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1. Introduction

Decisions under uncertainty are commonly described in two ways: using a

probability model or a state-variable model. 1In each case, we speak of the

decision-maker as choosing among lotteries, but the two models differ in how
a lottery is defined. 1In a probability model, lotteries are probability dis-
tributions over a set of prizes (for example, see Section 2.4 in [7]).

In a state-variable model, lotteries-are functions from a set of possible

states of nature into a set of prizes (for example, see Chapter 13 in [ 7]).

The distinction between a probability model and a state-variable model
is not simply a matter of mathematical style. A probability model is approp-
riate to describe gambles in which the prize will depend on events which have

obvious objective probabilities; we shall refer to such events as objective un-

knowns. These gambles correspond to the "roulette lotteries'" of [1 ], or the
"rigks" of [6]. For example, gambles which depend on the toss of a fair coin,
the spin of a roulette wheel, or the blind draw of a ball out an urn contain-
ing a known population of identically-shaped but different-colored balls, all
could be adequately described in a probability model. (There is an implicit
assumption here that two objective unknowns with the same probability are com-
pletely equivalent for all decision-making purposes. For example, if we des-
cribe a lottery by saying that it "offers a prize of $100 or $0, each with prob-
ability 1/2", we are assuming that it does not matter whether the prize is to
be determined by flipping a fair coin, or by drawing a ball from an urn which

contains 50 white and 50 black balls.)



On the other hand many events do not have obvious probabilities; the out-
come of a future sports event or the future course of the stock market are good

examples. We shall refer to such events as subjective unknowns. Gambles which

depend on subjective unknowns correspond to the "horse lotteries" of [ 1], or
the "uncertainties" of [ 6 ]. They are more readily described in a state-variable
model, because these models allow us to describe how the prize will be deter-
mined by the unpredictable events, without our having to specify any prob-
abilities for these events.

The fundamental result in decision theory is the subjective
expected utility theorem. i This theorem asserts that if a decision-
maker satisfies certain basic assumptions then his preferences over lotteries
will always be consistent with an expected-utility-maximization model. In the
context of a probability model, this means that there must exist some real-valued
utility function, defined on the set of prizes, such that a lottery giving a
higher expected utility will always be preferred to one giving a lower expected
utility. 1In the context of a state-variable model, this means that there must
exist a utility function on the set of prizes and a personal subjective prob-
ability distribution over the set of possible states of nature such that, again,
the lottery giving higher expected utility is always preferred.

In this paper, we derive the subjective expected utility theorem.
We define our lotteries so as to include both the probability and state-
variable models as special cases. That is, we. study lotteries in which
the prize may depend on both objective unknowns (which may be modeled by prob-
abilities) and subjective unknowns (which must be modeled by a state-of-nature
variable). We also show that a weaker set of assumptions implies a more
general (but still useful) maximization formula, in which a single evaluation func-

tion replaces the utility and subjective probability functionms.



There is already a vast literature on axiomatic derivations of the
subjective expected utility theorem, beginning with [9] and [10]; see [3]
for a summary through 1968. Nevertheless, we hope that small further
contributions might still be welcomed in this area, since it is basic to
so much of operations research and economics. This paper builds parti-
cularly on the approach set forth in two papers by Fishburn: our defini-
tion of a lottery follows [2], and our axioms and method of proof are in
the spirit of [4]. However, we have tried to keep the discussion self-
contained in this paper, so that it might also serve as an independent

introduction to subjectivist decision theory.



2. Basic Definitions

Let X be a set of prizes, and let S be a set of states of nature. To
simplify the mathematics, - we assume that X and S are both finite sets.
We define a lottery to be any function £ wﬁich specifies a nonnegative real
number f(x}s) > 0 for every x € X and every s € S, such that

T f(xls) =1
x€X

for every s € S.

Each number f(xls) is to be interpreted as the (objective) probability
of getting prize x in lottery £ 1if s 1is the state of nature. For this
to make sense, the state must be defined broadly enough to summarize all sub-
jective unknowns which might influence the prize to be received. Then, once
a state s has been determined, only objective unknowns will remain, and an
objective probability distribution over the prizes can be calculated
for any well-defined gamble. So our formal model of a lottery allows us
to represent any gamble, in which the prize may depend on both objective and sub-
jective unknowns.

Let L be the set of all lotteries, so that:
(1) L = femxxsl )z £(x'|s) = 1 and f(x[s) >0, ¥x € X, Vs €8 .

x X

As vectors in E{X>(S, lotteries may be added together or multiplier by a scalar.
This result will be a vector in B{X>( , but not necessarily a lottery in L.
However if g is a scalar satisfying O < a < 1, then of + (1l-a)g will be in L
if f €L and g € .. So L 1is a convex set (or a mixture set, in the language

of {[51).
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Our decision-maker's feelings about gambles define a preference relation

on the set of lotteries. Formally, for any £ € L. and g € L, we write

trg
if and only if the lottery £ 1is at least as desirable as the lottery g, in
the opinion of the decision-maker. Given this relation (X), we define the re-

lations (~) and (>) so that:

frg <= fZgand g3 f;

f>g <=> fZgand gt

3. The First Three Axioms

To build a theory of decisions under uncertainty, we must make some basic
assumptions about this preference relation () over lotteries.
Our first assumption is that the decision-maker can assess his prefer-

ences over any pair of lotteries in L.

Axiom 1. For any £f € L and g € L, £ 2 g or g Z £.

Suppose the decision-maker prefers lottery £ to lottery g, and thinks
that lottery £’ 1is at least as good as lottery g'. Then consider two com-
pound gambles: one giving a ticket to lottery £ if a fair coin toss comes
out Heads, and a ticket to f if Tails; and the other giving g if Heads, and
g' if Tails. 1If Heads were the known outcome of the toss, then the first
gamble would be strictly better than the second, and if Tails were the outcome
then the first would be at least as good as the second. So it is reasonable
to assume that the decision-maker should prefer the first gamble to the second,
before the coin is tossed. But the first gamble is equivalent to the lottery

£ + %f' (since the objective probability of getting prize =x given than s
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is the state of the world would be 3f(x|s) + £’ (x|s), before the coin is tossed),

g'. So we conclude

Wl

and the second gamble is equivalent to the lottery %g +
that £ > g and £/ X g’ should imply 3f + 5f° > 2z + 3g’. Our second axiom is

a generalization of this principle.

Axiom 2. For any f € L, f'EIJ, g € L, and g'EIJ, and
for any number o such that 0 < g < 1, if £ > g and

f'% g’ , then af + (1-Q)f > ag + (1-a)g’ .

To motivate our third assumption)consider the following situation. Sup-
pose that we offer the decision-maker a choice between two lotteries, f and g,
and he reports that he strictly prefers f to g (£ > g). Now suppose we learn
that there may be some small error in the objective conditional probabilities
f(xls) - which we reported to the decision-maker. So we ask the de-
cision-maker how accurately does he need to know these probabilities. It would
make matters very difficult if he replied that he must know all the numbers
exactly, that even the slightest error could reverse his preference. To avoid

this situation, we make the following assumption.

Axiom 3. For any £ € L. and g € L, if £ > g then there
exists some ¢ > O such that, for any f'EL,, if
[£ (x]s) - £(x|s)] < ¢ for all x € X and s € S

then £'>g.

4. The Evaluation Function

Qur first result characterizes the preferences which satisfy Axioms 1

through 3.
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Theorem 1. If the preference relation (X) satisfies
Axioms 1, 2, and 3, then there exists a function
w:X X S~ R such that:

f X g if and only if

z  Z f(xls)-w(x,s) > X Z g(xls)'w(x,s),
seS x€X s€S xeX

for any lotteries f € L and g € L.

Following [11], we call a function w(-) an evaluation function if it satis-

fies the property described in Theorem 1. So if a decision-maker's prefer-
ences satisfy Axioms 1 through 3, then a decision analyst only needs to know
[X[ -]S[ evaluation numbers (w(x,s)) to compute the most-perferred alternative
for the decision-maker, whenever he has a choice among lotteries.

" We defer . the proof of Theorem 1 to Section 6. However, since the

proof will be nonconstructive, we now discuss how to find the evaluation func-
tion for a given decision-maker, assuming Theorem 1.

For the evaluation function w, we define W:L - IR so that:

(2) W(E) = = T f£(x|s)w(x,s) .
sES x€X

So, assuming that w(:) is the evaluation function from Theorem 1, we have:
£ 2 g <=> W) > W(g).
This immediately implies that the preference relation (X) is a transitive order.

Also, since W(.) is a linear functional, we know that if £ Z g Z h (so

W(f) > W(g) > W(h)) then there exists some A, 0 < A < 1, such that

w(g) W f + (1-M)h) and g ~Af + (1-AM)h. (Furthermore, if £ > h then

this A must be unique.)
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For each state s, let zo(s) and zl(s) be prizes in X such that

min w(x,s)

() w(zy(s),s)
xeX

max w(x,s)
xeX

w(z,(5),8)
Without knowing w(:), we could still find zl(s) (or zo(s)) by describing any

lottery f to the decision-maker and then asking him the following question:

"Consider all lotteries in the set {fx S[x(EX}, where
3

fx,s(ylt) = 1 if y =xand t = s,
0 if yv#xand t = s,
f(z|t) if t # s

Which of these lotteries seems best (or worst) to you?" If Theorem 1 holds

(or ).

for the decision-maker, his answer will be £ f
zl(s),s zo(s),s

Let h. and h

0 1 be lotteries such that (for i = 0,1)

(&) h:(xls) = {1 if x = z.(s),

0 if x # zi(s)

That is, hé and hi are the lotteries which give respectively the worst

and best prizes in every state.

For every x ¢ X and s ¢ S, let hx s be the lottery such that:

2

1
[}
-

3) hx,s(ylt) = 1 if y=xand t

0 if vy # xand t

I
»n
-

hg(y]t) if  t # s.

That is, hx s is the lottery which differs from hg only in that hx giveé x

3
H

instead of zo(s) in state s.

g
w

. " % %
rom the way ho and h1 were constructed, we know that W(hl) > w(hx,s) > W(ho),

for any x and s. So there exists a number ) S such that
X

(6) Wh,_ ) =X W(hi) + (1 -xx s) W(h:) .

X,S X, S



This number can be obtained by asking the decision-maker: 'For what value of

A would you be indifferent between hX s and khi + (l-X)hg?” His answer will

b

be A .
X,S

Equations (5) and (6) imply that:
(D wxs) - weg(),8) = b (W) - Wp).

Thus, to determine the evaluation function w, it seems that we need to know

.
e

w(zo(s),s)) for each state s and (w(hl) - w(ha)). However, assuming that

* %

hl > hO, we can show that if w(-) satisfies Theorem 1, then w'(-) will also

satisfy Theorem 1, where

’ _ 1
¥ ) = R () - W)

() - W(hp)
CWE W(hg)

for any x € X and s € S. To check this, observe that W (f) =

so W (£) > W (g) if and only if W(f) > W(g).) So unless hl ~ hg (in which
case w E,g would satisfy Theorem l),we may assume that the evaluation func-

* *
tion in Theorem 1 satisfies w(zo(s),s) = 0 for all s and W(hl) - W(ho) = 1.

Then equation (7) becomes:

w(x,8) = XX S for all x € X and s € S.

So we can determine the evaluation function by asking the decision-maker a

finite number of questions about his preferences over specific lotteries.

5. Probabilities and Utilities

The evaluation numbers w(x,s) measure how much the prospect of receiving

prize x if state s occurs would influence the happiness of the decision-

maker now (before he knows the true state of nature). As such, w(x,s) is
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influenced by two factors: how much would the decision-maker enjoy prize x,
and how likely does he think state s is to occur. To distinguish these

factors into two separate functions, we need one additional assumption.

Axiom 4. Let s € S and s’ €S be any two states. Let

f, £, and g be any lotteries in L which satisfy:

g(x|s) = g(x|s’),

f(xlt) g(x]t) if t # s,
£ (x|t)= g(x|t) if t # s and
f(x]s) = f'(xls')
for all x € X and all t € S. Then £ & g if and only

if £

This axiom expresses the idea that, if a particular change in the lottery
were considered an improvement in state s, then the same change should also
be considered an improvement in state s’ . That is, Axiom 4 will hold if the
decision-maker's preferences over prizes and objective gambles do not depend
on the state of nature.

With Axiom 4, the evaluation function becomes the product of a vonNeumann-

Morgenstern utility function,u(:-) on X and a Savage subjective probability

function, p(+) on S.

Theorem 2. If the preference relation (%) satisfies
Axioms 1, 2, 3, and 4, then there exists a function
u:X - R and a function p:S -» R such that:

(a) = p(s) =1, and p(s) >0 Vs € S; and
seS
(b) £ 2 g if and only if
£ 2 f[s)p(s)ux) = T I gx[s)p(s)u(x),
SES x€X seS xeX
for any lotteries f € L and g ¢ L.
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This theorem considerably simplifies the problem of assessing the evalua-
tion function described in the last section. Now, instead of requiring lX[-lSl
evaluation numbers, we only need IX] utility numbers and lSl probability num-
bers. These numbers can be assessed as follows.

When Theorem 2 holds, the worst-prize and best-prize function zo(s) and

zl(s) defined in (3) become constants. That is, there are two prizes z, and

zq in X such that
u(zo) = min u(x) and u(zl) = max u(x).
xeX X€X
In all interesting cases we will have u(zl) > u(zo) (otherwise the decision-
maker will be indifferent between all lotteries). If u(-) satisfies Theorem 2,

then u’ () = a - u(*) + b will also satisfy Theorem 2, for any numbers a > 0

and b. So without loss of generality we may assume that u(z,) = 0 and u(zl) =1,

0’

For any prize x, let e, be the lottery giving x for sure; that is:

ex(y]s) = 1 if vy = x,
0 if y # x.
= 1, then Theorem 2 implies:

Now, if u(z = 0 and u(z

o) 1

(8) e, ~ u(x)eZl + (l—u(x))eZO

since both sides give expected utility u(x). So, when the decision-maker is

asked what value of A would make Xez + (l-k)ez as good as e his answer will
1 0
be A = u(x). Thus we can assess the utility function u(-) with a finite number

of questioms.
Similarly, to assess the subjective probability p(s) for any state s, let

gs'be the lottery giving z, if s happens and giving z,., otherwise; that is:

1
g (xlt) = {'ezl(x]t) if t=s,

0

ezo(x]t) if t#s
Observe that
(9 g ~ P(s)e, + (l-p(S))eZO »

Since both sides give expected utility p(s). So, when the decision-maker is asked

what value of A would make kezl + (l-X)eZO as good as gg, his answer will be XA =p(s).
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6. Proofs
PROOF OF THEOREM 1.

We assume that the preference relation (R) satisfies Axioms 1, 2, and 3.

XXS
Let ME R be defined by:
XXS
M={d e€R ¥ d(x,s) =0, V € s}
xeX

. .. . . XXS . :
Observe that M is a finite dimensional subspace of R . Notice also that M
satisfies

M={a-(f-g)|f €L, g €L, aeR}.

That is, any scalar multiple of the difference between two lotteries (thought of

XX S) will be a vector in M.

as vectors in R
Using Axioms 1 and 2, we can show that, if a - (f-g) = a’-(f'-g') (for any
lotteries £ € L, g € L, £ e, g' € L) where a > 0 and o > 0, then f > g if

and only if £ > g’ . To prove this, suppose to the contrary that f > g and
/

Y . Q aQ N Q Q. ’
g <X f . Then by Axiom 2 we get P f —— g _—a-l-a' g + &-_I-a-r f° . But
this is impossible, since aof + a’g' = qg + a/f'. Similarly, £ > g' and

g Z f cannot hold at the same time, so f > g if and only if £ > g’ ,» using Axiom 1,
We can now define HCS M by
H={a- (f-g)|a > 0 and £ > g}.
By the above paragraph, we know that, if d = a - (f-g) for some ¢ > 0, £ € L, and
g € L, then d € H if and only if f > g.
H is a convex set, by Axiom 2. To check this, observe that, if d = g * (£-g)
and d' = o’ (f' -g') (where ¢ > 0, o > 0, £ > g, and £’ > g') then:

Mo (-Maf FAaf . (Mag + e’ L )
(1o + Ao (1-M)a + A’

£

by Axiom 2, for any A between 0 and 1. So (1-A)d + A = ((1-M)a + M')(fk-gk) €H.



- 13 -

Axiom 3 implies that H is relatively open as a subset of M. To prove this,

let ll be the sup-norm on M, so that
]c[ = maximum lc(x,s)], for any ¢ € M.
(x,8)€XX S

Also, let g% €L be the lottery such that

1
gk (x|s) = = for all (x,s).
1x]

(x| 1is the number of prizes in the set X.)

1 . :
Now, suppose d € H. TLet f = g* + ZIXl 3 d. Then f € L, because d € M

and f(x[s) > lexl for all (x,s). Furthermore, for any vector ¢ € M, if
le] < 21|x| , then f + ¢ € L also. Now £ > g*, because (2]X]| |d])(f-g*) = d €H.
1

Using Axiom 3, choose ¢ so that ﬂ_lx_r > ¢ > 0 and so that If'-f[ < ¢ implies

f’ Z g¥. So for any ¢ € M such that ]c[ < %, we have f + 2¢ € L and f + 2¢ 2 g%;

3

1

and then,by Axiom 2,f + ¢ = %(f+2c) + %(f) > Jg% + 38% = g¥. So

l\(ﬁn—l

d+ 2]¥ Jda]re = 2| % |d])(f + ¢ - g*) € H for any ¢ € M such that |c| < e/2.
So we have an open ball in H around any d € H. Thus H is relatively open in M.
Thus H is convex and open in M. Furthermore, “q‘ ¢ H. By the separating hyper-

plane theorem (Theorem 11.2 in [8]), there exists some vector w € M such that

wed = 2 w(x,s)d(x,s) > 0 for all d € H. Therefore, for any £ ¢ L and g € L,
(x,8)
if £> g then I I w(x,s)(f(x|s) - g(x|s)) > 0.
XES seS

Conversely, suppose X X w(x,s)(f(xls) - g(xls)) > 0. Is it possible that
XeX s€S

g Z £? We must consider two cases. First, suppose that there exists at least
one pair of lotteries such that g’ > £’. Then let £f° = (l-e)If + cf’ and g€ =(l-¢e)g

+ecg’. For ¢ > 0 sufficiently small we have

T w(x,s)(g%(x|s) - £5(x]s) < 0,
XX s€S
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but g Z f would imply g€ > fe, a contradiction of the way w was constructed. So
we+ (f-g) > 0 if and only if £ > g. Thus w*f > w-+g if and only if f Z g,
which proves the theorem.

If, on the other hand, there does not exist any pair of lotteries such that

£/ > g’ , then w = 0 € M would satisfy the theorem.

PROOF OF THEOREM 2.

Let M* = {b € ﬂ{Xl Z b(x) = 0}. M* is a finite dimensional subspace of B,
xeX

Let w be the evaluation function from Theorem 1. TFor any state s € S, let w(s)

be the vector

w(s) = (W(x,9)) 4 € RT

The evaluation function derived in the proof of Theorem 1 in fact was in M, so
we may assume without loss of generality that w(s) € M* for every s € S.
Now select any states s and s’ in S. Let C(s) € M* be

C(s) = {a-w(s)|a € R, a > 0}.

We will show that w(s’) € C(s).
If w(s') £ C(s), then there exists some b € M* such that

w(s’) *b = = w(x,s’)b(x) >0 but c-+b < 0 for all c € C(s), using the separat-
xeX

ing hyperplane theorem. Multiplying by a small positive scalar if necessary,

we may assume that

minimum b (x) Z_T—W— .
X €X X

Now let g%, £, and £’ be lotteries in L such that:
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gx(x|t) = 1/ | X|

f(x|t) = g*(x|s) +b(x) if t =s
g* (x| t) if t#s

£ (x|t) = g*(x]s’) + b(x) if t =5

g* (x| t) if t #s

for any x € X and t € S. Then
w. (f-g%) = w(s) +b>0, so £ > g% and w- (f -g%) =w(s') *b <0,
so g¥ 2 f/. But this contradicts Axiom 4, which requires that f X g* if £ X g*.
So for any s and s’ , there exists some Q > 0 such that w(s') = a-w(s).
If any w(s) =!g then all w(s') =,gf for all s’ € S. But then letting
u(x) = 0 for all x and letting p(.) be any probability distribution on S would
satisfy the theorem, since the evaluation function is identically zero.
So let us assume that w(s) #Agnfor every state s € S. Fix t € S. For any

s € S we can find a(s) > 0 such that w(s) = a(s)w(t). Let p(s) =a(s)/( ,Z a(s’))
s €S
for every s € S, and let u(x) = ( Z a(s’))w(x,t), for every x € X. Then
S'ES
w(x,s) = a(s)w(x,t) = p(s)u(x) for every s € S and x € X. Every p(s) > 0 and

Y p(s’) = 1. This proves the theorem.
4
s €8
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