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Abstract

A n-person social choice problem is considered in which
the alternatives are n dimensional vectors with the ith component
of such a vector being the part of the alternative effecting
individual i alone. Assuming that individuals are selfish
(i is indifferent between any two alternatives that have the
same ith component) we characterize all the families of
permissible individual preferences that admit nondictatorial
Arrow type social welfare functions. We also show that the
existence of such a function for a given family of preferences

is independent of n provided that it is greater than one.



Characterization of the Private Alternative Domains
Admitting Arrow Social Welfare Functions

1. Introduction

A theory of aggregations of individual preferences into
group preferences should be in the core of areas involving group
decision making. As such, it is surprising that social choice
theory 1s not used more extensively in economics, game theory
team theory, etc. Clearly incorporation of some of the many
models and important results of social choice theory into these
other areas may have interesting implications. We feel that one
of the reasons for this phenomenon is the lack of structure of
the alternatives' space in most of the models discussed in social
choice, while, for example in economic aggregation problems,
aggregating preferences over allocations of private alternatives
may differ significantly from aggregating preferences over alloca-
tions of public alternatives. One would expect that this structure
wéuld be taken into consideration. We hope that the model and
results presented in this paper are a step in this direction.

In his book ([1l] Chapter II), Arrow discusses the "differ-
ence between the ordering (done by an individual) of the social
states according to direct consumption of the individual and
the ordering when the individual adds his general standards of
equity." He refers to the former ordering as reflecting his

' When one

"tastes' and the latter as reflecting his ''values.'
deals with a social choice theory whose states are economic con-
sumption bundles, ordering according to tastes, or what is some-

times referred to as a selfishness axiom, becomes a dominant



factor in the individual's preferences. This distinction is
discussed by Samuelson in his book [6] where he makes this
assumption (assumption 6 on page 224) for economic environments,
Motivated by this observation Arrow goes on to prove his '"Possi-
bility (impossibility) Theorem for Individualistic Assumptions"
(Theorem 3 in his book). The difference between this theorem
and the well-known ''General Possibility Theorem'" is in the fact
that individuals care only about their component of the éocial
state and that they are indifferent to changes effecting
individuals other than themselves. The social choice model
studied in this paper is designed to deal with the aggregation
of preferences of selfish individuals.

We assume that each individual i in an n-person society
has a set of conceivable preferences, Qi, over a set of his own
private alternatives Aio Society's goal is to aggregate these
preferences into a social welfare function (SWF) which should
rank AleZX'°'XAn - the set of n-person allocations in this society.

We assume that the individuals in this society are symmetric
in that all the Ai's and Qi's are identical. We provide an
answer to the question of which domains of preferences (Qifs)
admit an Arrow type nondictatorial SWF. This is done in two
stages. We first show that the answer to the question of existence
of such a SWF for a given A and (0 is independent of the number of
individuals in the society. Then we characterize the A's and

0's that admit a 2-person nondictatorial SWF.
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This work parallels Maskin | 5] and Kalai-Muller [4].
They studied the same questions for the case of public alterna-
tives. The results that we obtain are different than theirs and
one model is not a special case of the other (because of the symmetry
assumption made by them). 1In particular we show as an example of
our characterization that for a large class of single peaked prefer-
ences over private alternatives every SWF is dictatorial. Thus
"good" restricted domains of preferences over public alternatives
may be ''bad" for private alternatives. On the other hand the case
of only one conceivable preference ordering (|Q|=1) admits non-
dictatorial SWF's for private alternatives but for public alter-
natives it must be dictatorial (every individual must be a dictator

by the unanimity assumption).

The model presented here has two drawbacks. One is that
we assume that individuals have strong preference (indifference
is not allowed). This is done for technical reasons, since we
cannot solve the more general case. Secondly, we assume that
all Ai's and all Qi's are the same. This again is done for technical
reasons yet it is not very restrictive. Qi is the set of all
conceivable preferences of individual i. It is an input into the
model and has to be determined by means of some other theory or
empirical observations. For example, in economic environments Q.
may consist of the monotonic convex preferences. It is likely
that if these restrictions hold for one individual then they
should hold for the others as well. The choice of the Ai's is

not critical since we will require our SWF to satisfy a condition
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of independence of irrelevant alternatives. Thus if the Ai's
are too large and contain some nonfeasible alternatives, that

will not affect the choice among the feasible ones.

Let A denote a set of alternatives with at least 2 elements.
For an integer n 2 2 let A" represent the set of all n-tuples
n I
of alternatives from A. An element of A", X ='(X1”"’Xn)"

is called an n-person allocation of alternatives. Let Z denote

the set of all transitive antisymmetric total (i.e., if p€Z and

x,y€A then xpy or ypx or x=y) binary relations on A. An element

(m)

of = is called a preference relation. For n > 2 let A

represent the set of all transitive antisymmetric total binary
relations on A", Let Q be a nonempty subset of XZ; the elements
of QO represent the admissible preference relations in the
society. For n > 2, o represents the set of all n-tuples of
preferences from @ and P = (pl,...,pn), an element of Qn, is

called an n-person profile.

An n-person social welfare function (SWF) on Q is a

function £7:q7 + A(n) which satisfies the following two conditions.
1. Unanimity. For every Pea™ and X,YEAn, if for i=1,...,n,

, D
whenever x; # y; then x;p.y., then Xf(P)Y.

2, Independence of irrelevant alternatives (IIA). For

n n . . .
X,Y€A", and P,Q€0 " if [Xipiyi iff X:q;5s for i=1,...,n] then

[X£2(P)Y iff XfM(Q)Y].

n . . . a4 . . .
f" is dictatorial if there exists j, 1 < j < n, such that

for every Pea” and X,YEAn, an(P)Y whenever ijjyj' £ s

nondictatorial if fo is not dictatorial.
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An n-person Arrow-Social Welfare Function (ASWF) is a

nondictatorial SWF.

Remark 1:

We could have formulated the problem by letting individuals
have preferences over A" (the same space over which the social
preferences are defined) and require that for every X,YEAn with
X; =y; voter i should be indifferent between X and Y. This formu-
lation is equivalent to the one that we use and it is more natural
to people who are used to convention social choice papers. How-
ever this formulation would make our notations and statements longer
and in this sense it is more natural to use the one formulated

earlier,

Remark 2:

Campbell and Fishburn [3] investigated social welfare .
functions which are very symmetric in a social choice model that
allowed them to distinguish between private and public alternatives.,
However their formulation, and the problems they study are very

different from ours.

2. Independence of n

Theorem 1:
For n > 2
(a) 1if there exists a 2-person Arrow SWF on Q then there

exists an n-person Arrow SWF on Q, and
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(b) if |A| > 2 and there exists an n-person Arrow SWF on Q

then there exists a 2-person Arrow SWF on Q.

Corollary 1: If |A| > 2 then for every n > 2, O admits an n-person

Arrow SWF if and only if it admits a 2-person Arrow SWF.

Proof:
Part a: We assume that there exists fm, an m=-person (m > 2)

Arrow SWF on Q. We construct an mt+l ASWF on Q, fm+l, as follows.

For X,yeal’l

and PEQm+1, Xfm+1(P)Y if and only if either (xl,...,xm) =
(yl,...,ym) and X 41 Pm+1 Yo+1 OF (xl,...,xm) # (yl’°°"ym) and
(Xl"'.’xm) fm((P]_"- 'apm))(yl:-- -:ym)-

m+l ;o 2 well defined ASWF.

It is straight forward to check that f
Thus, by induction, if there is a 2-person ASWF on (Q then there is

an n-person one for every n > 2,

Part b: Now we assume that |A| > 2 and for some n > 2 there exists
£ an ASWF on Q. We have to show that there exists f2 ASWF on Q.

We first prove it for the following special case.

Q0 is said to contain an inseparable pair of alternatives if there

exist s,t€A such that
i. for some p€Q spt and

ii. for no p€Q and x€A it is spxpt.

(s,t) is called an inseparable pair of alternatives.




Lemma 1:

If QO contains an inseparable pair of alternatives

(s,t), then there exists f2 an ASWF on Q.

Proof:

For every X,YEA2 (X#£Y) and PEQZ we define fz(P) as follows.
If X] =Y¥q OF %, =Y, then f2 is defined by the unanimity rule
according to the preferences of the nonindifferent voter. When
X17£y1 and xz%y2 we distinguish the following special case
{xl,yl} = {s,t} and spqt.. In this case f2(P) on the pair X,Y
is defined to agree with Py- In all other cases we define fz(P)
on the pair X,Y to coincide with the preferences of Py It is
easy to check that f2 is antisymmetric total relation. It
satisfies IIA, nondicatorship, and unanimity by the way it was

defined and it remains to be shown that it satisfies transitivity.

Let X,Y,Z be three distinct elements of A2 and PEQ2 satisfying
sz(P)YfZ(P)Z;L We will show sz(P)Z by showing it for all the

possible cases.

(1) tP]_Se(in case there is such a Py in Q).
2 2 . .
L. x # Y1 # z;. Then X£~(P)YE (P)Z implies xp;yqPyZy-
by transitivity it is % P1Zq> which implies, by definition,
x£2 (P)Z.
2 . . . .
2. % =y # z,. Then Y£“(P)Z implies y,p;z; which 1is
the sam= as % P1%] and again by definition it implies

X£2 (P)Z.
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2 . . ) )
3. 0% # Yy = Zq- Then XEf“(P)Y lmplleS'lelylAwhlch_ls
the same as XyP12; and by definition it is sz(P)z,

4, X; =¥y < 2 Then sz(P)Yfz(P)Z implies i

2P2Y2P2%2-
By transitivity it is X5P9Zg s and by definition it is
XE2 (P)Z.
splt.
1. At least two of the elements xl,yi,zl do not belong..to
{s,t}. Then we are in the same situation as in case (i)
and therefore it is sz(P)Z.
2. Xl,yle{s,t},21¢{5,t}. Then Yfz(P)Z implies Y1P121
which implies, by the inseparability condition, both
sP1%1 and tplz. Therefore it is X1P1%1 and by definition
it is sz(P)Z.
3. xlﬁis,t},yl?zlé{s,t}. Then XfZ(P)Y;implieS~xlplyl,
which implies both % pys and %P1t and therefore it 1is
XqP1Zy ¢ Then by definition it is XfZ(P)Z.
4, xl,zléis,t}, ylﬁis,t}. Because of the inseparability
condition, this case is impossible.
2 2

5. xl,yl,zleis,t}. If x, # ¥y # z, then XES(P)YE™(P)Z
implies XyPoY9PpZy By transitivity it is X5P9Z9s and by
definition this implies sz(P)Z. If x, # Ty = 29 then

2 . . s . .
X£f“(P)Y implies XyD5Y9 which is the same as X,PoZ) and
again by definition it is X£2(P)Z. If x, =y, # z, then

2 . . . s s 2
YE©(P)Z implies y,PyZ,, OF X,PyZy and again it is Xf“(P)Z.
The case X, = ¥, = Z, is impossible, since then sz(P)Y
implies x; =s, y; = t, while v£2(P)Z implies yy = s, %y =

which is a contradiction. Q.E.D.

t
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Continuing with the proof of Theorem 1 we now assume that
Q does not contain any inseparable pair. We also need to intro-
duce some addiﬁional definitions and prove the following lemmas.
For an integer n > 2, z€A and j, 1 £ j < n, let A?(z) denote the
following subset of AT, A?(z) = {XEAnlxj==z}.'\fn, a SWF on Q is

called a z-dictatorial by j function if there exists a member k,

(1 <k < n, k#j) such that for every X,YEA?(Z) and PEQn, if

X P Yy then it 1is an(P)Yo k is called the z-dictator by j and
is deonoted by dj(z). Notice that if dj(z) exists then it must

be unique. Let Dy = {x€A| there exists a dj(x)}.

Lemma 2:

Let fn, for n > 4, be a SWF on Q. If for every j
(L < j<n), Dj # ¢ then there is a member k (1 < k < n), such

that for every j # k and every zEDj, k==dj(Z)-

Proof:
Suppose that for some xEDl, 2 = dl(x) and for some

y€D3, 4 = d3(y). Let z,w€A and p€Q be such that zpw. Let

P = (p,...,p)GQn, T = (X,2,¥,Wyeee,w)CA” and S = (X3WyTsZseeesz) EAT,

Since T,SEA?(X) and 2 = dl(x) therefore it is Tfn(P)S, but since

T,SEAg(y) and 4 = d3(y) it is also Sf"(P)T, which is a contra-

diction. Hence we have proved, without loss of generality,that

for every j¢{1,2} and every yEDj, dj(y)€{1,2}. Moreover,

by applying the above method, it is easy to show that for
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every j,kf#{1,2}, yEDj and z€D, it is dj(y) = dk(z). Hence, if
for every j#{1,2} and yEDj it is 2 = dj(y), then by applying

again the above technique, 2 = dl(x) for every x€D On the

1.
other hand, if for every j¢{1,2} and yEDj it is 1 = dj(y),
then again it has to be 1 = dz(x) for every xEDz,which completes

the proof of the lemma. Q.E.D.

In the following lemmas we extend the result of Lemma 2
to the case of n = 3, Notice that although the following lemmas
are phrased for a certain order of the members 1, 2 and 3, it

is obviously true for any permutation of these members.

Lemma 3:

Let £ be a SWF on Q. If Dj # 0, j=1,2,3, and if there

exist distinct x,yGD1 such that 2 = dl(x) dl(y) and distinct

z,w€D, such that 3 = dz(z) = dz(w) then 2 = d3(t) for every t€D

2 3°
Proof:

Suppose it is not the case and there exists tED3 such that
1l = d3(t). Without loss of generality let P€Q3 be such that Xp1Ys

Zp oW and suppose that for some s€A tp,s. Since (x,z,s),(x,w,t)EAi(x),
2=:d1(x) and ZP,W, it is (X,Z,S)fB(P)(X,W,t); since (x,w,t),
e s 3

(,2,£)3(t), 1=dy(t) and xpyy, it is (x,w,0)E () (y,2,0)3

S 3
since (y,z,t),(x,z,s)EAg(z),3==dz(z) and tp3s,1t is (y,z,t)f (P) (x,2,s);

e 3

hence, since f3 is a SWF, by transitivity it 1is (x,2,s)E (P) (x,2,s)

which is a contradiction. Now suppose Q is such that for every
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p€Q and every s€A it is spt then,again without loss of generality,
suppose PEQ3 is such that Xp1Y, 2ZP,W and sp3t for some s€A.

Then (x,w,t),(y,z,t)EAg(t), 1= d3(t) and Xpq¥ imply (x,w,t)fB(P)(y,z,t);
(y,z,t),(y,w,s)GAi(y), 2 = dy(y) and zp,vw imply (y,z,t)f3(P)(y,w,s} 3
(y,w,s),(x,w,t)EAg(W), 3 = dz(w) and Sp,t imply (y,w,s)fB(P)(x,w,t)

and since by transitivity it is (x,w,t)f3(P)(x,w,t) it is again

a contradiction, which complete the proof. Q.E.D.

Lemma 4:

Let £° be a SWF on Q. If Dj ¥4 § for j=1,2,3 and there exist
distinct r,tED3 such that 2 = d3(r) = d3(t) and xEDlpsuch that
2 = dl(x) then 2 = dl(y) for every yEDl.
Proof:

Suppose it is not the case and there exists yED1 such
that 3 = dl(y). Suppose that for some P€Q xpy then we can
let a,b,c€A and P693 be such that without loss of generality
XP1Y s apszzc and rpyt. Then (y,a,t), (x,b,t)EAg(t},
2 = d3(t) and apzb imply (Y,a,t)fB(P)(X,b,t); (x,b,t), (x,c,r)EAi(X),
2 = dl(x) and bpzc imply (x,b,t)fB(P)(x,c,r). By unanimity it is
(x,c,r)fB(P)(y,c,r) and (y,c,r), (y,a,t)EAi(y), 3 = dl(y) and
rp3t imply (y,c,r)f3(y,a,t). Then by transitivity it is (y,a,t)f3(y,a,t)
which is a contradiction. If O is such that for every p€Q it is

3

ypx, then let P€Q” be such that yp;X, apszzc and rp,t. Then by

3
unanimity it is (v,a,t)E(P) (x,a,t); (x,a,t), (x,b,r)€A](x),
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2

dl(x) and apzb imply (x,a,t)f3(P)(x,b,r); (x,b,r), (y,c,r)EAg(r),

2 d3(r) and bpzc imply (x,b,r)f3(P)(y,c,r); (y,c,r), (y,a,t)EA%(y),
3 = dl(y) and rp,t imply (y,c,r)fS(P)(y,a,t) and again by
transitivity, it is (y,a,t)fS(P)(y,a,t) which is a contradiction

and this completes the proof. Q.E.D.

The following lemma, by using Lemmas 3 and 4, extends

the result of Lemma 2 to the case of n = 3.

Lemma 5:

Let f3 be a SWF on Q. If for j=1,2,3 Dj A then there

is a member k, 1 < k < 3, such that for every j # k and every

x€D., k = d. .
i’ 3 (=)

Proof:

Since |A| > 3 and since Dj = A then obviously there is a member
i(i#1) such that for at least two distinct alternatives, say X,y
i= dl(x) = dl(y). " Let us assume without loss of generality that
this 1 is 2. By the same reasoning there is a member k(k#3)
for which there are at least two alternatives, say z,w such that

k = d3(z) = d3(w). Hence there are two possible cases.

Case 1. k=2. Then by Lemma %4, for every zED1 and

every t€D,, 2 = dl(z) = d3(t) and since A = Dy = D3, then for

3’
every x€A it is 2 = dl(x) and 2 = d3(x).

Case 2. k=1. Then by Lemma 3, for every xED2 it
is 1 = dz(x), which implies, by Lemma 4, . that for every xED3

it is 1 = d3(x), which completes the proof. \ Q.E.D,
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All of the above lemmas lead to the following.

result.

Lemma 6:

If fn, for n > 3,is a SWF on Q such that for every member j

(1 £j =<n), Dj = A, then f" is dictatorial on Q.

Proof:

Suppose Dj = A for j=1,2,...,n. Assume without loss of
generality that 1 is the k of Lemmas 2 and 5. Suppose X,YEAn and
pea” with XyPYy- Since we assume that Q does not contain an insepar—

able pair we can assume by IIA that for some z€A X1P12P1Yy

let Z2 = (Z’XZ”°"Xn-l’yn) then we have an(P)Z by d(xz) = 1 and
z£" (p)Y by d (v ) =1. Thus X7 (P)Y by transitivity.

Q.E.D.

We can now complete the proof of Theorem 1 by showing

that for n > 3 if there is an n-person ASWF on a,f%,

1

then there exists an n-1 person nondictatorial SWF on Q,fn-
Since f* is assumed to be nondictatorial,lemma 6 implies that there
is a person i and an alternative x for which di(x) does not exist.
Assume without loss of generality that i=n., Let p€Q be any

-n-1

fixed preference for n and for X,Y€A definezxfn-l(P)Y if and

only if (Xl ,Xz, eoe ’Xn-l ’X) fn(P]_:PZ) e ’pn—l’P) (ylay2: veo ’yn-l’x) .

It is easy to check that fn-l defined this way is an ASWF on Qnel
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3. The Characterization of the Nondictatorial Domains

In this section we characterize the domains of preferences

Q that admit 2-person Arrow SWF's. By Theorem 1 this is

also a characterization of the domains that admit n-person (for
every n > 2) nondictatorial SWF, provided that the number of alter-
natives is greater than 2 (|A] > 2). Throughout this section

we let Q be an artibtrary fixed nonempty subset of Z.

A set R & Azx‘A2 is said to be closed under decisiveness

implications if the following two conditions hold for every X, Y,

Z € A2.

g

" Dll. If for some p&N x;pPy;Pz;,(X,Y)R, and (Y,Z)€R, then (X,Z)€R.

D12, If for some pE&Q XoPY,PZy and (Z,X)€R then (Z,Y)€R or (Y,X)€R.

We let F = {(X,Y)EAZX Azlfor some pE&N leyl}° Thus these
are the pairs (X,Y) for which it is feasible for voter 1 to prefer
X to Y. We let C = {(x,y)€F|for some p€Q yszz}. Thus these are
the pairs (X,Y) which are feasible for voter 1 but also voter 2

can object to voter 1 and prefer Y to X,

We say that o has a decomposition if there is an R which is
closed under decisiveness implications. We say that o has a non-

trivial decomposition if it decomposes with an R such that

(F‘C)gRiF.

The intuitive explanation for the above definition

is as follows. Suppose there is a 2~-person ASWF f on 0.

We let R consist of the pairs (X,Y) which are feasible to voter 1
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(xlpyl,for some p€Q) and for which he is also decisive (if he prefers
X to Y then so will f). Clearly F - C € R © F. The nondictatorship
of voter 1 implies that R# F and the nondictatoroship of voter 2
implies that F-~C#R. The closure under decisiveness implica-

tions of R follows from the transitivity of f and turns out

to be equivalent to it. Hence we obtain v

Theorem 2 0 admits a 2-person (n person if |A]l > 2) Arrow

SWF if and only if ( has a non-trivial decomposition.

Proof. Suppose () admits a 2-person ASWF f. - Let

R = [ (X,Y)€F| for every PEQZ if xypyy; then Xf(P)Y}.

Clearly (F -C)© R € F. Since 2 is not a dictator there is a pair
(X,Y) and a PEQZ with X9P9Y9 and YE£(P)X. Therefore ylplkl (since

f satisfies unanimity), and by ITA and unanimity (Y,X)€R yet (Y,X)e C.
Hence (F - C)¥ R. Since 1 is not a dictator there is a pair (X,Y)

and a PeQz with x1P1Y1 but Y£(P)X. Hence (X,Y)€F and (X,Y)£ R. So R g F.
To show that R is closed under decisiveness implications we assume
that X,Y,ZGAZ. Suppose that fornspme‘pEQ xlpylpzl,(X,Y)gR, and
(Y,Z)€R. Clearly (X,Z)€F. Let P be any profile with X1P1Zq-

By IIA we can assume without loss of generality that X4P1¥1P1%1
without effecting the (X,Z) outcome. Since (X,Y)€R and (X,Z)€R

we have X£(P)Y £(P)Z and by transitivity X£(P)Z. Thus (X,Z)€R

and R is closed under the first type of decisiveness implications.
Now we assume that for some p€Q X,PYoP2y and (Z,X)€R. Assume

that (Z,Y)#R and (Y,X)#R. Since (Z,X)€R there is a p;€0 with
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z1P1¥q- Choose Py to satisfy XoPoYoP9Zy and let P==(p1,p2). Then
Zf(P)X since (Z,X)€0., 1f it is not the case that z1P1Yq then
YE(P)Zf(P)X and (Y,X)€R, a contradiction. So we assume that
Z1P1Y7 - If Zf(P)Y then (Z,Y)€R, a contradiction. Hence Yf(P)Z.
By transitivity Y£(P)X hence (Y,X)€Q which is a contradiction.
So we have that (Z,Y)€R or (Y,X)ER, and R is closed under decisiveness
implications.of the 2nd type;

We now assume that R presents a nontrivial decomposition
for Q0 and demonstrate the existence of an Arrow SWF f. For every

(X,Y)EAZX A2 and every PEQ2 define Xf(P)Y if

(a) X, P;Y5 for i=1,2, or

(b) =x;pyy; and (X,Y)€R, or
(c) X9P9¥ o and (Y,X)fR.

We first show that if X,YEAZ, X#Y, then X£(P)Y or Y£(P)X
but not both. If neither Xf(P)Y nor Yf(P)X then we have either
(1) x1P1Yy and y,p,x, OF (i1) vyqiP1%; and X,Py¥q- If (i) holds
yet not XEf(P)Y then (X,Y)£R so YE(P)X by part (c) of the defini-
tion of £(P), a contradiction. If (ii) holds yet not Y£(P)X then
(Y,X)£R but then we should have X£(P)Y, a contradiction. If both
Xf(P)Y and Y£(P)X then again there is no unanimity and one of the
situations (i) (ii) described above holds. ‘Situation (ii) implies
that (X,Y)ER and (X;Y)éR, a contradiction. Situation (ii) implies
that (Y,X)£R and (Y,X)€R a contradiction again.

It is clear that f satisfies IIA and unanimity. It remains

to be shown that f is transitive and nondictatorial.
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To show that voter 1 is not a dictator choose (X,Y)€EF - R.
Since ¥ -C < R, then (X,Y)€C. Thus for some ngﬂfYZPZXZ" Since
(X,Y)€F, for some p;€Q x;P;y;. Let P=(p;,p,) then ¥£(P)X,. so 1 is
not a dictator. To see that 2 is not a dictator choose (X,Y)eR-(F - C)
For some p;€Q x1P1Yq and for some P9€Q yoPoX,. Let P=(P1,P2) then
X£f(P)Y, so 2 is not a dictator.

To show transitivity we assume to the contrary that for
some X,Y,ze A2, XE(P)YE(P)ZE(P)X.

Case 1: z1P1%q and ZoPoXy

Subcase a: Y1P1%7 - Since Xf(P)Y then XoP9Yo and (Y,X)€R.
Since Y£(P)Z then y,p,z; and (Y,Z)€R. Since (Z,(xl,zz))ER
by decisiveness implications of the first type (DI1)

(Y,(xl,zz))ER. By DI2 (with X being (x 2), Y being X and Z

1°%

being Y) either (Y,X)€R or (X, (x )ER, a contradiction,

1°%2)
Subcase b: not Y1P1%1 - Therefore Y9P9Z9 which implies
X;P;Yy . Hence (X,Y)ER and (Z,Y)#R. Since ((zl,xz),X)ER we
get by DIl that ((zl,xz),Y)ER. Now by DI2 we get that when

((zl,xz),Z)ER or (Z,Y)€R, a contradiction.

Case 2: not Z,pyX,. Therefore z1P1%) and (Z,X)eR. If not
YoP9Zy then Y1P1%1 and (Y,Z)€R which implies by

DI1 that (Y,X)€R which contradicts XE£(P)Y. Therefore

Y9P9Zy- If not x,5P5Y, then x¢Py¥y and (X,Y)¢R which implies

by DIl that (Z,Y)€R which contradicts Yf(P)Zésincevzlplyl.

So we are left with the situation that X9P9Y9P9Z9 and zlplxl.

If not Y1P1%1 and not x;P¢¥; then (Z,Y)#R and (Y,X)#R. But

then DI2 contradicts the facts that (Z,X)€R. So we must
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have XoPoYoP9Zy and either y1P121P1Xq OF 21P1X1P{Y71- If
yyP1Z1Px; then (Y,X)¢R. But by DI2 ((zl,yz),X)ERfand,by
DI1 (with X being Y, Y being (zl,yz) and Z being-X)
(Y,X)€R, a contradiction. So we must have X9PoYoPoZy
and z1pP1¥;P1Y;- But mow DI2 implies that (Z,(Xl,yz))ER.and
" DIl (with X being Z, Y beingw(xi,yz) and‘z;being,(yi,yz))

implies that (Z,Y)eR. This contradicts Yf(P)Z which shows
that case 2 is impossible.

Case 3: not Z1PyXq . Therefore Z,P9Xy and (X,Z)¢#R. If not
x1P1y; then x,p,y, and (Y,X)#R. By condition DI2 (with
X being Z, Y being X, and Z.being Y), (Y,Z)#R. Therefore
Zf(P)Y, a contradiction. So x{P1¥y. ILf not ¥1P1%1 then
YoPyZ, and (Z,Y)£R. By condition DI2 (with X being Y; Y
being Z, and Z being X) we have that (X,Y)#R which contradicts
X£E(P)Y. So we must have X1P1Y1P127- If not YoPyZg and not
XoP9Y9 then (Y,Z)€R and (X,Y)€R which contradicts by DIl
the fact that (X,Z)#R. So we have either YoPoZyPoXy
OF Z,DyXyPyYge If Y9P9ZoPoXs then (X,Y)€R, by DIL (X,(zl?yz))ﬁ
by DI2 (with X being (zl,yz) Y being (zl,zz) and Z being X)
(X,Z)€R, a contradiction. So we must have X1P1Y1P1%1 and
ZyPyXoPoY g Since Y£f(P)Z, (Y,Z)€R. By DIl ((xl,yz),Z)ER,

and by DI2 (with X being Z, Y being (Xl’XZ) and Z being

(xl,yz)) (X,Z)€R, a contradiction.
Q.E.D.

We summarize the question of existence in
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Theorem 3: For n 2> 2
(a) If |A| > 2 then there exists an n-person Arrow

SWF if and only if Q has a nontrivial decomposition.

(b) If |A|=2 say A=[x,y} then

(i) if =% then there exists an n-person Arrow
SWF for Q, and

(ii) if O#Z then there exists a nondictatorial SWF

for ( if and only if n > 3.

Proof. Part (a) is an immediate consequence or Theorems 1 and 2,

2 4ith X#Y

For part (b) (i) for any pair of alternatives X,Y€A
we define f(P) to be determined by the unanimity rule if it is
applicable. Otherwise we define f(P) to coincide with Py if Xpyy

and to coincide with Py if yPqXe It is straightforward to check

that this defines a 2-person Arrow SWF on A. The extension to

n-person follows by Theorem 1. To show part (ii) assume w.l.o.g.

that Q={p} with xpy. In this case the only possible profile is
p=(P,Pse.+5P)s For n=2 if f is a SWF then (x,y)f(P)(y,x) or
(y,x)£(P)x,y). In either case either voter 1 is a dictator or

voter 2 is a dictator. For n=3 we define

) =£(P) by (%,%,%))(x,%,5) (%,¥,%)? (¥,%,x))(¥,%,%x)? (¥,%,7)? (X,5,¥)2 (¥, ¥}
It is easy to check that this is a well defined nondictatorial 3-person

SWF. By Theorem 1 part a, (ii) holds true for every n > 3, Q.E.D.
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4. Applications

To show the usefulness of Theorems 1, 2 and 3, we discuss

some examples.

Example 1. Arrow impossibility theorem for private alternatives.

If |A| > 2 and Q = Z then Q is dictatorial.

Proof: Suppose Q is nondictatorial, then Q has a nontrivial
decomposition F - C g R g F, which means that there is (X,Y)€C
such that (X,Y)€R. Since Q@ = Z then F = {(X,Y)EAZX Azlxl#yll

and C = {(X,Y)€F|X27‘y2}o Therefore by DIl ‘and DI2, (X,Y)€R implies
that for every (X,Z)€C also (X,Z)ER. But again by DIl and DI2 this
implies that for every (W,Z2)€C it is also (W,Z)€R, or that R = F,

a contradiction. Q.E.D.

Example 2. Q contains an inseparable pair of alternatives (s,t).

We define the set R which corresponds to f2, the non-
dictatorial SWF defined in Lemma 3, as follows.

R = (F-C)U[ (X,Y)€F| such that x, = s and v = t}, the proof that

1

Q has a nontrivial decomposition is straightforward.

Example 3. Single peaked preferences.

The set of single peaked preferences is one of the most
celebrated examples of domains of public alternatives, admitting
Arrow SWF, independently of the size of theset of alternatives
(see Black [2] and the other standard texts). Therefore the

following result is somewhat of a surprise.
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Let q€Z, and define the set of single peaked preferences

relative to the linear order g, by

Qq = {pEZI for every three distinct alternatives

X,¥,2 1f zqyqz then it is not the case that xpy and
zpy} .

That Qq admits an ASWF when A, the set of alternatives,

is finite is immediate because of Exampie 2, Even when A

is infinite but has two alternatives x,y€A such that for every
z€A it is the case of xqyqz (or for every z it is zqyqx), is
immediate because of Example 2., However, in general, the single
peak condition does not imply the existence of a SWF for

private alternatives.

Theorem 4.

If A is a (infinite) set of alternatives and the linear
order q is such that there is no maximal alternative x (for
any other alternative z, xqz) and there is no minimal alternative y
(for any other alternative w, wqy) then.Qq admits only dictatorial

SWFs.

Proof: Suppose Qq admits an Arrow SWF, then by Theorem 2 it
has a nontrivial decomposition with an R such that F-C ; R ; F.
Suppose ((a,b),(c,d))€RNC, then there are four possible cases.
That (aqc and bqd) or (aqc and dgb) or (cqa and dgb) or that

(cqa and dqb). Since the proof for the different cases are almost
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identical, we assume without loss of generality that it is the -

case of (aqc and bqd). In all of the following steps we use
extensively the assumption of no minimal and maximal alternatives in A,
Notice that F = [(X,Y)EAZX.Azlxl%yl} amd C = {(X,Y)Elez#yz},

therefore if for some pEQq X{Py{P2q then by DIl
(la) (X,Y)€R implies ((X,(zl,yé))ER, and

(1b) (Y,Z)€R implies ((xl,yz),Z)ER; and

if for some pEQq X,PY)PZ, then by DI2
(2a) (Z,X)€R implies (Z,(xl,yz))ER, and

(2b) (Z,X)€R implies ((z ) ,X)ER.

1°72
Step 1: Let y€A such cqy, then there exist p,p{EQq such that
apcpy and cp’ap’y. Therefore by (la), ((a,b),(c,d))€R implies

((a,b),(y,d))€R, which in turn, by (1b), implies ((c,b),(y,d))E€R.

Step 2: Let y,z€A such that cqy and zqy (z#c). Then there
exists pEQq such that zpcpy and by (1b), ((c,b),(y,d))ER

implies ((z,b),(y,d))€R.

Step 3: Let z,y€A such that cqy and zqy (z may also be c). Since
for every v€A such that vqz or yqv, there exists pEQq such that

zpypv, then by (la), ((z,b),(y,d))€R implies ((z,b),(v,d))€ER.

Step 4: Let z,s€A such that zgsqc. There exists v€A and pEQq
such that vqz and zpvps, then, by (la), ((z,b),(v,d))€R implies

((z,b),(s,d))€R.
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Steps 1, 2, 3 and 4 together imply that for every z,s€A such

that ((z,b),(s,d))€C, then ((z,b),(s,d))€ER.

: €A h that bqu then there ists p€Q_ such that
Step 5: Let u€A suc at bqu the ex P q

dpupb and, by (2a), ((z,b),(s,d))€R implies ((z,b),(s,u))€R.

Step 6: Let u,w€A such that bqu and bqw, then there exists
pEQq such that upwpb and by (2b), ((z,b),(s,u))€R implies

((z,w),(s,u)€R.

Step 7: Let x,u€A such that xgb and bqu (or u is b), then there
exist w€A and pEQq such that xquqw and upxpw and by (2b),

((z,W), (s,u)) €R implies ((z,x),(s,u))€R.

Step 8: Let r,t€A, then there exist x,u€A such that xqr,xqt and
bqu. By Step 7, ((z,x),(s,u))€R. Considering alternative x as

the alternative b, Step 6 implies that ((z,r),(s,t))€R.

This completes the proof that for every r,s,t,z,€A such that
((z,r),(s,t))eC it is also ((z,r),(s,t))€R, hence R = F, a

contradiction.
Q.E.D.
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