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THE ORIGIN OF CYCLICAL MOTION

IN DYNAMIC ECONOMIC MODELS

1. INTRODUCTION

This paper is part of a preliminary attempt to understand the forces that

lead to cyclical motion in dynamic economic models that arise from the maximis~

ing behaviour of economic agents. While it is quite clear that uncertainty
constitutes a major reason for the presence of cyclical behaviour in many eco-

nomic problems,l in this paper I choose to focus attention on the sources of

cyclical behaviour in the simplest deterministic framework. In order that the

sources of cyclical behaviour should not appear ad hoc, in order that the model

should appear at least in a preliminary way to be arbitrage proof, I concentrate

attention on dynamical processes that arise from intertemporal maximising behav-
iour on the part of economic agents. To keep the analysis simple, I select a
class of deterministic infinite horizon maximum problems for which we have the

beginnings of a relatively complete theory and in which a unique equilibrium

point or stationary state is the sole element of the w-1limit set of an optimal

trajectory: this is the class of strictly concave, undiscounted, infinite hori-

zon maximum problems where optimality is in the sense of the overtaking crite-

rion.

The paper is arranged as follows. In section 2 the basic maximum problem

is laid out, along with some of the basic definitions and properties needed in

the subsequent analysis. Particular attention is paid to those properties that

igee Magill [16] where spectral analysis is used to examine the cyclical
properites of the long-run stationary stochastic process. See also Brock-Magill

[21. |




are required to make a local analysis in the neighborhood of an equilibrium

point meaningful. The results of Brock-Haurie [1] are used to set the problem
up in such a way that an optimal solution to the infinite horizon problem exists

which has the additional property that it converges to a unique equilibrium

point, whose existence is also assured. This justifies the subsequent local
analysis of the nature of the motion in a neighborhood of the equilibrium point,

in that the system will zlways be observed in any such neighborhood after a suf-

ficient interval of time.

In section 3 a distinction is made between symmetric and asymmetric equi-

libria. It is shown that cyclical behaviour in a neighborhood of the equilib-
rium point only arises when the equilibrium point is asymmetric. This condition
is necessary, but it is not in general sufficient. To obtain a precise charac-

terisation of cyclical behaviour, the linearised Euler-Lagrange equations are

first reduced by a nonsingular transformation to a normal form. This form of
the equations of motion is then used in section 4, after certain additiomal
structural assumptions have been made, to obtain a precise characterisation of
the conditions under whiéh there is cyclical behaviour in a neighborhood of the
equilibrium point. It should be pointed out that these structural assumptions
are rather harsh, so that an important part of the problem in the general case
etill remains to be solved.

In section 5 these results are used to throw light on the way in which tech-

nological forces can lead to cyclical motion in a rational expectations equilib-

rium for a competitive industry. In the framework of the Lucas-Mortensen adjust-

ment cost theory of the firm [11, 22] these technological forces are found to

arise from asymmetries in the effect of adjustments in one capital good on the
productivity of another capital good. The analysis of this section may be viewed

as part of a highly preliminary attempt to develop a theory of the business cycle



based on the theory of resource allocation, that meets two important tenets pro-

posed by Lucas [10, 12]: first, that the sequence of prices and quantities be

determined through a process of competitive equilibrium and second, that the ex—

pectations of agents be rational, in the sense that the anticipated sequence of

prices formed on the basis of their expectations, coincides with the actual se-
quence of prices generated on the markets by their maximising behaviour. It
should perhaps be pointed out, however, that such a formulation is in turn pre-

liminary to a theory in which the concept of equilibrium is itself reformulated

so as to take account of the fact that in a world with imperfect information,

in which the organisation of markets is costly, the complete clearing of markets

at each instant of time is unlikely to prove worthwhile. This phenomenon is in

turn intimately connected with the presence of cyclical behaviour in the process
of intertemporal resource allocation.

When the analysis of this paper is applied to the class of discounted in-
finite horizon maximum problems, as in [18], a complex interaction arises between
thé skew-symmetric forces and the stability or instability of equilibrium. In
some instances the presence of the skew-symmetric forces induces a stabilising

effect, in other instances a destabilising effect.

On a historical note I might add that in the classical investigations of
Lotka [9] and Volterra [27] on the evolution of interacting predator-prey bio-

logical species, it is precisely the presence of a fundamental skew-symmetric

matrix arising from the predator-prey interactions, that gives rise to the cy-

lical behaviour in the number of individuals of each species.?

2For an excellent exposition of the Lotka-Volterra theory in English the
reader is referred to the book by D'Ancona [5]. See also Samuelson's discus-
sion [25]. :



2. THE BASIC MAXIMUM PROBLEM

Let k(t), tel = [0,%) denote the state of the economic system at the in-
stant t, where k(t) ¢ K (the state space), a convex subset of Rn, nzl. k(t) is

typically a vector of capital stocks of n different commodities.

DEFINITION. For fixed k0 € K, the class of absolutely continuous paths

t
k(t) = k, + [k()ds : T —> K (1)
0 :
t L]
for which Hk(e) |l = Hko | + [llk()]|dt < = for all tel '
0
where || || denotes the standard Euclidean norm, is called the class of feasible

paths and is denoted by ®P. It is convenient to let {k,l.c} denote the path (1).

s
Let T R, s 21 denote the parameter space. We consider a vector of exo-

genous parameters Tell and a real valued instantaneous profit (utility) function

L(k,k; ™) : KxR xI — R (2)

satisfying the following

ASSUMPTION 1 (Concavity, differentiability). L(+; ) is a ct strictly concave

function on K xR" for all me I, where r > 2.

The explicit dependence of L(k,ﬁ; T) on the parameter T is sometimes omitted to
simplify the notation. The function L and the feasible paths @ lead to the

following

MAXIMUM PROBLEM. Find a feasible path [k,k} ¢ ® such that

T -
lim f{L(k(t),ﬁ(t)) - L(E(t),i(t))]dt 20 M)
Ts® 0



for all {l_c,i} e . The path {k,fc} e @ is said to be optimal.

DEFINITION. Let ® * denote the class of absolutely continuous price paths

¢ .
p(t) = p  + [p(1)dr : T — R (3)
0
t
for which Hp(e) |l = ||p0|| + [l|p(0)|l]dt <= for all telI
0

We let {f),p} denote the path (3).

DEFINITION. A feasible path {k,l'(} e @ is competitive if there exists an abso-

lutely continuous path of prices {f),p} e ®* such that

L{k(8), k() + p(DK(E) + B(OK(E) 2 LE(D), k(D)) + p(0)k(D) + B(OIK(D) (&)

for all (l-c(t), E(t)) £ Kx Rn, for almost all tel.

Remark. (1, p(t)) denotes the vector of (imputed) output prices and -p(t) the

vector of (imputed) rental costs at time te I so that

L{k(t), k(t)) + p()k(t) + p(t)k(t)

is the (imputed) profit which is maximised at almost every instant by a competi-

tive path.

LEMMA 1. (i) If Assumption 1 holds then {k,l.(} e P is competitive if and only if

(p,p) = —(Lk,L‘-() for almost all tel (5)

which in turn is equivalent to the Euler-Lagrange equation

R R @)

(1ii) A competitive path {k,fc} e @ which satisfies the transversality condition




lim p(t)k(t) < a, £for some constant @
<0

is optimal among paths {k,k} ¢ ® which satisfy

1im p(t)]}(t) > a, for some constant o
t»co

Proof. (i) Immediate from (4). (ii) See [17, Lemma 2, p. 177]. ' A

DEFINITION. A path {k,k} ¢ ® which satisfies (&) with k(t) =k(t) =0 for all

tel is called an equilibrium point (stationary state).

€ = {(®*,m e kx| L (k*,05 M = o}

is called the equilibrium set for the maximum problem WM.

DEFINITION. The function ¢(k; m) : KxII —> R defined by the line-integral

k
d(ky M = Yng(kaO; m) 'dk

where y denotes the line-segment joining O and k, is called the steady state

profit function, in view of equatioh (4.

Remark. The steady state profit function attains a maximum at an equilibrium

point.

DEFINITION. Let (k*,m) EE . The local coordinates around the eqﬁilibrium point

k* =k*(7) are defined by

x =k - k*

Let ®' denote the class of absolutely continuous paths {x,%} for which

{k,l‘c} e ®. The second variation problem about k*

lco
inf -5 fL°(x(t), x(t))dt M)
{x,x}e@®"’ 20 )



L
* *
x x
where L° (x,%) e ik

i * *,
! x 'ka ka

e

and where the asterisk indicates that the Hessian matrices are evaluated at

(k*,0; m), has associated with it the Euler-Lagrange equations

L * * L * - 1
L+ (g~ L) ® ~ Lgx = 0 S

which are the linearised equations for (£) about k*.

In order to be sure that the linearised equations (2 ") reveal the local
topological structure of the solution of (M) in the neighborhood of an equilib-

rium point we need to distinguish certain types of equilibria.

DEFINITION. An equilibrium point k* =k*(m) is called regular (hyperbolic) if

i € € is a root of the characteristic poly-

A, #0 (Re(2;) #0), i=1,...,2n where )

nomial
= * 52 * _ 1k _ 1% -
D(A,) = ILI.]Ai + L LA - Ll =0 (6)

We let &7 (Eh) denote the set of regular (hyperbolic) equilibria inE .

LEMMA 2. Let k* =k*(n) where (k*,n) e E then k* ¢ &7 if and only if

A= lka(k*,O; m| #0 ¢))

Proof. 1If A "AZn denote the roots of (6), then for some a#0

12"

D(A) = a(Al—A) vos (AZn-A)

so that A= (-1)"D(0) = (-1)“041 ce+ A, #0 if and only if k¥ =T, A

Remark. An equilibrium point k* is said to be isolated if there is a neighbor-
hood of k* containing no other equilibrium points than k*. 1In view of Lemma 2,

it follows from the implicit function theorem, that regular equilibria are




isolated. A regular equilibrium point k*(m) is a point of intersection of the

n, (n-1l)-dimensional hypersurfaces
L (k*,0;m =0, i=1,...,n (8)
i

in Rn. Thus an equilibrium point k*(m) is regular if and only if the gradients

(* y *ve> * ) i=1],...,n
Mgk Mk

exist and are linearly independent.

Remark. Hyperbolic equilibria are of importance in the analysis that follows

since it is only for these equilibria that the linearised equations (—f,') reveal
the topological structure of the trajectories that are solutions of (£) in a
neighborhood of an equilibrium point. Since hyperbolic equilibria are the im-
portant subset of the set of regular equilibria for which the linear theory is
applicable, it is desirable to have a sufficient condition ensuring the exis-

tence of such equilibria.

ASSUMPTION 2 (Productivity). There exist l—"‘i’ k., 2=1,...,n such that

gy

K={keR' | <k <k <k <= i=1,...,n}ex

and for all i=1,...,n

ij(kl,...,gj,...,kn,o,...,o; T > 0

ij(kl""’kj""’kn’o""’O; m) <0

for all kie Qc-‘i—’ki)’ i#].

LEMMA 3. 1If Assumptions 1, 2 are satisfied and if well is a parameter value for

which L°(x,%; ) . is negative definite then there exists a hyperbolic equilibrium




point k* e K.

/ .
Proof. It follows from the classical index theorem of Kronecker-Poincaré [23,

ch. XVIII] and Assumption 2 that there exists a regular equilibrium point k* e K.

Theorem 2 of Levhari-Liviatan [8] and the fact that L°_(x,:':; ) is negative defi-

nite implies that no root of the characteristic polynomial (6) can be pure imag-

inary, so that Re()\i) #0, i=1,...,2n and k* is a hyperbolic equilibrium point.

Remark. In view of Assumption 1 the equilibrium point k* in VLemma 3 is unique.

Remark. Assumption 2 is a natural economic condition on the productivity of

each of the capital goods. For each capital good j, the marginal profit (L )

J
from an additional unit of j must be positive (negative) when the endowment of

k

this capital good is sufficiently small (large), independent of the endowments

of the other capital goods (i # i).

The following proposition assures us that under certain additional condi-

A

tions a solution of the maximum problem (M) exists. This solution has, further-

more, the important property that it converges to the equilibrium point k*.

PROPOSITION 1. Let the assumptions of Lemma 3 be satisfied and let k* denote

the associated equilibrium point. If the feasible paths are restricted to the

subset Fece for which (k(t),l.c(t)] e KxQ for all teI, where KxQ is a com-

pact convex subset of R” xR" and if there exists (k,k) ¢ F such that for some

0<T<w, k(t) =k* for all t 2T, then (i) there exists an optimal path (k,Kk) eF

and (ii) k(t) = k* as t >,

Proof. The result follows from Lemma 3 above and from Theorem 4.1 and Corollary

4.1 in Brock-Haurie [1].

A
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3. SYMMETRIC AND ASYMMETRIC EQUILIBRIA AND TRANSFORMATION TO NORMAL FORM

To obtain a more complete understa-nding of the behaviour of an optimal
path in a neighborhood of the equilibrium point k* we need to make a distinc-

tion between two different types of equilibria that can arise.

DEFINITION. Let (k*,m) eE. k* will be called a symmetric (asymmetric) equi-

librium point if

' Ly (6,05 ) - L. (k*,05 1) = 0 (# 0)

LEMMA 4. If k* is an asymmetric equilibrium point then thk _—thl.c is a skew-sym-

metric matrix.

" Proof. Ll’-:k = (thfc) ' implies (I‘Ek - thl.c)' = - (Ll’-:k— thfc) . A

DEFINITION. Let k* SEh. A solution of (M) will be called locally cyclical

(locally monotone) in a neighborhood of k* if the characteristic polynomial D(})

has at least one (no) pair of complex conjugate roots.

In the analysis that follows we restrict our attention to those parameter

values Tell for which the following assumption is satisfied.

ASSUMPTION 1' (Definiteness). (k*,m) ¢ k= is such that L°(x,%; M) is negative

definite.
To simplify the notation we let
= 1% = ~1.%. = =-1%, = - N'
A ka, B ’ N ka, C N N 9

so that the linearised Euler-Lagrange equation (£') reduces to

BX - Ckx - Ax = 0 (2"

where A and B are positive definite (symmetric) matrices in view of Assumption
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1' and C is a skew-symmetric matrix by Lemma 4.

DEFINITION. Let E and F be nxn matrices with real coefficients and let F be a

positive definite (symmetric) matrix. We say that ay € € is an eigenvalue of E

. i n i . . . .
in the metric of Fand w ¢ €, w #0 is an associated eigenvector if

(E - aiF)wi =0 (10)

LEMMA 5. . (i) A has n real positive eignevalues cxl,. ..,0 and n real associated
. 19 3

eigenvectors wl,...,wn in the metric of B. (ii) If the eigenvalues are placed

in order of decreasing magnitude

" then the following maximum property holds

1
o, = max x'Ax=wi Awi, i=1,...,n

+ xe@i

Gi={xeRn]x'Bx=l, x'Bwj=0, j=l,...,i—l}

Proof. (i) follows from Theorem 8 in Gantmacher [7, p. 310] and the fact that A
and B are positive definite (symmetric) matrices. (ii) This is the well-known
Courant-Fischer result, theorem 11 in [7, p. 319]. A

Lemma 5 and the fact that A= - ¢kk(k*; m) lead naturally to the following

DEFINITION. «a

EEEREL N will be called the steady state profit rates and

n . . . .
wl,...,w the directions of maximum profit.

With these definitions and properties in mind we obtain a complete characterisa-
tion of the behaviour of an optimal path in a neighborhood of a symmetric equi-

librium point.

PROPOSITION 2. Let Assumption 1' be satisfied. If k* is a symmetric equilibrium
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point then (i) a solution of (M) is locally monotone in a neighborhood of k*,

(1i) the eigenvalues i)\ll...,i)\l of the linearised Euler-Lagrange equation (&£')
L

are determined by the steady state profit rates

A, = Va, , i=1l,...,n

and the eigenvectors of (£ ') coincide with the directions of maximum profit

n
wl,...,w .

Proof. (i) follows from (ii) and the fact that a«, >0, i=1,...,n. (ii) follows

i
at once from (1 ') and the definition (10). A

Remark. It is evident that only the negative eigenvalues )\i = - Vai s, 1=1,...,n
are used in characterising a solution of (\M.') and hence of (»M«) in a neighbor-

hood of k¥*.

LEMMA 6. There exists a nonsingular transformation to principal coordinates

x = Wy (11)

which reduces the linearised Euler-Lagrange equations (£ ') to the normal form

y-Ty- Ay =0 (£"
0 Yy oot Tpp ) 0
where r=|"Yi2 9 ==Yy, a-= .
: 0 a
"Yin Yon °°° O_ :

Proof. By Theorem 9 in [7, p. 314] the n xn matrix of eigenvectors

1

W= [w wn] may be chosen in such a way that
1 0 a, 0
WBW =1 = . , WAW= @& =
0 "1 0 a
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Under the transformation (11), (£') reduces to

WBWY - W'CWy - WAWy =¥ - Ty - Ay =0

where WCW=T (12) A

Remark. At a symmetric equilibrium point, the linearised Euler-Lagrange equa-~
tions (£") in principal coordinates separate into n independent one-sector

systems. At an asymmetric equilibrium point there is a skew-symmetric inter-

action between the n sectors (or capital goods). The term I'y imposes velocity

dependent rotational forces on the economic system which, under conditions to

be examined in the next section lead to cyclical motion in a neighborhood of
the equilibrium point k*.

It should be noted that the skew-symmetric terms I'y have not been artifi-
cially introduced. These terms arise naturally from the structure of the maxi-
mum problem 6!() in the neighborhood of an asymmetric equilibrium point and are

present in maximum problems of a quite general form. It is these skew-symmetric

forces that may be viewed as the cause of cyclical behaviour for the class of

maximising problems considered in this paper.

4. CHARACTERISING LOCALLY CYCLICAL MOTION

In this section I will show that if certain additional structural assump-
tions are made then we can obtain a precise statement of the conditions under
which a solution of (M) is locally cyclical in a neighborhood of the equilib-
rium point k*. I consider two cases. 1In the first case an assumption is made
that reduces the number of interaction terms in the matrix T so that it reduces
to block-diagonal form, while & is an arbitrary positive definite diagonal ma-

trix. In the second case the eigenvalues of A are assumed to be identical, or
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by continuity, to differ by a very small amount, T being an arbitrary skew-sym-

metric matrix. It remains an interesting open problem to obtain a precise

statement of the conditions under which the motion in a neighborhood of k* is

locally cyclical in the general case where & is an arbitrary positive definite

diagonal matrix and I' is an arbitrary skew-symmetric matrix.

PROPOSITION 3. Let Assumption 1' be satisfied. If there exists a reordering

cf the principal coordinates Yyreees¥ such that

r 0
: : 0 Yi n
r = 0 . . I'i= . . i’=1,...,(—2-) (14)
r =Y,
@ i ]
where (l?}) = % when n is even, (%) = n;— 1 when n is odd and where Fn+1 =[ 0] when

: 2
n is odd, then a solution of (M) is locally cyclical (locally monotone) in a

neighborhood of k* if and only if
IYil_(:) |'/°‘—i-‘ “!ivl, i=1,...,('r21) (14)

where (ai!_ai,) are the components of & associated with Y

Proof. (L") decomposes into (-121) pairs of second order differential equations
when n is even [(%) ~1 when n is odd]. For each such pair the characteristic

polynomial is

= 2 _ - 2 = = 1,
D(Ai) Ayt (yi oy ai.)Ai o, =0, i 1.0,
2
= + e = = i
Let Ai ui ivi and let Ai Ei ai + 1bi then
1 2 1
= = <+ - = = -
2, 2(cLi o Yi), bi >/ ( Hi)Ji
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where Hi = Yi - (/E;.+ JE_:)Z, J, = vy?% - (/E;.— JE_:)Z

i
!

/
2_, .
so that Ai’ Ei implies

1 bi ei . / >
= —— |- = —= = - + 2
i /E{ei]’ 177 Y% /-3y + T+
which in turn implies
- L =1 '
T A T 1 (13)

Thus the roots of the characteristic polynomial are given by

A ) amh s

1

In view of Assumption 1', /ai > 0, Vai, > 0, from which we readily deduce that

the roots are complex if and only if Ji >0, i=1,..,.,(%). A

Remark. Let JV==W'NW=={vij} then Assumption 1' implies

. N n
'/;;4"“1' g lei-l,zil + |vzi,2i-1| 2 |"2i-1,2i_"2i,21—1l =l 1=,

so that in view of (16), the characteristic polynomial has no pure imaginary

roots, in accordance with the result of Levhari-Liviatan {8, Thm. 2, p. 91].
Under Assumption 1' the trajectory which minimises WM') is asymptotically
stable. Cyclical motion, when it arises, is therefore damped and the n roots
in (16) which characterise the trajectory have negative real parts (as observed
earlier). We may ask how a change in the magnitude lyil of any one of the com
ponents of the basic skew-symmetric matrix I' affects (i) the real parts and
hence the magnitude of the damping and (ii) the imaginary parté and hence the

period of the cycles.

COROLLARY. If the components;lyi(t),gyi,(t)] are cyclical, for any i==1,...,(%l,
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then an increase in the skew-symmetric component lyil leads to (i) a reduction

in the exponential damping and (ii) a reduction in the period of the cycles for

the components (yi(t),_yi,(t)l.

Proof. Set Ai = ui-kiv and use (15), then (i) is immediate and (ii) follows

i

from the fact that the period of each cycle is G?%. A
' i

Remark. A sufficient condition for I to have the block-diagonal form (13) is

that the matrices in (9) have the block diagonal form

A1 0 B1 0 N1 0
A= * s B = R s N =
0 A 0 B 0 N
n
@) ) @
a a b b. n n
il i2 i1 i2 i1 i2 n
A = .= = = se e o)
i a a ’ Bl b' b ’ Ni n totb ’(2)
i1 %2 i1 itz By By
where the last elements A . B n and N n reduce to scalars when n is odd.
@ & <)

The cycling condition (14), stated in terms of the derived coefficients

(ai,ai.;yi) may be transformed into a condition on the coefficients of the

original matrices (Ai,Bi; Ni)' Since the matrix of eigenvectors W is block-diag-

W1 0
onal, W = ‘. , this implies
0 "W
Ca)
W'BwW, | = [W.|?|B,] =1 sothat W, =-——
114 i' %1 i /B, |
1
By
Thus i [Wilgi = /lT-i—‘— where 8 =7m;, ~ Dy,  so that
A
_1 fo1 /_i 2 - - '
#10% B, | ( 2 * (2) - la HBil}’ b =350y, 172°11 ~ *21oP10



Thus the cycling condition (14) becomes

gl > lag - /TR TTE,T an

When A and B are both diagonal this reduces to the simple condition

-Va_, b, | an'’

leg| > 1vay by, 1'2°411

FROPOSITION 4. Let Assumption 1' be satisfied. If @, Ze,=... =oLn=oL*, then a

solution of (M) is locally c;g:licél in a neighborhood of k* if and only if k*

is an asymmetric equilibrium point.

Proof. Since a;=a,=...=a_ =a*, A =0*I and the eigenvalue problem for (£')

(%I -Tr - 4)w =0 (18)
reduces to an eigenvalue problem for T
2 _ 4%
l: - (——-———A Aa ]I:IW =0 (19)

It is well-known that the eigenvalues of a skew-symmetric matrix are pure imagi-

nary [7, p. 285]. Let

iiyl, cses iiy(n)
2

where v a =0 when n is odd, denote the eigenvalues of T and let A = py+iv de-

2
note an eigenvalue of (18). Then by (19), for some j=1,...,(%)

2 _ g% £y2 .
-}-\—Ag——=iyj so that =1z a*-Fi] s v = ——J-]

Thus the eigenvalues of (18) are given by

Y35)2 Y3
Ay =% a*-[—zl} 11{73], j=1,f..,(-2-)_
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from which the result follows. A

5. CYCLICAL MOTION IN RATIONAL EXPECTATIONS EQUILIBRIUM

In several recent contributions [10, 12] Lucas has emphésised the importance
of developing a theory of the business cycle in which prices and quantities are

determined at each instant of time through competitive equilibrium and in which

the expectations of agents are rational in the sense of Muth [21]. Lucas has
also emphasised the role of uncertainty in generating the observed pattern of
business cycles.

In this section I will use the results of the previous sections to examine

a rational expectations equilibrium for a competitive industry with a fixed

finite number of firms in which each firm behaves according to the standard

Lucas-Mortensen adjustment cost theory of the firm [11, 22]. The analysis of
rational egpectations for the industry is made possible by the introduction of
an extended integrand similar to that employed by Brock-Magill [2] and Scheink-
man [26] and originally introduced by Lucas and Prescott [13].

While the presence of uncertainty is of undisputed importance in generat-~
ing the observed pattern of business cycles, it may well be of interest to seek
causes of cycling which are indebendent of the presence of uncertainty but which
are consistent with the postulates of competitive equilibrium and rational ex-
pectations. Thus while the analysis of this section in no way pretends to form
a theory of the business cycle, it seeks to explore the ways in which techno-
logical forces arising from the recursive nature of the production process may
act on representative firms within an industry so as to cause cycling in the
process of competitive equilibrium over time.

Consider therefore an industry composed of M represéntative firms, each
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producing the same industry good with the aid of n capital gooas; I assume that
eacn/firm forms identical expectations about the industry product's price path
which is a measurable function

r(t) : [0,0) — R* (20)

The instantaneous flow of profit of the representative.firm is given by
r(t)f(k(t),ﬁ(t)), where f(k,ﬁ)e:cz, incorporates both adjustment costs and the
cost of purchasing new capital equipment and is a strictly concave function in
(k,ﬁ), where k==(k1,...,kn) denotes the vector of capital goods. To simplify
the analysis and make possible the application of the results of the previous
sections I assume that the representative firm faces a zero interest rate. Let
K=R"" denote the nonnegative orthant, then for a fixed initial capital endow-
ment kot:K, the firm manager seeks an absolutely continuous capital expansion

path

t
k(t) =k + Jk(o)dr : I — K
0

satisfying (l)', which maximises, in the sense of the overtaking criterion (M),

the future stream of profit

T .
lim [r(t) [f(k(t),fc(t)) - f(Tc(t),E(t))]dt 20 (R)
T 0 :

for all [K,k} e ®.

The total market supply forthcoming at each instant on the product market

Qg(0) = Mf(k(t), k(t)), tel[0,)

has a complex functional dependence on the price path (20), since it arises as
a by-product of the solution of the basic maximum problem (R) by each firm. On

the demand side of the market I make the simplifying assumption that the total
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market demand depends only on the current market price

Q) = ¥ (x(), tel0,®)

where vec! and ¥(@Q) >0, ¥'(Q) <0, Qz0.

DEFINITION. A rational expectations equilibrium for the product market of the

industry is a measurable price path (20) such that

QD(t) = Qs(t) for almost all te [0,x) (E)

DEFINITION. The function ¥(Mf(k,k)} where

¥(Q = ?w(y)dy, Q20
-0

denotes the integral of the demand function, so that

¥4

vech, V(@ =9@, Y@ =9'@ <0, Q20

is called the extended integrand. I call the extended integrand problem, the
problem of finding an absolutely continuous path {k,ﬁ}s:@’ which maximises this

integrand, in the sense of the overtaking criterion (M)

T .
lim f[‘{‘[Mf(k(t),fc(t))] - ‘l’[Mf(E(t),E(t))Ddt 20 I)
T+ 0

for all {Tc,lzc} e'CP .

Our analysis of the cyclical properties of rational expectations equilib-
rium will be based on the following proposition which is a straightforward adap-
tation of the result of Brock-Magill [2, Th. 5] and Scheinkman [26, Sect. 4] to
the undiscounted case. This proposition transforms the analysis of rational ex-
pectations equilibrium from a direct analysis of the representative firms prob-
lem (R) combined with the market equilibrium condition (E) to an indirect anal-

ysis of the extended integrand problem (J).
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PROPOSITION 5. If k(t) is the solution of the Euler-Lagrange equétion for (J)

' . . a {4 . . _
r(ME (k,K)) £, (kK - Et-[w (M_f(k,k))fl.((k,k)] =0 (21)

which satisfies the initial condition k(0)==k0 and the transversality condition

E [-w'[Mf(k(t), l.c(t))]ff((k(t),ﬁ(t))]k(t) < § (22)
and if for any feasible path [K,k} e ® with E(0) =k,
%E [—‘P'[Mf[k(t), fc(t))]fl-([k(t),l.c(t)):]ﬁ(t) > a (23)
os
for constants o, o then the price path
1;(t) =y [Mf(k(t),ﬁ(t))], tel (24)

is a rational expectations equilibrium for the product market of the industry.

Proof. (21) and (24) imply that the Euler-Lagrange equation (®) for the prob-

lem (R) is satisfied

r(OF, (6,8 - S (:(©F60) =0

(22)-(24) imply that the conditions of Lemma 1 (ii) are satisfied for the prob-
lem (R). .Since ¥' =y, (24) implies that (E) holds. Thus each firm maximises
(R), in the overtaking sense, and the market equilibrium condition (E) is satis-
fied. A

Does a solution of the extended integrand problem (9') exist which is a

solution of the Euler-Lagrange equation (21)? Proposition 1 (i) asserts the ex-

istence of a solution to the extended integrand problem, under suitable additional

assumptions, but it does not assure us that this solution will satisfy the Euler-

Lagrange equation (21). Some additional analysis is needed at this point which
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is examined in gfeater detail in the paper of Magill [15]. For the present pur-
poses we will suppose that suitable additional conditions can be imposed so that
the path whose existence is asserted in Proposition 1 (i) does indeed satisfy
(21). Then the condition, [k(t), ﬁ(t)) € KxQ for all teI, in Proposition 1,
implies that (22) and (23) are satisfied. It follows from Proposition 5 that
an industry rational expectations equilibrium exists. By Proposition 1 (ii),
k(é)->k? as t—»%, so that the equilibrium path converges to a stationary equi-
1ibrium.

To analyse the behaviour of the equilibrium path in a neighborhood of the

steady state k*, we evaluate the matrices in (9) for the extended integrand

gk = (Y REE, 4 MYTREEEE T

A=-¥'*ck, B (v £, + MY"*eRs ), N = -¥RER
=y R(gR gk

so that c b4 (fkk kl.()

where C is the basic skew-symmetric matrix to whieh the origin of cyclical motion

in a neighborhood of k* may be traced. The cyclical forces thus have their ori-

gin in asymmetries in the effect of adjustments in one capital good on the mar-

ginal productivity of another capital good. When these asymmetries are absent

as in the original model of Lucas [11], where the adjustment costs are separable,
f(k,ﬁ) = d(k)-hv(ﬁ) then the motion in a neighborhood of k* is locally monotone.
The simplest precise condition for cycling is given by (17)'. 1If we let n=2

and assume in addition that the production function f(k,ﬁ) satisfies

£¥ =f% . =0 and £¥=0 (or alternatively that ¥"*=0) then (17)' gives
kk, "kik, k

£ . - g% | s |/EF FFL - /£*  fEF .

k Kk k)k, k k) kk, k k, Kk

Proposition 4 provides the rather special condition where any asymmetry in the

effect of adjustments in one capital good on the productivity of another capital
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good immediately leads to cyclical motion.

/Lucas [10] has emphasised the difficulty of generating an equilibrium pro-
cesé in which there is cyclical motion and in which “persistent, recurrent, un-
exploited profit opportunities" are absent. In the present context, if the in-
dustry good is storable there is an incentive for speculatoré to carry the com-
modity over from periods of relative abundance, when the price is low, to periods
of relative scarcity, when the price is high, the extent of such arbitrage activ-

ity depending on the cost of storage. This arbitrage activity reduces the extent

of cycling in both the price and the quantity traded. However if the commodity

is perishable or if the cost of storage is éufficiently high the cycles will

3

tend to persist. These issues lead us to the theory of inventories, which con-

stitute the classic method of inducing smoothing in the process of production
over time and which must clearly play a central role in any more general theory

of the business cycle.
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