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0. INTRODUCTION

It is now well known that it is impossible to design a mechanism, for
making collective allocation decisions, which is informationally decentralized,
non-manipulable, and Pareto-optimal. This impossibility has been adequately
demonstrated in the work of Gibbard [ 4 ] and Satterthwaite [ 22 ] in the con-
text of social choice theory, in the work of Hurwicz [ 11 ] in the context of
resource allocation with private goods, and in the work of Green and Laffont
[ 6 1, Hurwicz [ 12 ], Roberts [ 21 ] and Walker [27 ] in the context of resource
allocation with public goods. Thus, if collective decisions are to be made,
it is necessary to consider 'next best' mechanisms which either are manipglable
or not Pareto-optimal (or both), and many such mechanisms have been discovered.

Mechanisms which preserve non—manipulabilit& at the cost of optimality can
be found in the work of Vickery [ 25] in the context of private goods (the
second price auction is one) and in the work of Clarke [2 ] and Groves [ 8 ]

in the context of public goods (if the income elasticity of demand for public

ooods is identically zero). Green and Laffont [ 5-] have shown that these are

the only non-manipulable mechanisms in the public goods context.
There are many mechanisms which preserve Pareto-optimality at the cost of

non-manipulability (such as the competitive mechanism in the context of private



goods); however, interest has centered on those which preserve 'some degree'

of non-manipulability. 1In particular, a wide variety of mechanisms which have the
property that Nash equilibria are Pareto-optimal have been discovered. These
can be found in the work of Hurwicz and Schmeidler [ 17 ], and Maskin [ 18]

in the context of social choice theory, and in the work of Hurwicz [ 13 ]

and Schmeidler [23 ] in the context of resource allocation with private

goods, and in the work of Groves and Ledyard [ 10 ], Hurwicz [ 13], and

Walker [ 26] in the context of public goods. There are undoubtedly many others.
There does not seem to be any obvious characterization of the class of
mechanisms which have Pareto-efficient Nash equilibria although Hurwicz [ 15]
has shown, under some convexity and continuity assumptions, that if one adds
the requirement that the mechanism leave no one worse off than they are at

their initial endowment then any such mechanism must produce the same out-

comes as the Lindahl mechanism in the context of a public goods model.

The incredible variety of 'next best' mechanisms leads one to consider
properties, other than optimality of Nash equilibria, in an effort to ‘distinguish
among them. 1In this paper we will concentrate on the analysis of colléctive
choice or resource allocation mechanisms with respect to only one of the many
possible additional dimensions of performance: performance under incomplete
information. This property was chosen because of its importance with respect
to the practical issue of whether or not a particular mechanism is implementable.
If a mechanism is non-manipulable, then all individuals have a dominant strategy;
that is, they can select their optimal response solely on the basis of their

information about their own characteristic (preferences, endowments, etc.) and
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independently of the responses of all others. Thus, if the mechanism is also
Pareto-optimal, then an optimal decision can be generated in one iteration
whether or not agents have information about the responses or characteris-
tics of others. It is for this reason that non-manipulability is so
desirable and, also, unattainable in the presence of the requirement

of Pareto-optimality. On the other hand, if mechanisms whose Nash equilibria
are Pareto-optimal are implemented then, assuming all agents would like to

be at the Nash equilibrium, some processl/for its discovery through informa-
tion transfer must also be proposed. Of course, once this process is for-
malized agents may not act in the manner hypothesized and may cause the
process to arrive at something other than a Nash equilibrium. Thus, if

one wishes outcomes to be Pareto-optimal, consideration of the dynamic

process in addition to the mechanism is important.—

1/
— I use the word 'process' to indicate the full procedure used to arrive
at the collective decision, while the term 'mechanism' is used to denote

solely the outcome rules.

2/

— Perhaps the most striking example of the facts, that (1) implementation
requires specification of an adjustment process (or institution for information
transfer) and (2) outcomes may be different from those predicted as Nash-equilibria,

can be found in Smith [ 24 ] whose auction mechanism seems to arrive rather con-

sistently in experiements at Lindahl equilibria in spite of the fact that there

are a multiplicity of Nash equilibria, many of which are not optimal.
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One extreme specification of a dynamic process is to consider what
would happen if only one iteration were allowed. That is, all agents must
select their strategy (message) once and may not alter it on the basis of the
observed responses of others, An example of this type of one-iteration
process is the sealed-bid auction. Since implementation of mechanisms may
be feasible only with a few iterations (as, for example, the Soviet planning
systems), if a mechanism performs well as a one-iteration process, it may be
of more interest than one which doesn't. Further, consideration of one-
iteration mechanisms highlights the impact of incomplete information on the
performance of these mechanisms since even a tatonnement process is a one-
iteration process at its last iteration. Thus, dynamic processes can be
viewed simply as a sequence of one-iteration processes.

In this paper, Ianalyze case by case the performance as sealed-bid
auctions of twelve specific mechanisms designed to allocate public goods.

In order to be able to solve explicitly for the optimal bidding strategies

of consumers and, thereby, the specific outcomes generated by each mechanism,
T have been forced to consider an especially limited range of utility
functions, 1In particular, I deal only with risk-neutral consumers and utility
functions with no income effects vyhere all agents have linear marginal
willingness to pay functions with identical slopéé-;only theiigééfcepfén

vary. Although this severely limits the conclusions one can draw about the
performance of these mechanisms in general, it does provide some indications
and is a basis for future work.

A summary of results is presented in Section 7 .



1. PRELIMINARIES

We consider a model with n consumers (indexed by i =1, ..., n),
one private good and one public good. We let y be the amount of public
good produced and consumed and let xi be the amount of the private good
consumed by i . An allocation is z = (x, ..., xn,y). Each consumer's
utility function will be of the special form ui(xi,y)==xi + viy -%; y2
Further, each consumer is endowed with an initial quantity, wi , of the
private good. Finally production is assumed to be linear: to produce one
unit of the public good requires q wunits of the private good.

K, q, and the functional form of ui are assumed to be fixed and
known. Thus, each consumer is completely characterized by the pair (vi,wi) = ei
and an economy is completely characterized by the n-truple = (el, chey en).

Of interest in this paper are Pareto-optimal allocations and the (social)
loss which occurs if some other allocation is chosen. For the special
model above, it is very easy to characterize Pareto-optimal allocations since

there is a unique Pareto-optimal level of the public good, yo, for each

economy e .

1 1
Lemma 1: In the economy e = (Vv ,w , . . ., vn,wn), the allocation
0 01 Op O 3/
z(e) = (x,...,% ,y) 1is Pareto-optimal if and only if=
é/All sums are taken from i =1 to n unless otherwise specified.



0 Zvi-
(1.1 y= St
and
03 0 3
(1.2) Tx o+ qy = ZWl .

As we will see below, almost all mechanisms, if operated as sealed-bid
auctions, will not in general select a Pareto-optimal allocation. A
natural issue then is the extent of the loss which arises. Since our special
model involves only utility functions which are linear in the private
good, a natural measure of social welfare is W(z) = Zlui(xi,y) . Thus,
a natural measure of the loss which occurs when, in the economy e , z is

0 ] 0 1010 i,.i
chosen instead of z(e) is L(z(e),z) = Tu (X ,y) - u (X,y)

Lemma 2: 1In the economy e , the welfare loss due to the allocation

0, i 0 0
(1.3 LEse) =[2G -xDl+am-y) + X -y’ .

If we let S (z) be the amount of the private good which is collected
from consumers for the production of the public good but not used then we can

rewrite (1.3) as

. ak 0 2
(1.4) L(zse) =5 (2) + 5= (v - )" ,
where

Tx tqy+§(z) = zw



2. MECHANISMS AND AUCTIONS

An allocation mechanism is modeled simply as a language (set of
messages), M , and an outcome rule, h , associating messages with alloca-
tions; that is, h(ml, e mn) = z . For public goods economies, allocation
mechanisms have usually been formalized as consisting of two parts: (1) an

1
allocation rule, y(m , ..., )

=y and (2) a tax rule, Tl(ml,..., m) =T .
1 1 1
In this form h(m, ..., mp)== [w -T (m), ...,wn-Tn(m),y(m)] . A crucial

property a mechanism must possess, if it is to be operable, is weak feasibility.

That is, it must be true that
(2.1) ST (m) > qy(m) .

Since enough private good must be collected from consumers to pay for the
public good, we will consider only mechanisms which satisfy (2.1).

Although there are a variety of methods for implementing any given
mechanism, we are particularly interested in this paper in the performance
of various mechanisms as sealed-bid auctions., That is, we wish to consider
what allocations and losses may occur under a particular allocation mechanism
if all consumers, knowing only their own characteristic ei = (wi,vi) R
submit a sealed-bid (message) mi and then the mechanism is used to determine

2!

1 - -
the allocation z = h(m, ..., m ) . We let 8% : E'a M be consumer i'

s
. . i, i i L. A i

bidding strategy where i bids & (e) = m if his characteristic is e

A mechanism h will then produce the outcome z(e) in the economy e = (e , ..., en)

1,1
where z(e) = h[8 (e7), ..., Gn(en)] . It is thus very important to

determine how consumers select their bidding strategies.



In this paper we accept and adopt the theory of bidding behavior which
has become standard in the analysis of auctions of private goods. Examples can
be found in the papers of Vickery, Wilson, and Milgrom. For our purposes we begin
by assuming that all consumers believe that each consumer’s characteristic
is an independently and identically distributed random variable whose distri-
bution is known to all.

Informational Postulate: Each consumer is imperfectly informed about

the true environment e . Each i knows his own characteristic ei but
believes that the ej for j#1i, j =1, ..., n are independently and iden-
tically distributed random variables with density function f(ej) . Thus,
all i have the same beliefs,

Each consumer will select a bidding strategy which is best given the
strategies of others. Thus, given éj for all j # i , consumer i will

4/

i i i, 1 . . .
choose for each e the message m~ = § (e”) which maximizes—

stul(y(s(e)/my, x5 (e)/mby;sely ]

i-1 i1+1 i+1

vhere (8(e)/mD) = 81Dy, ..., a7 her Yy nt 3t T T Y, L 60T .

A vector of bidding strategies (61, et Bn) such that each &
is best against the other é? is a Bayes-equilibrium. Since we have

assumed that all consumers are identical ex ante, the symmetric Bayes

4/

~" @ is the expected value operator taken with respect to the known

. -
probability distribution on (el, ceey ~ 1, et 1’ s en)



equilibrium in which all bidding strategies are identical, 51 = §

fori=1, ..., n, is of particular interest.

1
Behavioral Postulate: Given the mechanism h: M x...x M a2z

each consumer uses the symmetric Bayes equilibrium bidding strategy
i i i . R i
&, : BT+ M where § h(e ) maximizes with respect to m ,

1

TR YN O PN G T T N G W W CO YRS

With this behavioral postulate one can compute the outcome which will
occur in the economy e under the mechanism h to be
z(e,h) = h[sh(el), PO N CRI I

Since the rest of the paper contains many illustrations of the postulate
and its implications we turn now to the analysis of several mechanisms as sealed

bid auctions.
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3. A MECHANISM WITH DOMINANT STRATEGIES

The first mechanismwe propose to investigate has the property that each agent has a
best bid (message) which is independent of thewothers' bidding strategies. This
méchanismwas proposed‘ by Clafice: Groves, and Vickery (for private goods). In their
more general frameworks, messages were demand functions; however, for the
limited framework in this paper we can let messages be real numbers. That is,
if agent i sends mi ; he is treated as if he sends the demand (marginal
willingness to pay) function mi -Ky . For the general mechanism, if

i . .
o (y) 1is 1i's message, the outcome rule is:

1 n .. i
(3.1a) ye@ s ... @ ) maximizes Zq;l(y)-qy

and
(3.1b) ol s oD =W - Tl s o™
i 1 n 1 1 j 1
where T (p 5 --» 90 ) = T avle, ..., cpn)+max[2.%.(:p3(y)-—qy)] -
y 7t n

j 1 1
Lulo? 0@, o™ =2y bl o™

For our simpler framework, since q;l(y) = mly - %yz , these rules

reduce to

h|
(3.22a) y(m) = (Qm’) -q

nkK

and
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(3.2b) xi(m) = w:‘L - Ti(m) where
. . . . : , L ,
T = 2 ay@ + (Gl -1 - B @by @ - 16t ro- 5 vt @y @
| o
i T, .. (@ - = q)
where y (m) = _37% "
(n-1)X

It takes a bit of manipulation but (3.2b) can be simplified to

., i _\2
1 1 1 (- m
(3.2b') T (m) a qy (m) + 2(m - 1)K
i
where m = 2m
n

From previous work it is known that m" = V' is a dominant strategy for
agent i ; that is, no matter what messages others send, i will
i s se s .
be best off, ex post, if 1i's message is v . From this it is a simple

step to

Proposition 3.1: For the demand revealing mechanism (3.2),

: e 15 Tamd 9k . i i
(a) the symmetric Bayes-equilibrium bidding strategy is &(v’) =v  ,
) v’ -y =0 for all v

(&) S = (6 M) = W = ;g 2 @-vH’

@ L@E),e) =Ly (,x°(,5(8 )% §() =35z 2@ -vH” .

Conclusion (d) is the result of the well-known property of the Demand
revealing mechanism that a surplus in taxes must be collected in order to
preserve the dominant strategy property. Thus, even though y(v) is 'optimal'

by (b), the allocation z(v) is not necessarily Pareto-optimal.
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Since we do not know ahead of time what (vl, ey vn) will be, in
order to evaluate the loss L.(v) we consider the fact that the vi are
independently and identically distributed. Thus, the loss, L(v) , is a
random variable.

Proposition 3.2: 1If v is normally distributed with mean

2
and variance ¢ then for the Demand revealing mechanism (3.2)

2(n -
(a) —iE-—%lK L. is Chi-squared distributed with n-1 degrees of freedom.
o)

2
® g = 7 hy

4
_ C
(c¢) var (L) = /2(n—1)K2 ]

s i, . . .
For large n if v is distributed with mean |, and variance 02, then

(a) - (c¢) hold assymptotically as n -+ ®

Proof: (a) - (c) follow from the fact that 2K -1 is simply the sample
variance of a random sample from a (normal) distribution with mean p and
variance g2

Before we turn to a discussion of the implications of proposition 3.2 ,

let us first analyse some other mechanisms so that comparisons can be made.
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4. MECHANISMS WHOSE NASH EQUILIBRIA ARE PARETO-OPTIMAL

In this section we investigate a class of mechanisms which, while not
generating dominant strategies, do have the property that the allocation generated
at a Nash-equilibrium is Pareto-optimal. When these mechanisms are operated
as sealed-bid auctions; however, Pareto-optimality is lost. 1In addition,
as we will see below, the extent of the loss varies greatly across seemingly

similar mechanisms.

A. The Basic Quadratic

One of the first mechanisms discovered which has the property that its
Nash-equilibrium allocations are Pareto-optimal appears in the work of Groves
and Ledyard {10] ° . 1In the world of one private and one public good, messages

are real numbers. The allocation rules are

(4.1a) y(m) = % mt
i 1 Yy (n-1 i i.2 2
== + -p)" -
4.1b) = am + ¥R @b -6
h
. Zpgs M .
i h#i 2 1 h i 2 .
where p~ = o1 » 05 = oo Zh%i(m -w) , and y> 0 is
. 5
an arbitrary constant.™
é'/An alternative form of these tax rules is Ti(m) = % qy(m) +
' i =2 1 h .2 - 1 i n
- -— ( - = — = ——
§ [(m -m) 112 [(m -m) ] where m o m~ and 8§ Tm-2) Y

See section 5.c¢ below. Also compare to (3.2b') above.
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At this point the reader should notice a deficiency in the Basic
Quadratic Rules which is also shared by many of the mechanisms we discuss
below. 1In particular, no allowance is made for the fact that Zn}'< 0 is
possible. Thus (4.1a) may lead to negative amounts of the public good
being 'produced'. This is not a problem if one assumes that a Nash-equilibrium
occurs. It is a problem if one is to use this mechanism as a sealed-bid
auction since, as we will see, there will be a positive probability that

21n1<:0. The obvious solution to this problem is to change (4.1a) to

smt if Im >0

y(m) =

0 otherwise

This alteration in the rules, however, leads to a significant alteration in
Bayes~-equilibrium bidding strategies. 1Indeed, in order to solve precisely

. . . . b
for those strategies, one needs to solve a non-linear integral equation.—
Since I have been unable to solve that equation, I will not consider alterna-
tives in y(m) . Instead I will allow negative y , act as if that made sense
and indicate where possible the extent to which this might bias the reported
results.

With this in mind I turn to

Proposition 4.1: For the Basic Quadratic Mechanism (4.1),

(a) the symmetric Bayes-equilibrium bidding strategy is

6/, . . . .
"éhls equation is given for the Vacuous Mechanism, section 4 B. See the

remark following Proposition 4.4,
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i, i 1 1 =—n
$(v) =AW -2 q +B(F--q) vhere A-nK+Y(n_1) ’
_ (n-1)(y-nkK)

B = nK(nK + y(n-1) )’

and v = (V) = J‘nvf(v)dv,

b 0 -y = na(E— =Ty

(¢) S(v) =0

@ L(z(e),e) = P—Z—E—Z—K <ZT"i i

Proof: Under the mechanism (4.1), each i chosses 5i(vi) to

maximize
i K 2 i
glviym - 3y(m~ - T"(m) ]
Thus, first order conditions are

_ i i _ il _y(m-1) i, y(@®-1) i
0 =¢[v -Km -K(n-1)y nq - m + o TR

- i Sh#i md h
Let § =4G&™) = (ﬂ(—n—T ) =8(m) where the 1last equality holds

. h .
since the m are independently and identically distributed as m(vh)

Therefore,

(%) ik + Y=Ly P 20 22y w

n n

Since this equation must be true for all i and since the v are independently
and identically distributed by taking the expected value of each side of the

last equation and manipulating it follows that
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¥ 1)

- _ v- nd

K nK ’

%

(a) follows from this and (
Conclusion (d) is the wvital fact. Although the Basic Quadratic
Mechanism generates Pareto-optimal Nash-equilibrium allocations, it does
not generate Pareto-optimal allocations when used as a sealed-bid
auction. As opposed to the Demand revealing mechanism, the losses here are
due entirely to the selection of non-optimal levels of the public good and

7/

not to an unutilized tax collection.—

. " . . . i
As in section 3, L(v) 1is a random variable since the v~ are.

Proposition 4.2: If vl is normally distributed with mean y and

variance 02 then for the Basic Quadratic Mechanism (4.1)

1
(a) 2 n B2K g 2 L. is chi-squared distributed with 1 degree of

freedom.

() (L) = 2nB Ko?
(c) Var(L) = 2 n2 B4 ch;4

(a) - (¢) hold assymtotically as n-+ = for any distribution on vi with

7 . g .
—éo indicate the rather special nature of the class of economies

we are considering, one can note that since K and n are known a priori,
the parameter vy could be set so that y = nK . If this were done then
B=0, each i has a dominant strategy, and L(z(e),e) = 0 for all e .
We do not emphasize this fact, since it depends crucially on the special
class of environments. If K were not known or if Ki # Kj for some i

and j , then one could not choose Yy 1in this fashion.

Y . (b) - (d) can now be easily derived. Q.E.D.



-17-

. 2
mean L and variance ¢~ .

Proof: Follows immediately from the fact that (—;;— - )
is simply the variance of the sample mean of a random sample of size n
from a (normal) distribution with mean u(==§) and variance g

Of some later interest is the case§/ in which Y=vyn . For this

choice of y we have

2 2
0 K ]
orollary 4.1.1: L(z(e),e) = -V
2K O+_ K n
Y n(n-1)
and
2R . . .
Corollary 4.2.1: (a) 5 L is chi-squared distributed with one degree of
Ko
freedom.
2
R
(®) 6@ = Sy
2 4
R
(c) Var(L) = ’2—12‘2—
YO" K i
where R = 2
0, _ K _
Y n(n-1)

8/

= Muench and Walker [ 20 ] identify this choice of <y as leading in the
case of large numbers to good incentive properties but bad stability proper-
ties (under Cournot behavior). TIf the Basic Quadratic is used as a sealed

bid auction mechanism, stability is a moot issue.
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B. The Vacuous Mechanism

A particularly simple mechanism whose Nash equilibria are Pareto-
optimal is the one which taxes everyone identically and proportionately for

the public good. TFor this mechanism messages are real numbers,
(4.2a) y(m) = Im

i 1
(4.2b) T (m) = - qy (m) .

Unfortunately Nash equilibria rarely exist (for thz special class of economies
in this paper, existence occurs if and only if Vi = vj for all i, j).
However, if this mechanism is used as a sealed-bid auction then symmetric
Bayes equilibria do exist. Thus, it is of some interest to analyze its

performance as an auction.

Proposition 4.3: For the Vacuous Mechanism (4.2),

(a) the symmetric Bayes-Equilibrium bidding strategy is G(Vl) =

flet- 2y - L2 G 9y) ghere T - (oY

i
® P -ym = 2o 2
(¢) S(v) =0
i
@ Liz(e),e)= B (A1) (2L _35,7

n
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Proof: Under the mechanism (4.2) i wishes to maximize
slv'y (@) - % y@?’ - % qy (m)]1.
First order conditions give
0-g(" - k@ + @-1uh -1
i P
where = = 3 /(n-1).
h#i
Thus
0=v -xn' - Zq-K@-Dgeh.

Taking expected values, one gets

o=?r-KE-;1lq-K(n-1)E
or
i ‘—"%
AW ) =m = 3

Therefore, v’ - RKm® - % q - ﬁEiill v - %) = 0, The rest follows easily.

Q.E.D.

Remark: As I indicated in Section 4.a, y(m) may be negative.

For the Vacuous Mechanism y(m)

i 7-4
T (T =D, g = =B

y(m = [

2
and Var(y) = (n -Kl)2 %— . Therefore since Var(y) 4 « as n -+ « the
<

probability that y(m) 0 approaches %. If we adjust y to

[

b s m' if Im >0
y(m) =
0 otherwise

then first order conditions give
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(*) 0=w-kn- (m-DESIp|u2 -0yl

The distribution of | depends on the choice of the function m(w) which
must satisfy (¥) for all w , Thus (*) 1is a non-linear integral equation
for which the solution appears to be unknown. Analysis of the revised rules

remains, therefore, an open question.

Returning to the original mechanism we can prove

Proposition 4.4: 1If v is normally distributed with mean  and

2
variance ¢ then for the Vacuous Mechanism (4.2)

2K
(@)  @-1Z Z L is chi-squared distributed with 1 degree of

freedom
2
® g =B 2
(m-D% 4

(c) Var(L) = ——
2K °

(a) - (¢) hold assymptotically as n -+ » £for any distribution on v1 with

2
variance g -

C. The Paired-Difference Mechanism

One group of mechanisms, whose Nash equilibrium allocations are Pareto-
optimal, have the additiomnal property that their Nash allocations are also
Lindahl equilibrium allocations. Among other things this means that no one
is worse off than at his initial endowment. To see how these mechanisms
perform as auctions, let us first consider one proposed by Walker [ 26 1],
called the Paried-difference mechanism by Groves | 9 ]. Messages are, again,

real numbers. The allocation rules are

(4 .3a) yv(m) = ani

i+l

.30 Ti@ - [Zq +at - Ty ()
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where n+1 =1 and 1-1 = n,

Let us look at the consumer's choice of bidding strategy. Consumer i

wishes to maximize

+1

glviym - X ym? - & g+ o™ -t hymr.

First order conditions imply

i+1 i-1

0=yl -k@ + @-Dge" - Eq +eah - g™y,

. h . i+ . _
vhere ' = 5 .m/(m-1). But §Gu) =4@m h-g@™ =5 Thus
0 = vl - Km© - % q - K(n-1)m. This is identical to the first order conditions

for the Vacuous mechanism! We have thus established

Proposition 4.5: Propositions 4.3 and 4.4 remain valid if we replace

the Vacuous Mechanism (4.2) with the Paired-difference mechanism (4.3). That
is, their performance as sealed~bid auctions is identical in the special class

. , 9
of environments considerzad. =

9/ This is because i cares only about £(ml+l) - g(mi-l). If i's

utility function were not linear in xi this would no longer be true. Thus,
for example, if i were risk averse the Vacuous Mechanism and Paired-difference
mechanism would perform differently as sealed-bid auctions. This is another
observation which emphasizes the special nature of class of economies considered

in this paper.
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Remark: Proposition 4.5 states that a mechanism whose Nash equilibria
rarely exist and a mechanism whose Nash equilibria allocations are Lindahl
allocations are "isomorphic" as sealed-bid auctions. This fact illustrates
vhy one can not infer performance of avctions directly from the properties

of Nash equilibria.

D. The Shared-Cost Mechanism

The identical performance of the Vacuous and paired-difference mechanisms
seems to lie in the fact that if other bidders follow identical strategies
then the expected value of the (marginal) tax is identical, equal to % , in
each. To see that there may be a deeper reason let us turn to another
mechanism whose Nash allocations are Lindahl allocations. This mechanism
was proposed 10/ by Hurwicz [ 13 ], and named the Shared-cost mechanism

by Groves [ 9 1. 1In contrast to all previous mechanisms we have considered

i i i
messages are now 2-tuples; that is, m = (y ,a”) The outcome rules are

(4.43) v(m) = Zyi

@ T = @-zay@ v eal - 9l

It should be obvious that the expected marginal tax rate of this
mechanism, £[q"zjéiaj]’ need not equal that of the vacuous mechanism, % 5

even when all other agents use identical bidding strategies. However,

performance of the Shared-cost mechanism is identical to that of the Vacuous

Mechanism.

10/ I have slightly modified the original mechanism, along lines similar

to Groves [ 9 ], to make the outcome rules anonymous.
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Proposition 4.6: Propositions 4.3 and 4.4 remain valid if we replace

the Vacuous Mechanism (4.2) with the Shared-cost mechanism (4.4).

Proof: Consumer i wishes to maximize ﬁ[vly - %yﬁ - (q- Zj#ial)y
- (zaJ - q)2 by choosing y1 and a . The first order-conditions give
(4.5) 0=-2[a"+ (@-1)g ) - q]
and
4.6) 0=v -qt+ (@-1g @) -K@ + @-14 m)).

From (4.5), by taking expected values and letting a = g(aJ) = g(al) we

have that na = q or al=%q for all i and all v . Thus substituting
i 1 i -

into (4.6) and taking expected values gives 0 = v - E(;Kml(n-l)Km where

m = £(mJ). This is identical to the first order conditions for the Vacuous

Mechanism. Thus the symmetric Bayes-equilibrium building strategy for the

. ] i i * i 1 * 1 .
shared cost mechanism is § (v ) = [s§ (v ),Ecl] where § (v') is the

symnetric Bayes-equilibrium bidding strategy for the Vacuous:  government.

Q.E.D.

The identical performance of the Vacuous, Paired-difference, and Shared-
cost mechanisms seems to occur because the latter two select Lindahl alloca-
tions and, therefore, assign Lindahl prices as marginal tax rates. Since all
consumers are ex ante identical their expected marginal tax rates, at a
symmetric Bayes-equilibrium, will be identical and therefore equal to gq/n, the
marginal rate of the Vacuous Mechanism. Thus one might conjecture that if

o . 11/ i i .
utility functions are of the form — x + ¢ (y), then any mechanism whose

Nash allocations are Lindahl allocations will perform identically to the

11/
That is, no income effects and risk-neutral behavior.
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12/

Vacuous Mechanism when used as a sealed-bid auction. = Such a conjecture

is, however, false as we will see by considering one more mechanism.

E. A Balanced Mechanism for n > 2

Although we have not emphasized the fact, all the mechanisms we have
considered either require that n > 3 or have the property that ZTi(m)# qy (m)
for some messages. Hurwicz [16] has discovered a mechanism for which
zTi(m)= qy(m) and Nash allocations are Lindahl allocations whenever =n > 2.

Messages are 2 -tuples where m = (yl,pl). The allocation rules are

(% .7a) |zt if sp =g
y(m) = ) )
Sp -q if Ip # 4
% .7b) H(m) = - ply(m).

One should notice immediately that these rules are not continuous. This has
a significant effect on the performance of this mechanism as a sealed-bid
auction. In particular, for a bidding strategy 5(v1) = [5y(v1),5p(v1)1, the

allocation y(v) = Ziay Cvl) if ZSP Cvl) =q but y(v) = Zi.sp(vl) - q when

12/ This is reinforced by observing that another mechanism proposed by

Hurwicz [ 12 1 1is consistent with the conjecture. That mechanism has
i, i i i i _ 2 2
m = (Y P ))Y(m) =2y, and T (m) - T RiI‘I.Y(m) - Pi(yi —yi+1> +Pi+1(yi+1" yi+2>
- g . i . L .
where R.n n+pi+1 pi+2+ pj, and j 1+n-1 if n is odd,
j=1+n-2 if j is even. For this mechanism, Nash allocations are Lindahl
allocations and performance as an auction is identical to the Vacuous Mechanism

since §(vi) = [§ (v1),0].
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zj5p(vi) - q # 0. For bidding strategies which are one to one functions, the
probability that z:gp(vi) = q 1is zero. Thus, consumers can safely act as
if y(v) = Ziﬁp(vi) - q for all wv. That mechanism does not have Nash-
allocations which are Lindahl and, therefore, we should expect different

performance as an auction. This observation is formalized in

Proposition 4.7: For the Hurwicz Mechanism (4.7)

(a) The symetric Bayes-equilibrium bidding strategy is

5(vl) = (5y(vi),5p(vl)) where 5y is any arbitrary function and
oy - v g (a-1) ®EDY
NG K+l | n(RFL)+1 (+2)[n(R+1)+1]

(b) S(v) =0 and L(z(e),e) =

n [ xe2 -k (vt - (0-1) 2 + (w1)v 2
2K [ (k+2) < n ~V> + a(FL) + 1

i, e . .
(¢) 1If v~ 1is distributed with mean | and variance 02 then

K+2 2K n(k+L) + 1

2 2 (n-1) L + (1), 2
— n‘]. K-2 n n
5(1) = < ) o2 [ ]

(d) 1f vl is normally distributed with mean | and variance 02 then

K+2 ZK2 n(X+l) + 1 /
(d) holds assymptotiéally as n+ e if v is not normally distributed.

- 2
) 4 2 (@-1) 2+ (at1) \
Varm:(sn_m_-_z) <L)(02+2n[ n “] . aLeo
i
Proof: The first order condition for consumer i 1is
0=v -R@ + @Dg @) +a" - @+ @-1¢g @) - 9.

- iy - ¥+ (Rtl)g .
Thus, a3 = 5(aJ) S A + 1 The rest follows easily except for, maybe, (d).
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2 22 2
To compute (d) we note that L = a(bz + ¢) = ab z" + 2abecz + ac
i
P
where a, b, ¢ are constants and =z = —%— - u. Therefore,

2
var(L) = a [b4Var(z2) + 4b2c2Var(z) + Cov (b222,2bcz)]. But
2 2 2 2 2 3 3
Var (z ) = %H’ Var(z) = %T and Cov(b "z ,2bcz) = §(2b7cz”) = 0 since =z is
wrmally distributed with zero mean. The rest follows.

Q.E.D.

It might seem reasonable at this point to compare the performance of the
six mechanisms we have considered. Such a comparison is, however, more
illuminating if we first look at several other mechanism which have neither

dominant strategies nor, in general, Nash equilibria which are optimal.

5. OTHER MECHANISMS

To provide a basis for comparison we turn to an investigation of some
mechanisms which are usually dismissed from consideration on the grounds that
their equilibria are not optimal. As we have seen above, however, the
equilibirum properties of a mechanism may not be a good predictor of its

performance.as a sealed-bid auction.

A, The Naive Mechanism

One mechanism whose Nash equilibria exist but which yield non-optimal

allocations arises from assuming the public good is to be provided by a

"private" market or by voluntary contitibutions. For this mechanism, messages

13/

are real numbers. The allocation rules are: —

13 . s . .
13/ This is the market version. The voluntary contributions model is

Sm* i i
y(m) = T and T (m) =m .,
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(5.1a) y(m) = sm’

(5.2b) ri(m) = qm’

Proposition 5.1: For the Naive Mechanism (5.1)

(a) The symmetric Bayes-equilibrium bidding strategy is

s = 2t -a) - &R 1y q), where y = g(vD)
n(a-1)*

1

) )
(b) Sv) =0, L{v) = —Eﬁ————[(u - zﬁ— ) + % ] where y = g(vl)

2 42 2 2 i
@ 6@ = @-D" [ & +5 D7 vhere ¢ = varv)),

i n-1 4 2 2 2
(d) If v- is normally distributed then Var(L) = 5———% O [s°-2n (-;1) 1.
2K

Also (d) holds assymptotically as n -+ o if v' is not normally distributed.

Proof: The first order condition for i 1is

0=vl-®R@ + (a-1)g (@)) - q.

3y o L o
Thus & (m”) — (v-q). The rest follows.

Q.E.D.

B. An Auctioneerless Lindahl Mechanism

One mechanism which seems to be at the heart of early conjectures about
free _riders involves consumers reporting marginal willingness to pay schedules.
The public good is produced at a level which equates the sum of the reported
functions to the price. Then each consumer is charged at their reported
marginal rate. For the economies we are considering, we can let messages,
mi, be real numbers and interpret mi as if the consumer reported the marginal

i .
willingness to pay function, m - Ky. The allocation rules are:
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i
(5.2a) y(m) = 24
(5.2b) thm) = @ - Ky @)y @).

Proposition 5.2: For the Auctioneerless Lindahl process (5.2)

n vi _
2n-1

(a) The symmetric Bayes equilibria strategy is 5(v1) =

-1 - 2n-1 i
Gl Bhu - 5 al where = g(vh)
n

2 i
®) s =0, Lw) =2 B (I 4 (- 997,
2 2 2 .
(e) @) = {o-1) %E + igiél— (p - %)2 where 52 = Var(v'),

(2n—1)2
(d) 1f v is normally distributed,
@-1%2 2, 2¢2n-1)° q.2
Var(L) = ———%  [o" + =] W - DL
2(2n-1)"K

Also (d) holds asymptotically as n -+ o 1if v' is not normally distributed.

C. Demand Revealing Mechanism with Surplus Distributed
One mechanism which has been analyzed as an auction mechanism (Green,
4
Kohlberg and Laffont [ 7 ])l—/ and which in general does not generate Nash

equilibrium allocations which are Pareto-optimal is the Demand-revealing

mechanism with the surplus distributed. Referring back to Section 3, one can

LY Their analysis differs from ours in that each agent assumed the others'

bidding strategies generated messages which were independently and identically
normally distributed. TIf the vi are normally distributed, their analysis
would be equivalent to the Bayes-equilibrium hypothesis if and only if the Bayes
equilibrium were a linear function of vi; that is, 5(vi) = avi + b for all 1.
This is true for our special class of environments (see Proposition 5.3:(a) below)

but is not true in general.
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z (v - vi)2

remember that, for the Demand-revealing mechanism, S(v) = Z(i-l)K

is collected and not returned to the economy. Suppose, however, each agent

1 1
were to receive o S (m ,...,mn) where S(m) 1is the surplus generated

15/

if messages are m. This new mechanism == is
Zmi—
(5.3a) y(m) = <2—4
nK
i =2 h —.2
i _ 1 (n_ -m 1l (m -m

Proposition 5.3: For the mechanism (5.3),

(a) The symmetric Bayes equilibrium bidding strategy is
ty_m i 1. 1. 1
3(v) =G -2 ) -2 -2 D

where = 5(VJ),
i

n 2v 2
(®) 8(v) =0, L(v) = %k (- w
2
() ZLE:%l;E L is Chi-squared distributed with 1 degree of freedom,

2 o 3
where g = Var(v’), and
2

4
1
(@) g(L) = G 0 Var() = yvege
(n-1)

It is important to notice that although the Nash equilibrium allocations
of the Demand revealing mechanism with the surplus distributed are not in
general Pareto-optimal, the mechanism (5.3) does generate optimal allocations.
The reason is that in the limited class of economies considered in this paper,
the mechanism (5.3) is the Basic Quadratic Mechanism (4.1) discussed in

2(n-2
Section 4A. To see this we note first that if we let vy = —Sﬁ——l §, then

1o/ Again we have replaced the general rules with those appropriate for our

simple economies,
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(4.1b) can be written as

i 1 i =2 -2 - i
(4.16") T (m) =7 qy (m) +8[ (n" - m) -%_Z(mh-m)] where m=;11-2ml
. il .
i m dn . i .
Next, let s~ = X and consider s as a translation of the messages
used in (5.3) . We then write (5.3) as
i
(5.3a") y(s) = Zs
i 1 2K i -2 1. h -2 1 _ i
1 - = - _ = e & ==
(5.3b"') T (s) nqy(s) + 2(n-1)[(s s) nZ(s s) 1 where s o >s
-2
Therefore, if we let vy = E%ETTI%K in equation (4.1b) and translate
messages then (5.3) can be derived from(4.1) . To see that the performance

of the Basic Quadratic (when vy = E{%%Eé%%& ) and the mechanism (5.3) are iden-

tical, notice that under the Basic Quadratic the loss is

3,2 i
n°B°K 2 ; 2
L(v) = —5— (EE— -p) = 5 ( A ) which is the same as

in Proposition 5.3(b)
If we had considered a broader class of economies, the two mechanisms, (4.1)

and (5.3), would not perform identically. This again indicates the limited

scope of our inquiry, and we again caution the reader not to infer too much

from our results.
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6. Mechanisms which use the information in £(.)

A final group of mechanisms worth considering, for purposes of
comparison with those above, involve the use of more information. 1In par-
ticular, none of the mechanisms considered to this point utilized any
. . 16/ . .
information other than the messages of the agents.—™ However, in computing
the statistical properties of losses and in formalizing the behavior of

i . . .
consumers it was assumed that the Vv~ were independently and identically

distributed according to a distribution known to everyone. One question then

is what happens if we allow the mechanism to also utilize this information.

A. Central Planning

We first consider what is in effect no mechanism. That is, we let
a central agent choose y without consulting the consumers. In particular

we assume the allocation is chosen as follows:

(6.1a) y(f) maximizes é[Zvly - %} yz]

(6.26) TH(E) = Fay(h) .

16/ .

In some cases we relied on the knowledge that ut = x14-v1y-§ vy

2

i
for some v , but that was really not necessary.
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The actual taxing rules (6.2b) are unimportant as long as
ZTl(f) = qgy(f) . We have chosen (6.2b) because of their simplicity and
symmetry.

Proposition 6.1: For the Central Planning Mechanism (6.1),

9
H -
(@ y(B) =—2

where py = §(vi);

n Zvi 2
(b) L(z(e),e) = K (_E_ - )
(c) f% L is chi-squared

distributed with one degree of freedom, @&(L) = f%g if v' is normally

2
distributed with variance T . (c) holds asymptotically as n -+ e

if v1 is not normally distributed.

Under the assumption that f(vi) is known, this mechanism is a
standard against which to compare all others since no communication is
necessary; that is, an auction and its related paperwork need not be held.
If an auction were held one should expect to be able to do better. Such

an expectation is fulfilled by the last mechanism we consider.

B. The d'AGVA Mechanism

It turns out that for an even larger class of environments than we
have considered, it is possible to design a mechanism which uses the informa-

tion in f( ) and for which the loss L(z(e),e) = 0 for all environments
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if the v' are independently and identically distributed. This mechanism
was discovered by d'Aspremont and Gerard-vVaret [ 3] and, independently,
by Arrow [ 1 1. 1In general, their mechanism is based on the Demand Revealing
Mechanism and uses @l Y o+ R1 as messages, interpreted as willingness to

. . i i K 2 .
pay functions. For our economies @ = Vy - 59 and, as before, we will
let messages be m~  where sending m is equivalent to sending

i 2
mly - % y . The allocation rules then are:

(6.2a) y(m) = 224
6.2b) T (m) = * by - — 3 (3

where gl(a)) = 8Ly, @ - y@ - §y@® - L ay@)] and the

expectation is taken with respect to the probability measure on m given
|

m .

Proposition 6.2: For the d'AGVA Mechanism (6.2),

(a) the symmetric Bayes-equilibrium bidding strategy is é(vi) = Vi
and this is a dominant bidding strategy (i.e., best for any strategy of the
others),

(b) S(v) 20 and L(v) =0 .

Proof: The first order condition of consumer i is

n-1

glv' ~Ky(@ -5 a+ 2 ynd - (a- Dry(m -2E q1 = 0 .

]
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i i
This reduces to v - m =0 ., The rest follows easily. Q.E.D.
It is now time to see whether any comparative judgements can be

made about the variety of mechanisms we have considered.
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7. Comparisons of Mechanisms as Auctions.

For the limited class of economies we have considered, each consumer
cares only about the expected utility of his outcome. Since all consumers
are ex ante identical, one measure of the performance of a mechanism as an

7/

auction would be & (L) , the expected aggregate utility loss.l— If we were

to broaden the class of economies to allow, for example, risk aversion, then
Var (L) becomes important. Thus, we consider both these statistics in our com-
parison of mechanisms. Table 1 1lists (L) and Var(L) for all the mechanisms
considered under the assumption that the vi are independently, identically,
and norma11yl§1 distributed. For ease of comparison I have listed the
mechanisms in order, approximately, of increasing expected loss.

One must be careful not to conclude too much, due to the special nature
of the economies we have considered. However, some of these results are
perhaps surprising. For example, other than the d'AGVA and Basic Quadratic
{(y = nK) mechanisms, each of which has special problemslg/, the best

performer seems to be the Demand Revealing mechanisms with the surplus

20/
distributed=™ . Next in line for large enough n (in particular,

17/
One could use %<5(L) but the rankings would be unchanged.

18
——/These would be the asymptotic values of @g(L) and Var (L) as

n + @ for other distributions.

1 .
_nghe d'AGVA uses information in f( ) and relies heavily on the independence of

the distributions of the Vl. The Basic Quadratic (y=nK) is only possible when

. , i R
u=Xl+V1y-K7-y2 and K* = K for all i .

20/
—Q’Remember, however, that this is simply the Basic Quadratic with

n(n - 2)X
n-1
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TABLE 1
=~ e e - - e e e y
mechanism & (1) =Aﬁ+B var (L)
A B
:
AGVA (6.2) 0 f 0 0
iadratic (y=nK) (4.1) 0 0 . 0
d ling +35 (5.3) L 0 W2 oo
:mand Revealing n . -(T:T)—Z 1 2K2
-K/n ; )
i . 32 Yo 2 54
jadratic (y=yn ) (4.1) <Y0+K/n(n'1)> 0 l A ’2K2
o4
1x2 (n) (6.1) 1 0 5
g 2K
smand Revealing (3.2) 1 0 5
‘; 2 (n=-1)X
2 2 f 4
. n-1 3_ (n-1) 9.2 2o
indahl (5.2) Go3) k. BTR) Aypr G
4
suuous (4.2) (n-1)2 ’ 0 (n-1)442%2
2
aired difference (4.3) (n-1) 0 "
) 2 1"
hared cost (4.4) (n-1) 0
. 2 "
urwicz ( ) (n-1) 0
5 -
ez (6.7) ((n-l)K-z o [aChrure-m)? 200
prwiez (5. K+2 P 2R| n(R+1)+1 | 2KZ 2
aive (5.1) (n-1y> n@-12 q, 2 2% e
. 2K ‘n 2g2 3
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g%f%é%ll Yo>>K), is the Basic Quadratic (y = Yonz) since for those

n, 0<A<1. Perhaps most surprising is that the Demand Revealing
Mechanism is equivalent in expected loss to central planning (maximize
8(u)), and worse than those previously mentioned mechanisms. However,
one should note that the variance of the loss under the Demand Revealing
Mechanism is less than either central planning or the Basic Quadratic

(y = yonz). Therefore, a clear ranking of these alternatives is not pos-
sible.

Perhaps the most surprising result is that none of the mechanisms
designed to produce Lindahl allocations at a Nash equilibrium performed well
as sealed-bid auctions. 1In fact, the Lindahl mechanism (5.2) whose Nash
equilibria are not Pareto-optimal performs better.

It is probably pushing special cases too far, but for completeness
we have listed in Table 2 the values of the limits as n-+ e of &(L),
Var(L), g(%IJ , var q%l,) . What these values indicate is that in very large
economies if one is interested only in per-capita losses then there are fivez}/
mechanisms which differ insignificantly from the ideal in that
(g(%IJ = Var (%IJ = 0 in the limit. Obviously if one is to distinguish
between these it is either on the basis of their performance in small
economies or in large economies with a much broader possible range of utility

functions. 1In particular, it is important to know what happens if there

21 /
T os8ix, if [T g for all n .
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U /ox

are income effects (i.e.,g;{ (SU/BX) # 0)

or if consumers display some degree

of risk aversion. This is left for future work.

TABLE 2
1 1
8 (L) Var (L) I (H L) Var ( Y L)
'AGVA 0 0 0 0
2 4 4
1adratic (y=y0n ) -g—K 29122 0 0
1
amand Revealing +E S 0 0 0 0
2 4
o} o)
ax & (U) 2K 2K2 0 0
%
amand Revealing 7K 0 0 0
q 2 2
indahl (u="/_) LSK —0—32 < 0 0
acuous o e © ©
arwicz (4.7) ) e Y )
aive = ® o ®
. _q Lo, -9y2
indahl (u="/n) ® o 7K " n) 0
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