <A1""’An> of @ and write tuples r as (r(Al),...,r(An)). A
relation R(a) is then a set of tuples belonging to dom(a): R(a) € dom(a).

Two operations, projection and join, are used below. Projection of a

tuple r belonging to dom(q) onto a set B (written r,) is the restriction

e

of the domain of the function r:q —» U dom(A) to the set ¢ NB. Ifa NB#4d,
Agq

we say that r_, = e, the empty tuple. The definition of projection is extended

p
to the relation R(a) by defining:

Ra)g = {relr € R@] if aNB # ¢;
R(a)6={e] if agNB=¢.

The join gq*r of a tuple q belonging to dom(B) with a tuple r belonging to

dom(y) is defined:

gfr = qUr if q(A) = r(A) for all A€BNY

= e if q(A) # r(A) for all Ae¢B N vy

The notation '"'q U r'" should be understood to refer to the sets q and r defined

as follows:

q = {(a,qa))|A € B}

{(a,xa))]A € v).

r

Thus q*r # e if and only if the tuple q U r is a function. Extend join to

ﬁhe relations Q(B) and R(Y) by defining:
Q) *R(Y) = {q*r|q € Q(B) and r € R(Y) and q*r # e].

We say that the join of relations Q(B) and R(Y) is the natural join if

By = R0y -

In this case it can be shown that join and projection are inverses in the

following sense:

Q@) = (Q®)* R(Y)

B
QB)* R(Y)),

R(Y)

A functional dependency B — Y between sets of attributes BCqa and YCa

holds for a relation R(a) if R(a), - R(a)Y is a function. It has been

P
shown by Armstrong [1] that the family & of functional dependencies which
hold for any relation R(a) obeys the following axioms:

(F1) For all pCa,B—B €7

(F2) IfBp-y E€EFandy 8 €F thenp~6¢€J

(F3) IfB~Y €F and, if BC B and y2y', thenp’ -y €F

F4) IfPp-vyvy€EFand b »peFthenpUb-»vyU oy ed.

Armstrong defines any family J obeying these axioms as a full family of
functional dependencies. Given any family F of functional dependencies, we
will denote by]* the smallest full family containing #. Given any full
family & of functional dependencies, we will denote by R(#) the set of

relations R(a) for which all dependencies in Z hold.

-6 -

Finally, a stored database is a set of relations R(a(l)),...,R(a(n))

such that R(a(i)) = R(a) for some relation R(a). The set @={a(l),...,

a(i)

a(n)} is called a database schema if a(i) € a(j) implies a(i) = a(j).

A database system is a triple A = (a, &, d) where q is a set of attributes,

F is a full family of functional dependencies between subsets of o, and &
is a database schema containing subsets of a. We assume the existence of
a relation R(a) at each point in time such that the stored database for A

is always equal to

{R(a)a(l),...,R(a)a(n)] where @ = {a(1),...,a(n)}.

The relation R(a) need not be recoverable from the stored database, that

is, it is not necessarily tr that R = R(a * ... ¥R .
, y true @ = R@ g, @ (ny

The following facts about joins and projections follow immediately

from the definitions.

Lemma 2.1

IfaCpPand yC 8§ anda Uy =p U 6 then
* *
Ry ¥R, 2 Rg ¥Ry
Proof:

Let x € RB‘AR6

s, then for some y, z € R, x =z , and

8~ g %5 T %

=2

Yens = Zsns”
Therefore, o € B implies X, = ya; vy €6 implies XY = zY; and g NyCpBNs

implies yanY = alﬂy' Then by definition of join:

X =y %z € %1*]1

a v Y

Corollary 2.1

a(i) €B() for 1 <i<nandUa(i) =U B(i) implies *Ra L. D *R

1) = TRy

Proof follows from (1) by induction

Lemma 2.2

RC RB *RY for all p and y such that RC dom(B U v).

Proof:

Let x R, the = * € *R .,
€ R then x = xg tx, € Ry 1R,

Corollary 2.2

R C Ra(l)*“' o(n)

Proof follows from (2) by induction.

Lemma 2.3
* c *
(RB RY)6 R5n5 RYn6 for all B, vy, 6.

Proof:

* % =
Let x € (RB RY)6' Then for some y,z € R,anY and (yB z) X.

v’6
anY = zBﬂY implies yanY(w = zﬁﬂyﬂé' X = (yB *ZY)6 implies x6 = anY

and XY = zyﬂ6' Therefore x = yBﬂ64(zyﬂ6'

bk

Corollary 2.3

ot

R *,,.*R C *,,, % .
R (1) w(m)’s S Ra1yne Ra(myns
Proof follows from (3) by induction.

Lemma 2.4

If § C , th * * c * .
CalBp en (ROL RB RY)5— (Ra Rg)6

Proof:

Let w R *R
vE(CJL

* = =
B RY)6. For some x,y,z € R’xaﬂﬁ yaﬂﬁ’ xanY yaﬂY’
anY = zﬁnY’ Vo = xaﬂ5’ wB = an6 and wY = zyﬂé'
8Cal B implies w=w, =w_ *w, = x

5~ YotV T Xans “Ypns T g Ypls € Ryt Rglsr

Corollary 2.4

IEocal® Uald) then (Ryqy ™= *Rymy)s © Rueny ™ Rugsy)s

* R for all a(l),...,a(n) such that R C dom(a(1l)VU ...Ua(n)).

- 8 -

Proof follows from (4) by induction.

Lemma 2.5

If R

6

*
(R *R 5

B)6 .then R, = (RG.*RB*RY)G'

Proof:

= * o . *
If R (ROL RB)6 then § S a U B. By (4) (Ra R

& - B Bys S By *Rgls
By (2a), RCIUBUY < RG,*RB *RY and therefore (Ra * RB)5 = R5 =
Rijay)s S Ry * Ry *R)

3. A DATABASE TRANSFOkMATION PROBLEM

A hypothetical firm handles ongoing administrative functions required for
maintaining the organization through permanent departments, but all other
work in the firm is organized into short-term projects which terminate when
their goals are accomplished. A database system is used to keep track of
current projects.. The following relation describes the information stored

in the database:

R(a) where ¢ = {E,P,L,D] and the attributes are defined as follows:

E - employee identifier dom(E) = Z+
P - project title dom(?) = (z U (]7F
L - préject leader's employee identifier dom(L) = Z+
D - department dom(D) = (2 U {b})+

(2= {a,b,c,...} U {A,B,C,...} and zt =1{1,2,3,...])

A tuple (e,p,%4,d) belongs to R whenever an employee e reports to project
leader £ for project p. Project leader L and employee e both work in depart-

ment d.

-9 -
Functional dependencies can be deduced from‘the following observations:
(1) E-D, L—+D: An employee works in only one department.
(2) DP - L: Projects may involve workers from several departments.

Departmental structure is maintained within projects so that

there is a single project leader in each department involved

in the project.
(3) EP - L: Each employee reports to the project leader in his

own department, fqr each project he works on.

Two reports are produced from the database:
(1) The project report: Projects are listed by involved department.
(2) The project control report: All employees are listed by project,

and under project by project leader,

Many collections of relations could be used to store the described

information and produce the reports. Two such collections of relations are:

Rl(E,D), RZ(E,P), R3(D,P,L)

and

Sl(P,D), SZ(P,E,L)
The formal definitions of these collections of relations as database systems
is given in Figure la. A relation R(E,D,P,L) is illustrated in Figure 1b and
the corresponding stored databases are given in Figures lc and 1d. Both
collections Rl’RZ’R3 and Sl’SZ’ are in the third normal form. The second
collection has the advantage that the reports can be printed directly. The
first collection has the advantage that the original relation R(E,P,L,D) can

be recovered.

- 10 -

The transformation problem arises because generation of the reports re-

quires generation of relations S1 and S,. If the database consists of rela-

2

tions Rl’ R2, and R3 then these must be transformed to relations Sl and 82

to generate the reports, Conversely, if the database consists of relations

51

and SZ’ and if any new reports are to be produced, which are not part of

one of those relations, then a transformation must also be performed.

First, we will consider tbe transformation from {Rl,Rz,R3} to {51,52}.

Any of the following transformations might be

(1a) §;(P,D) = Ry(D,P,L) (2a)
(1b) §,(P,D) = (R(E,D)*R,(E,P)) o (2b)
(2¢)

The transformation TI:{Rl,RZ,R3] —~ S1

tried:
Sz(P,E,L)
Sz(P,E,L)

S, (B,E,L)

]

(R; (E,D)*Ry (D, P, 1)) ot

(RI(E,D)*Rz(E,P)*RB(D,P,L)I\,EI

2

and T2:{R1’R2’R3} -~ 5 must have the

property that for every relation R € RF), Ti([Rl,Rz,R3]) =R where

B(1)

B(l) = {P,D] and B(2) = {P,W,L]. The following theorem (proved by Heath [6],

and Delobel [3], Rissanen [7]) tells us which transformations may be used:

Theorem 3.1. If B,y S.a then

(R(“))BHY = R(a)a * R(G.)Y for all R € R(H

if and only if

BNy=8 or pNy-~yY.

By the theorem, transformations (la), (lb), and (2c) are valid; transformations (2a)

and (2b) are not. (This is illustrated in Figure le). Conversely, suppose that

that stored relations are Sq and 82 and the reports to be generated are repre-

sented by Rl’ R2, and R3.

() Ry = (5;%8,)py (2) Ry = (Sy)gp

(3) R3 = (Sl*S

Then we may try the following transformations:

2)DPL

-11 -
By the theorem, transformation (2) is valid; transformation (1) and (3) are
not. Thus relations Ry and R3 cannot be recovered at all from Sp and S,.
In subsequéent sections of the paper, the following questions are answered:
(1) Given two collections of relations, when (in general) can we recover one
collection from the other?
(2) Given that one collection of relations can be recovered from the other,

what transformation should. be used?

- 12-

a = {E,P.L,D}
%
F={E - D,L-D, PD - L)
a = {ED,EP,DPL], B = {PD, PEL]
A= {a, 7,00, A,= {a,¥,3)
(a)
R: E D P L
Ad ams Accounting Design Adams
Boone Accounting Design Adams
Boone Accounting Retool Boone
Boone Accounting Study Boone
Cowley Accounting Study Boone
Davis Production Design Davis
Elgin Production Retool Elgin
Ford Production Retool Elgin
Ford Production Study Ford
(b)
Stored database Al
R1: E D RZ: E
Adams Accounting Adams Design
Boone Accounting Boone Design
Cowley Accounting Davis Design
Davis Production Boone Retool
Elgin Production Elgin Retool
Ford Production Ford Retool
Boone Study
Cowley Study
Ford Study

(c)

D P L
lAccounting | Design| Adams
Accounting | Retool| Boone
Accounting | Study Boone
Production | Design| Davis
Production | Retool|{ Elgin

roduction | Study | Ford

-13 -

Stored database A2

Sl: D P SZ: P E L
Accounting | Design Design | Adams Adams
Accounting Retool Design | Boone Ad ams
Accounting Study Retool Boone Boone
Production | Design Study Boone Boone
Production | Retool Study Cowley Boone
Production | Study Design | Davis Davis

Retool Elgin Elgin

Retool | Ford Elgin

Study Ford Ford
(@)

R, (E,D) * R,(D,P,L)

E D P L
Ad ams Accounting Design Adams
Adams Accounting Retool Boone
Adams Accounting Study Boone
Boone Accounting Design Adams
Boone Accounting Retool Boone
Boone Accounting Study Boone
Cowley Accounting Design Adams
Cowley Accounting Retool Bocne
Cowley Accounting Study Boone
Davis Production Design Davis
Davis Production Retool Elgin
Davis Production Study Ford
Elgin Production Design Davis .
Elgin Production Retool Elgin
Elgin Production . Study Ford
Ford Production | Design | Davis
Ford Production ; Retool | Elgin
Ford Production E Study ., Ford

(e)

Figure 2. Two databases over relation R(E,P,D,D)

(a) Databases A, and A2 are defined

1
(b) Relation R(E,P,L,D)

(c) A stored database Al
(d) A stored database 62

(e) An invalid transformation:

R(E,P,L,D) #Rj(E,D) * Ry(D,P,L)

4. EQUIVALENCE CLASSES OF DATABASES

A characterization of the information content of a database is developed
in this section, from whicﬁ it can be immediately determined whether one
database can be derived from another. An equiﬁalence relation for databases
is then defined, such that two databases are said to be equivalent if each
can be derived from the other. Finally, the canonical representation of an

equivalence class is defined.

Before developing the formal characterization of the information content
of a database, let's consider how we decided that A2 can be derived from A

but not vice-versa. To show that A2 can be derived from b, we displayed,

for each relation in A2, a transformation on the relations in A, whose value 1is

1

the relation in A2. That is:

81 = Ty (RysRyuR5) = (Ry*Ry) oy

S, = Ty(R}>Ry,R3) = Ry*Ry*Ry)

Each transformation consists of a series of joins followed by a projection; in fact,

the following lemma shows that any relation derivable by a combination of
natural joins and projections wiil be equal to a series of natural joins fol-
lowed by a single projection.

Lemma 4.1

If R@; = Ry, * R@),),
1

then
R@s = R@g * R, -

2

Proof:
R(a), = (R(@y), * (R(a).)
6 B 51 Y 62
= (R(G)B)6 ‘* (R(a)y)é (by Lemma 2.1)
2 (R(a)B * R(a)Y)6 . (by Lemma 2.3)
But R(a) C R(a)B * R(a)Y (by Lemma 2.2)
implies R(a)6 cC (R(a.)B R(oL)Y)6

Therefore R(a)5 = (R(a)B * R(a)Y)6 .

-15 -
By the lemma, we can always postpone projection to the last operation.

Thus, we will consider a relation S(B) to be derivable from relations

R(a(1)),...,R(a(n)) iff B C U a(j) for some J < {1,...,n] such that
jed -

8 = (* R(a(j))),. Then if we take a list of maximal sets B we need only
jeJ

look through the list to determine if S(B8) is derivable from R(a(l)),...,R{(a(n)).

R(a)

Since for Y & B, R(a)Y = ((R(a))B)Y’ sets Y € B for B in the list will be

derivable.

4.1. Information Constraint Sets

The information constraint set of a database characterizes its informa-

tion content. It is the maximal database schema of the databases in an

equivalence class, in the sense of the partial order <:) defined as follows:

Definition
For database schemas ¢ and &, we say that ¢ @ IS}
if for each o ¢ &, there exists some B € & such that

'agls.

A partial order is reflexive, transitive, and antisymmetric. It follows im-
mediately that <:) is a partial order from the same properties of € and from
the fact that for any database schema & if q,Y € & and ¢ € Y then o = y. (This
last condition is necessary for antisymmetry.)

The following notation will be used to simplify subsequent definitions:

Let /7 be a database schema over a set g of attri-
butes and let Y € q. Then 5(y) = {BlB € 7 and

BNY#d].

And the join of all relations R satisfying property P(R) will be writtenm: * R.
P(R)

The information constraint set of a database A is defined so that, for :
any set of attributes Y contained in the information constraint set, the rela-

tion RY can be derived from the stored database; and any relation R_ which

can also be so derived has § € Y for some Y in the information constraint set.

- 16 -

Definition
Given a database system A = {a,7,d> the information

‘constraint set of A (writtem ics(A)) is the data-

base schema satisfying the following conditions:
(1) for all vy € ics(A), if YES B for some
B € ics(A) then vy = B.

2) 1f y € ics(A) then R = (*)
(2) Y ics(.en Y BEQ(Y)RBY

3) R = for arbitrary vy S a

(*)
Y sedmRBY

if and only if y < Y’ for some

Y € icsQd).
The following theorem shows that information constraint sets are well-defined.

Theorem 4.1, There is exactly one database schema satisfying

the definition of an information constraint set for a given

database.

Proof:
First, we show that there is at most one such schema, Suppose that we have
a database & = {q,¥,4) and two database schemas C and .B satisfying the condi-

tions. Then for each Yy € C we have (by condition (2)) that

R =(* R
Y pearyy PY

and thus (by condition (3)) there is some § € J such that § € y. Therefore C=.2.
Finally, we show that there is at least one such schema. Let C be any minimal
element of {B]d@ 3 and B satisfies condition 3}. Then C must satisfy con-
dition (2). This follows by contradiction: If C does not satisfy condition (2),
then for some v € &, .

R #(* R .
Y peacyy PY

- 17 -
Let YyseeesYy be the maximal subsets of y such that

R = (* R.)
Yy BW(Yi) B vi

Then & =C - {Y] u {Yl,.;.,Yn] still satisfies condition (3) by definition

of the v, (Y; S ¥ for each i). Since ¢’ < C, C could not have been minimal.

The following properties of an information constraint set follow immediately

from the definition:

Lemma 4.1

1f & = {a,F@) then @(K)ics(a)
Proof: Substitute B € & for y in condition (3).
Lemma 4.2

1f 8, = {a.,#,3) and 4, = {a,%,C) and if B@ ics(4,) then ics(Al)@ics(Az).

Proof:

Take
y € ics(ayp).

R (*

) (by condition (2) for ics(A,))
Y Besy) ¥y '

* +) (by Lemma 2.1)
Q'Eics(Az) Rg Y

B/ BB (v)

(* (* R.)ar) (by condition (2) for ics(a.))
B'cics(ay) s€c@’) P Y ?

B/ 2Bed(y)

= (* * R
B/ cics(a,) 8€C(B’) 5 yNWe")
B 23 €B(Y)

(by Lemma 2.)

= (% R *(* R)), (8 NB'# @ for 8’ € ics(a,)) and
secv) © secwp)-emy OV, 2,
B" 2 B € B(Y); therefore B’ Ny #4d.
Either § intersects Y nontrivially

or it intersects some B and not Y.)

]

(= R
8 €C(Y)

6)Y. (by Lemma 2.)

Therefore, y € ics(Az).

- 18-
temma 4.3
Database Al = {a,¥,0) is contained in database A2 = {a,F,&) in the fol-

lowing sense:

R . =(* R) for all B € 5
P yeew YP

if and only if ics(a;) <:) ics(A,).

Proof:

By condition (3), E’(:)ics(Az) and by Lemma 4.2 above, ics(Al)(::)ics(Az)

The following theorem tells us when and how we can transform from data-

base Al = {a,¥,B) to database AZ = {o,¥F,¢ without loss of informat ion.

Theorem 4.2
If ics(Az) < ics(él), then the following transformation yields A2 from Alz
= *
Y s B
for each y € C.
ics(8,) = {EDPL]
ics(a,) = {pP, EPL}

Figure 3. Information constraint sets. The notation
{{p,P},{E,P,L]} is simplified to {DP, EPL]}.

4.2, Equivalence of Classes of Databases

We will say that two databases are equivalent if they are capable of stor-
ing the same information. The information constraint set characterizes the

information that may be stored in a database, in the following sense:

A relation R(a) can be derived from the data-
base A if and only if g is contained in some
member if ics(A).

Thus two databases are capable of storing the same information if they have

the same information constraint set. The example databases A, and A2 do not

1

store the same information, and as shown in figure 3, they do not have the same ics.

_19 -
This observation motivates the following definition:

Definition. Databases A1 = {a,#,d> and Az = {a,¥,5)
are equivalent (written Al ;’AZ) if ics(Al) = ics(AZ).

Using the example developed in section 2, the following databases are all

equivalent. (For the sake of notational compactness, the set {E,D,P]} is

written EDP when it is a member of a database schema. Thus the schema {{E,D},

IS

{E,P,L}} is written {ED,EPL}.)

A = <a,}—,d >
n n
with a, = {EDPL}
a, = {EDP,EDL,EPL,DPL}
a, = {EDP,EPL,EPL)

In fact, these are equivalent to all databases A = {a,¥,B) satisfying one of

the following inequalities:

{ED,EPL} @ B @ {EDPL}

or

{pL,EPL} @ 15 @ {EDPL)
{(ED,DL, PL} @ I;; @{EIPL].

All of these databases have ics(A) = {EDPL}.

4.3. The Canonical Representation of an Equivalence Class

The information constraint set characterizes all of the database systems
in an equivalence class. Thus it is an obvious candidate for the canonical

representation.

Definition. The canonical database in an equi-
valence class of databases containing the data-
base A = {0,#,d) is the database

{a,F,ics(p)).

- 20 -

The canonical database is well-defined because all of the databases in an

equivalence class have the same information constraint set. Furthermore, it

can be constructed from any member of the equivalence class, without any addi-

tional information about the equivalence class (see section 6). Thus

{o,¥ {EDPL}) would be the canonical database for the equivalence class des-

cribed at the end of the preceding section.

5. TRANSFORMATIONS
In this section, it is shown that the family of information constraint
sets over a given set of attributes q and full family of functional depen-

dencies &, together with the partial order (:) » 1s a lattice,
)

This result allows us to define a transformation between database which
are not comparable under 6:); because they are not comparable, information
will be lost, but in fact, under the transformation, information loss is
minimized. The loss is minimized because the transformation uses the great-
est lower bound of the information constraint sets of the source and target
databases.

The proof that the family of information constraint sets is a lattice

is given in section 5.1. The transformation is described in section 5.2.
5.1. The Lattice

First, we define the greatést lower bound and prove its uniqueness.

Definition. For any collection B of sets,

max (@) = {p ¢ Bl for all vy € B, B € vy implies B = vy}
max (3) is the set of maximal subsets of 4.
Definition. Let &, & be collections of subsets

of a. Then define @ A B = max{a N Bla €d and B € B).

@ A3 will be shown to be the greatest lower bound of ¢ and B in the lattice

of information constraint sets,

- 21 .

Lemma (GLB)

Let Jl = ics(Al) and Jz = ics(Az) where &, = (o, 7,3 and
A2 = (a,F,C>. Then ..01 A “02 is the information con-
straint set of (a,.?,JlAJ2>. 1f Aé = {a,¥,B) is any

database with

| ics(A3) @ Jl
and ics(A3) @ JZ
then ics(a,) @ Iy A,

Proof:

ics(A3) @ Jl and 1cs(A3) @ Jz implies ics(A3) @ Jl A “02 from the
definition of @ and A

We need only to show that Jl A Jz is an ics.

Condition (1) follows immediately from the definition

Condition (2) is trivial:

Y € 4 Ady implies RY'-E (* RB) . But by lemma 2.2,
B € (HAd) (Y)

R, C(% Ry)
YT pe@mMHIm Ty
= *
Therefore RY = (BE(JIMZ) ") Rﬁ)Y

To prove condition (2):

Suppose R = (

% RB)
Yo REW ALY (V)

vy

B € (..ﬂ1 A 4)(Y) implies B = a, n a,

for some al € Jl, a, € Jz. Therefore

RY e (N Ra Na,))
aleJl(Y) azer(Y) ﬂJz(al) 1772 vy

It follows from this and lemma 2.3 that

R =(= (* R » =0 * R)

% a Y - 'y
Q€8 (Y) ap€dy (V) Ny (@) 1 a6 () 1

But then y C ay for some o € Jl. Similarly, v © a, for some a, € Jz.

Theref '
rerefore y S oy Na, S8 €4 A, (57

-22—
Given the set g = {E,P,L,D} of attributes, several different lattices
can be defined, one for each full family of fuﬁctional dependencies over q.
For example, consider the case # =). The family of information constraint sets
is then just the family of sets {max@7)h7 is a database schema)}. If lal==n,
then this is the free distributive lattice over n elements (FD(n)) together with

the database schema {{a}].

5.2. The Transformation Algorithm

We will assume that we are given the lattice of equivalence classes of
database systems for a set of attributes q and a full family of functional
dependencies #. The transformation algorithm will then be the composition

of the following four transformations:

(1) The transformation from the source database to the canonical
source database;
(2) The transformation from the canonical source database to the
glb of the canonical source and the canonical target database;
(3) The transformation from the glb to the canonical target data-
base; and
(4) The transformation from the canonical target database to the
target database.
Thus two classes of transformations need to be defined:
(1) Transformations between a database and the canonical database
for its equivalence class; and
(2) Transformations between comparable canonical databases.
Condition (2) of the definition of information constraint sets gives the
transformation from a database A = {a,#,7) to the canonical database {a,¥,ics(A))
for its equivalence class:

For each B € ics(A)> S(B) = (* R(Y)), -
YEQ®) g

-23 .

Conversely, by Lemma 4.1, if A = {a,#,&@), then @ < 1ics(4). Therefore, if
B € d, then for some y € ics(A), we have B € y. This gives the transforma-
tion from the canonical database for an equivalence to a database belonging

to the equivalence class:

For each B € &, take y € ics(A) with 8 C v;

then S(B) = R(Y)a.

The second class of transformations, those between comparable canonical
databases, is even simpler., Suppose we have Al = {a,7,@ and A2 = {a,F,3)
with ics(Al) (éa ics(Az). Then to transform from (d,;}ics(A1)> to

<G-’-?" iCS(Az) > .

For each B € ics(Az), set S(B) = U R(Y)B
y€ics(a,)
BOAv# @

where R(Y)B is defined as follows

p

x € R(Y)™ iff xY € R(Y)

X, undefined for A € B -Y

Finally, to transform from (a,?}ics(A2)> to {(a,¥, ics(A1)>:
For each B € ics(Al), choose v € ics(Az)
with B C v.

Then S(B) = R(Y)p .

The entire transformation algorithm from &, = {a,7,d) to A2 = {(a,7,5)

can then be defined as follows:

TL. [a, - (a,?,ics(Al)H

For each v € ics(Al) compute S(Y) = [* R(B)]Y
pea(y)

- 24 -

T2. [{a,7,ics(4;)) = (a,.#’,iCS(Al) A ics(a,))]
For each 6§ € ics(Al) A ics(AZ), take Y € ics(Al) such that

6 € Y and compute T(§) = S(Y)g -
T3. [(a,f,ics(Al) A ics(A2)> - (a,F,ics(Az)H
U T(6)? .
6€ics(A1)/\ics(A2)
SN #0@

For each ¢ € iCS(AZ), compute Q(gp) =

T4' [(a’;’iCS(A2)> hd Az]
For each B € 3, take ¢ € ics(Az) with B € ¢ and compute

R(B) = Q(tp)B .

- 25 -

6. DISCUSSION

The transformation algorithm assumes that the lattice of equivalence clas-
ses of database systems has been constructed. 1In this section, we discuss con-
struction of the lattice.

In the case that the attribute set q has 3 or fewer members, the construc-
tion of the lattice is a trivial consequence of Theorem 3.1 (see section 6.1).

The construction is more difficult for all larger attribute sets. It
would be simplified by a general decomposition theorem for relations, in the

form:

Let o be a set of attributes. Let J be a full
family of functional dependencies over a. Then

R(a) = R(a) * R(a)

a () a(n)

for all R € R if and only if P(a(l),...,a(n)).

P(a(l),...,a(n)) gives the necessary and sufficient conditions on a(l),...,a(n).
With such a theorem, we could say that & = {a(l),...,a(n)] is the infor-
mation constraint set characteristic of an equivalence class if and only if
for every B C a, if P(a(l) N B,...,a(n) N B) then B € a(i) for some i.
The crucial step of an algorithm to construct the lattice would then set
d to max(@ U {B}) for each @ = {a(l),...,a(n)} such that P(a(l) N B,...,a(n) NB).
This wopld be repeated until there are no more schemas & with

P(a(l) n Bs-v'sa(n) n B).

6.1, The Lattices for a with 2 or 3 Members

The lattices for a = {A,B} and a = {A,B,C} and ¥ = @* are diagrammed in
Figure 4. TFor J = @§*, the lattice of equivalence classgs of database systems
is just the lattice of database systems. Thus there is only one database
system in each equivalence class, and there is one node of the diagram for

each database schema.

{aB)}

{a,B}

{a} {B)

{¢}

(2)

(a)

- 26 -

¢ {AaBC)

h {AB,AC,BC)

¥

{ A}

Figure &4

The lattice for q = {A,B}

(b) The lattice for a = {A,B,C}

R, *R

1f a = {A,B}, then the lattice is the same for all . This is because

A B A

= R, X Ry, and for R = {€0,0),(1,1)3, R, XRp = {(0,0),¢0,1),(1,0),{1,1)].

Note that R € R(¥) for all F; so {A,B} & {AB] for any #. This observation

can be extended to any & = {a(l),...,a(n)] with a(i) N a(j) = @ for all i,j

(we will call such schemas disjunctive); for

Rd(l) *,

Ry T Raqny X

X R ()

-27 -

and if we set R = {(0,...,0),(1,...,1)}, then for some x € %1(1)X"' XRd(n)’
= (0,...,0 d =(l,...,1). Therefore x £ R.
XG,(]-) (’ ’ > an XG,(Z) (’ ’ > é
Figure 5 illustrates the lattices corresponding to various J over
a = {A,B,C]. Since all schemas in the lower half of the lattice are dis-

junctive, we ignore this part of the lattice after part (a). Theorem 3.1

together wui:u Lemma 2.4 implies that
= . =R *. * £f -
R =Rp* Ry = Rap *-Rye * Ry 1L A~ B
R=R,_*R _=R,_ %R, *R _ iff B - A
or B~ C
R=R _*%R.. =R,_*R _*R _ iff C- A
or C~- B,

Therefore (as illustrated in Figure 5) the lattice depends on which of the

above mentioned functional dependencies belong to ¥.

B—=A or B~C

~~ 7 - 28 -
T L, B
A-B / *\ / ’ C—-A
or \ ' N or
A-cC / N C—B
/ \| {A)B,A}c,fC]
{aB,cC)
{AB] ¢ 3 {BC}
G b)
@) {aBc}
{aB,Ac} {AB, BC}
{AB,AC} ¢ {ac,Bc) {4B,¢) {a,BC)
{aB,cC}¢ 3 {A,BC) -~ {ac,B]

(¢) (d)

Figure 5

Figure 5 (continued)

{AB,C} ¢

{aB,Ac)

{A,BC]

- 29 -

,Lasc) {4B,C)
-{Ac,Bc))
' {ABs(:] v '{AsBC]
{A,BC]
{a,B,c}
(e) (£)
{aBc)
{ac,B} D»lA,BC) {a,BC}
14,B,¢}
(8) (h)
Figure 5
(a) The lattice for ¥ = ¢*. The nodes surrounded by
dotted lines collapse into one equivalence class
if F contains any of the indicated functional dependencies.
(b) # contains A- B or A~ C but not B~ A, B~ C,
C~—-~ A or C~ B,
(c) & contains B— A or B~ C but not A= B, A~ C,
C~ A or C~ B.
(d) & contains C - A or C - B but not A~ B, A~ C,
B~ Aor B~ C,
(e) & contains A—» B or A- C; and B~ A or B~ C;
but not C - A or C - B.
(f) & contains A~ Bor A- C; and C -+ A or C ~ B;
but not B~ A or B~ C,
(g) & contains B- A or B-» C; and C - A or C — B;
but not A~ B or A - C,.
(h) & contains A~ B or A-» C; and B—~ A or B - C;

and C -+ A or C -+ B.

- 30 -

6.2. The Lattice for Larger a.

The lattice is much more difficult to construct when the set O of attri-
butes has more than three members. 1If Ial =4 and J = ¢*, then the lattice
has 167 nodes. Rather than displaying a diagram of the entire lattice, its
nodes are listed in table 6, and some sublattice diagrams are given in figure
7. Also, the nodes for JF that belong to the same equivalence class for
4={E~D, LD, EP~ L, DP = L}* are indicated in both table 6 and figure 7.
by assigning them the same node number.

In computing ics(d) for o = {(a,&&) and & = {E -~ D, L - D, DP =~ L,hEP - L}*,
we must show:

(1) for each B € ics(a), B = (= Ra)B
a €d(B)

and
(2) if B ¢ ics(a) and B £ v for vy € ics(d) then R # (%)

R
P aeaq@) P
for some R € R(F).

The third co lumn of table 6 gives the derivations required to show (1l).

The fourth column indicates how (2) may be shown:
Case 1: 1If there are only two relations in &, use theorem 3.1.
Case 2: 1If ¢ is disjunctive, then ics(p) = .

Case 3: 1f ¢ is not disjunctive and there are more than two relations in &,
then (in the absence of a generalization of theorem 3.1) we must use a con-
struction to show that (2) holds. One such construction is given here; the

remainder are numerous but not difficult to construct. As the size of a

increases, however, this construction becomes more difficult. An algorithm

is given in "Decomposition and Recoverability of Relations' [2] to construct

such a counter-example.

- 31 -

Let & = {EDP,EL,DL}. Then for the relation:

E D P L
0] 0] 0 1
0 0 1 0
1 0 2 0
the projections are:
E D P E L D L
0 0 0] 0 1 0 1
0 0 1 0 0 0 0
1 0 2 .1 0
and the join is:
(E b p ** E L)yY* D L = E D P L
0O O O 0 1 0 1 0O 0 O 1
0O O O 0 o 0 o 0 0 0 O
0 O 1 0 1 0 1 0 O 1 1
0 O 1 0 O 0 O 0 O 1 O
1 0 2 1 O 0 O 1 0 2 0

The original relation was not recovered; in fact, only REDP and REDL were

recovered, so that {EDP,EDL} is the set of maximal recoverable relations.

Node Number in

Node ics in

- 32 -

Derivation of ics in

Proof that ics
for A = {0 ,&,d)

& = (0, & =(a,7,d) A = (a,&,d) is maximal
1 EDPL
1 EDP,EDL,EPL,DPL REDL*REPL (EL—D)
1 EDP,EDL,EPL REDL*REPL (EL~D)
1 EDP,EDL,DPL REDP*RDPL (DP~L)
1 EDP,EPL,DPL REDP*RDPL (DP-L)
1 EDL,EPL,DPL R Re (EL-D)
1 EDP,EDL, PL Ropp™ (Rpr*Rpp) (L~D,DP-L)
1 EDP,EPL,DL Ry pp Repr (EP~L)
1 EDL,EPL,DP Rep1*RepL (EL-D)
1 EDP,DPL,EL Repp RppL, (DP-L)
1 EDL,DPL,EP (Ryp*Rp) *Rp o (E~D,DP-L)
1 EPL,DPL,ED Rep1*Rep (E-D)
2 EDP,EDL Case 1
1 EDP,EPL Repp*Repr (EP-L)
1 EDL,EPL Repr*Repr, (EL-D)
1 EDP,EPL REDP*RDPL (DP-L)
3 EDL,DPL Case 1
1 EPL,DPL Repr*Ropr (PL~D)
1 EDP,EL,DL, PL Repp Rpr*Rpp. (L~D,DP-L)
1 EDL,EP,DP, PL (Rp1 *Rp)*(RgpsRpp) (L~D,E~D,DP-L)
1 EPL,ED,DP,DL Rppr *Rep (E-D)
1 DPL,ED,EP,EL Rep*Epp* Ry o (E-D,DP-L)
2 EPP,EL,DL REL*RDL (L-D) Case 3
1 EDP,EL,PL (RED*REL)DL*RP;L)* Rpp (E~D>L~D,DP-L)
1 EDP,DL, PL Repp Rpr R, (L~D,DP-L)

- 33 -

Proof that the ics

Node number in}] Node ics in Derivation of ics in for A =(a,é,@
A =(a,4,7) a ={a,#F,ad) A = (a,&,ad) is maximal

2 EDL,EP,DP Rep*Rpp (E-D) Case 3
1 EDL,EP,PL (RED*REP)*(RDL*RPL) (E-D,L~D,DP-L)

3 EDL,DP, PL RDL"'\‘RPL (L-D) Case 3
1 EPL,ED,DP Rppr *Rep (E-D)

1 EPL,ED,DL R o *Rep (E-D)

1 EPL,DP,DL . (1-D)

1 DPL,ED,EP Rppr* (Rep*Rep) (E~D,DP-L)

3 DPL,ED,EL DKREL (E-D) Case 3
1 DPL,EP,EL ((RDL*REL)ED*REP)*RDPL (L-D,E~P,DP-L)

2 EDP,EL RED*REL (E-D) Case 1
4 EDP,DL Case 1
5 EDP,PL Case 1
2 EDL,EP Rpp*Ros (E-D) Case 1
6 EDL,DP Case 1
3 EDL,PL RDL*RPL (1L-D) Case 1
1 EPL,ED R pr *Rep (E~D)

7 EPL,DP Case 1
1 EPL,DL Rgpr*RpL, (L-D)

8 DPL,ED ' Case 1
9 DPL,EP Case 1
3 DPL,EL RDL*REL (L-D) Case 1
10 EDP,L A Case 2
11 EDL,P Case 2
12 EPL,D Case 2
13 DPL,E Case 2

- 34 -

Proof that
the ics for
Node no. in | Node ics in Derivation of ics in b ={a,&,a)
A = (0,&,Q) a ={a,F,4) a = {o,&,d is maximal
14 EDP Case 2
15 EDL Case 2
16 EPL Case 2
17 - DPL Case 2
1 ED,EP,EL,DP,DL,PL (RED*REP)*(RDL*RPL) (E-D,L-D,DP-L)
2 ED,EP,EL,DP,DL R *Rpps Rop ¥Ry (E-D) Case 3
1 ED,EP,EL,DP,PL (RED*REP)((RED“‘REL)DL RPL) (E-D,1L-D,DP-L)
1 ED,EP,EL,DL, PL (Rpp*Rpp) * (R *Ry,) (E~D,L~D,DP-L)
1 ED,EP,DP,DL, PL (Rpp*Rep) * (Rp R,) (E-D,1~D,DP~L)
3 ED,EL,DP,DL,PL Rop*Re SR R (E-D,1-D) Case 3
1 EP,EL,DP,DL, PL Rpp* (Rpy *Rp) o (R (1L~D,E—D,DP-L)
2 ED,EP,EL,DP R R, Rop R (E-D) Case 3
2 ED,EP,EL,DL R Reps Rpp*Re (E-D) Case 3
1 ED,EP,EL, PL (Rgp*Rp) * ((Rpp* EL)DL Rpy) (E~D,L~D,DP-L)
4 ED,EP,DP,DL Rep*Rep (E-D) Case 3
o ED,EP,DP,PL RED REP (E-D) Case 3
1 ED,EP,DL, PL (RED*REP)*(RDL*RPL | (E-D,1~D,DP-L)
3 ED,EL,DP,DL Rop*Re s (Rp ¥R) DL PL (E-D, L~D) Case 3
3 ED,EL,DP,PL RED REL’ (RED REL DL PL (E-D,L—D) Case 3
1 ED,EL,DL,PL Rpp* (Rp #Rpr) oo (R ¥Ry) (L-D,E~D, PD-1)
8 ED,DP,DL,PL R MR (1-D) Case 3
2 EP,EL,DP,DL }SSL*RDL’REP*(REL*RDL)ED (L-D,E—D) Case 3
18 EP,EL,DP,PL Case 3
1 EP,EL,DL,PL Ryp* (R *Rp)b ¥ (R *Rp,) (LD, E=D,DP-L)
EP,DP,DL, PL Ryp*Rpr, (1~D) Case 3
EL,DP,DL,PL }SEL*RDL’RDL*RPL (L-D) Case 3

Node number for

Node ics for

- 35 -

Derivation for ics

Proof that ics
for A =(a,&ad)

A ={0,&,d A ={0,7,0) for & ={a,4,q) is maximal
10 ED,EP,DP,L RED*REP (E-D) CaseA3
11 ED,EL,DL,P RED*REL (E-D) Case 3
19 EP,EL,PL,D Case 3
13 bP,DL,PL,E RDL*PPL (L-D) Case 3

2 ED,EP,EL R;ED* prRep*Ro (E-D) Case 3
14 ED,EP,DP RED*REP (E-D) Case 3
4 ED,EP,DL RED*REP (E-D) Case 3
5 ED,EP,PL RED*REP (E-D) Case 3
6 ED,EL,DP RED*REL (E-D) Case 3
15 ED,EL,EL RED*REL (E-D) Case 3
3 ED,EL,PL Ro R, (R R) R, (E=D,LD) Case 3
- 20 ED,DP,DL Case 3
21 ED,DP,PL Case 3
8 ED,DL, PL Ry *Rpo (L~D) Case 3
22 EP,EL,DP Case 3
2 EP,EL,DL R *(R. *R). R *R (L~D,E-D) Case 3
23 EP,EL,PL Case 3
24 EP.DP,EL Case 3
25 EP,DP,PL Case 3
9 EP,DL,PL RDL*RPL (L-D) Case 3
6 EL,DP,DL REL*RDI; (L-D) Case 3
26 EL,DP,PL . Case 3
3 EL,DL,PL REL*RDL,RDL*RPL (L~D) Case 3
17 DP,DL,PL RDL*PPL (L—D) Case 3

Node number for

Node ics for

- 36 -

Derivation of ics

Proof that ics for

b ={a,&,a) a = {0, J,a) for 4 ={0.,4,a) & = {a.,&,a)
10 ED,EP,L Rop*Rep (E-D) Case 3
11 ED,EL,P Epp*Re (E-D) Case 3
27 ED,DP,L Case 3
28 ED,DL,P Case 3
29 EP,EL,D Case 3
30 EP,DP,L Case 3
31 EP,PL,D Case 3
11 EL,DL,P REL*RDL (L-D) Case 3
32 EL,PL,D Case 3
33 bpP,DL,E Case 3
34 DP,PL,E Case 3
13 DL,PL,E RDL*RPL (L-D) Case 3
14 ED,EP RﬁD%REP (E-D) Case 1
15 ED,EL Rep*Re; (E-D) Case 1
35 ED,DP . Case 1
36 ED,DL Case 1
37 ED,PL Case 2
38 EP,EL Case 1
39 EP,DP Case 1
40 EP,DL Case 2
41 EP,PL Case 1
42 EL,DP Case 2
15 EL,DL REL*RDL (L-D) Case 1
43 EL,PL Case 1
44 DP,DL Case 1
45 DP,PL Case 1
17 DL,PL RDL*RPL (L-D) Case 1

- 37 -

Node number for Node ics for Derivation of ics Proof that ics for

4 ={a,é,aq) v a ={a,F,@) for A ={a,&,W) A ={a,&d) is maximal
46 ED,P,L Case 1
47 EP,D,L Case 1
48 EL,D,P Case 1
49 DP,E,L Case 1
50 DL,E,P Case 1
51 PL,E,D ' Case 1
52 ED,P Case 1
53 ED,L Case 1
54 EP,D - Case 1
55 EP,L Case 1
56 EL,D Case 1
57 EL,P Case 1
58 DP,E Case 1
59 DP,L Case 1
60 DL,E Case 1
61 DL,P Case 1
62 PL,E Case 1
63 PL,D Case 1
64 ED Case 1
65 EP Case 1
66 | EL - Case 1
67 DP Case 1
68 DL Case 1
69 PL Case 1
70 E,D,P,L Case 1
71 E,D.P Case 1
72 E,D,L Case 1
73 E,P.L Case 1
74 D,P.L Case 1
75 E,D Case 1
76 E,P Case 1
77 E,L Case 1
78 D,P Case 1
79 D,L . Case 1
80 P.L Case 1
81 E Case 1
82 D Case 1
83 P Case 1
§4 E Case 1

(*({1daa}‘g“n) o3 juetea

2 {1-d0 ‘-1 °‘aQe 3} =4
pue {1‘d‘a‘g} = O yam (P°#°D) = V ur sosseld sousleainbs oseqeiep osyj oAIS sspou ay3
Butl1eqel saequnu oyy -{1daa} @ (Wsor € {1a‘1d‘@d“13°@a‘da} yatm so133e1qns 2yl ST SIYL
.ﬁq.m.n.mw =D .Am%%s.dv = U 103 sosse[d aduaeatnbs aseqejep jo ®2T313B] 9Y3 jJO 8dT13BIQNS Y

-1nbs saseqejep 2a18 85733B] STY3 UI P sewayods aseqe3ep T1V)

‘e/ 2an81J3
1014 °ad ‘12 aq dy/1
i
o0 < < € € < € m -H € < < .
x 1d‘ad‘da qom%mnﬂ///mm/qm qm\m\mn 2°qE‘qq qmm _ 104 Qd‘ aE‘1aay
[e I
xv\\‘\\
1d‘103°Qdd 1 dd°1ad ‘109 |1 qm,AAWMmm _ ad ‘103141 1Q°1d3°qd>p1 a3 °1ad “1dZ_>1

1ad ‘1a3‘add 1

¢ ¢ s 4
AT WNTD g epqgerag T 104 1d3adT 1

10ad “1a3°1d3¢ aqq 1

TOAT T

EDL, PDL,EP

1
JEL

PDL,EP,ED,ELI EDL, PDL
3 /

PDL,EP PDL,ED,EL

Figure 7b. A sublattice of the lattice of equivalence classes for A = (a,ﬁ*,d),
a = {E,D,P.L}). This is the sublattice with
{EL,PL,DL}) ® ics(a) @ {EPL,EDL,PDL}. There are 3 isomorphic sub-
lattices: {ED,EP,EL} ® ics(a) (3 {EDP,EPL,EDL)
{Ep,pP,PL} @ 1ics(a) @ (EDP,EPL,PDL}
{Ep,DP,DL] (® 1ics(a) (® {EDP,EDL,PDL)
(See figures 7c, 7d, and 7e). The numbers labelling the nodes indicate

the database equivalence classes in A = {o,&,a@), with a = [E,D,P,I.]

-
[2 R N SR N L 2 B

Figure 7c.

- 40 -

1
IEPD,EDL:PDL]

EDL, PDL,EP

PDL,EP,ED

The sublattice {ED,PD,DL} (® ics(dA) (® {EPD,EDL,PDL} of the
lattice of database equivalence classes for A = {(a,@*,7),

a = {E,p,P,L}.

EPD, PDL

- 41 - 1 : A r

EPD,EPL, PDL

1 1
EPL, PDL,ED EPD, PDL,EL
1
o1 1 1
PDL,EER.ED,EL EPD PDL
1
/
PDL,EP,EL PDL,EP,ED
N
N\ 1

EPD, P4,DL

Figure 7d. The sublattice

{EP,PD,PL} =< ics(A) s {EPD,EPL,PDL
for o = (a,@*,&4) with a = {E,D,P,L]}.

1
EPL,EDL

EPD,EDL, PL

1 2

EDL,EP,PD,PIJ EPD,EDL

Figure 7e.' The sublattice
{EP,ED,EL} < ics(d) < {EPD,EPL,EDL]}
for 4 =(a,0*,&)> and a={E,D,P,L].

- 43 -

1 = {EDPL}
{EPL,DP} =7 R
9 >{DPL,EP}
= /
(EDP, EDL] g = 3 = {EDL,DPL}
4 {EP,E
PN_PD, B
{EDP,DL} = 4] 8 = {DPL,ED}
r 6 = {ED]
DP)
'DP,EP,DL} =24 13 = {DPL,E]}
0= {DL,DP,ED}
25 ={EP,PD,PL}

{EL,DP,P

<

{E

{pP,ED,PL}

{DP,EP,L]=30 33 = {DP,PL,E}

27 = {DP,ED, L}

49 = {DP,E, L]}

A sublattice of the lattice for p = a,&,d) with a = {E,D,P,L}

% = {ED, L » D, DP — L}*. The node numbers are taken from

table 6.

Figure 8.

bty

REFERENCES

Armstrong, W.W., '"Dependency Structures of Data Base Relationships",
Information Processing, 74, North-Holland Publishing Co.,

Amsterdam, 1974, pp. 580-583.

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks",

Comm. ACM, 13, 6 (June 1970), 377-387.

Delobel, C., "Aspects Theoreques sur la Structure de l'Information -

dans Une Base de Donees', Revue Informatique et Recherche

Operationnelle, B3 (1971), pp. 1017-1021.

Griffeth, N., Database Structures and Transformations, Ph.D. disser-

tation, University of Chicago, 1978.

Griffeth, N., '"Decomposition and Recoverability of Relations", Dis-
cussion Paper No. 354, Northwestern University, Center for Mathe-

matical Studies in Economics and Management Science.

Heath, I.J., "Unacceptable File Operations in a Relational Data Base",

Proc. 1971 ACM SIGFIDET Workshop on Data Description, Access and

Control, San Diego, CA, pp. 19-68.

Rissanen, J., "Independent Components of Relations'", ACM Trans. Database

Systems, Dec. 1977, v. 2, no. 4, pp. 317-325.

