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ON MEASURING ECONOMIC INTERRELATEDNESS

ABSTRACT

This paper addresses a problem first proposed by C. S. Yan and
E. Ames in their 1965 paper ('"Economic Interrelatedness,' Review of

Economic Studies, Vol. XXXII, No. &4, pp. 299-310.) 1In their work these

authors had suggested that an economic interrelatedness function be
defined for input-output systems by taking some average of the number of
positive technological relations existing between any two pairs of sectors.
The measure thus defined was then used to assess the validity of various
empirical statements made in economic history in connection with the
hypotheses of integration va. diversification in the process of economic
growth. In this paper we provide a general theory of interrelatedness
concepts in terms of oriented graphs and paths in graphs. After deriving
some basic characterization results various classes of functions are
suggested to measure economic interrelatedness. For instance instead of
considering only minimal paths between pairs of sectors families of

paths are introduced; also a natural way to take into account the

varying linkage intensities between sectors 1s provided by considering a
valued graph associated with input-output systems. This leads to the
definition of a completely general interrelatedness function that can then
be used to study such empirical concepts as integration and diversification

in economic growth processes, as intended by Yan and Ames.



On Measuring
Economic Interrelatedness

I. The notion of an interrelatedness function

General equilibrium systems in economics draw their success
from the fact that they explicitly recognize the interdependence
between the decisions of each and every economic agent involved
in a certain process of production and/or consumption. The recog-
nition of this fact prompted Schumpeter to declare, some decades
ago, that if he were forced to choose one single economist as having
contributed the most fundamental insight in economic theory, he
would pick Walras. One admittedly very special but yet very rich
class of general equilibrium models is afforded by input-output
systems. Their success in economic theory and planning theory has
been widely acclaimed. Somewhat surprising, however, is the fact
that relatively little work has been devoted to an actual study
of the notion of interdependence between agents in the input-output
framework. One noteworthy paper in this area dealt with
this question: in their 1965 paper, Yan and Ames tackled the problem
in the following way. Starting from the notion that for any pair
of sectors (i,j) (i,j=1,2,...,n) the corresponding entry aij in the

input-output coefficient matrix could take on any value in the closed

interval L[0,1] they pointed out that whenever ay 5 > 0 for some (i,j)
these two sectors are directly connected in the sense that (i) is a
supplier of some input incorporated in the production process of (j).
Moreover if there exists some finite positive integer K for which the

expression

(L) a,, = Z a,_ a ... a



To each entry bij of the B matrix assign the smallest value
a* (some positive integer between 1 and =) for which the entry
mf? = 1. The rationale for this choice is best understood in graph-
theoretic terms. In particular the following result is quite easily

obtained (see for example [ 2] and [13)).

Theorem 1: Let G be a graph with adjacency matrix M. The «a-fold

o4

boolean product of M : M =M M, ... ; M represents the adjacency

matrix of a derived graph GY defined over the same nodes as G and
whose arc (1 + j) exists if and only if there exists a path of length
o from 1 to j.1

In other words the o-fold product of the adjacency matrix M of G,
provides the following information: does there exist (or not) an

ordered sequence of sectors i - Ty 2Ty ¥...,0 1, j? i.e. 1is

sector (j) (indirectly) input-connected to sector (j)?

We can now state and prove a simple characterization theorem

for irreducible linear economies.

Theorem 2: A necessary and sufficient condition for A to be an
irreducible system is that for all (i,j), 1,j=1,2,...,n there exists

a finite integer k such that
(3) mij"= 1.

(Note that this value of k is dependent on the particular ordered

pair (i,j) that is used.)



(where Z represents (k)-fold summation) does not wvanish then we

can say that sector (i) is indirectly related to sector (j), speci-

fically there is a finite sequence of sectors (rl,rz,...,rk) of (k)
elements linking the supplying sector (i) to the receving sector (k).
The notion of direct vs. indirect interrelatedness hinges upon the
existence (or non-existence) of one-step input dependency between
sectors (i) and (j). This leads rather naturally to the notion of
the length of the path between sector (i) and sector (j): for example,
in terms of the above sequence (rl,...,rk) we could say that there
exists a path of length k between (i) and (j). We are now ready
to formalize the Yan and Ames notions of an interrelatedness func-
tion and of an order matrix associated with any input-output coef-
ficient matrix A.

Consider the boolean matrix M of the same dimension as the A

matrix and whose entries are respectively:

1 iff a,. >0
1]

0 iff a,. =0
Jj1

This M matrix is simply the adjacency matrix of the graph GA of the
input-output system A. The nodes of G are the sectors 1,2,...,n
and the arcs i + j are assigned to correspond to the non-zero aij
coefficients. 1In fact these coefficients provide a valuation

system for these arcs, which we shall use later on. Yan and Ames
propose to associate the following distance matrix B - "order matrix'
in their terminology - with any input-output matrix. MY, Let

¥ _M;{ My ..., M

a times

M represent the o-fold boolean product (denoted ;)

of the adjancy matrix M corresponding to GA‘



where £(°) refers to the length of the corresponding path. Repeat-
ing the same argument, if necessary, in a finite number of steps we
have a path from i to j of length k < n.

A natural consequence of this result is that we need to perform
at most n-1 boolean product operations on the M matrix to determine
whether or not (j) is directly or indirectly input-dependent on (i).
Another simple result can be obtained to characterize the entries

of the B matrix proposed by Yan and Ames.

Theorem 4: Let A be an (nxn) input-output matrix with order matrix

B. For any row i=1,...,n of B the following property holds:

Let y = M?x {bijibij < = for j=1,...,n}

Then for any integer K with 1 < K < Yy there is a j with bij = K. PFur-
thermore, if v = n-1, bij < = for j=1,...,n and bij # bij' for

i#il

Proof: Pick any row (i) in the B matrix. From Theorems 1 and 3 and
the definition of the B matrix, there exists a shortest path from

sector (i) to some sector (j) with bij = y. Let this path be

(7) uyy = Ll,r) 5 (rerp) 5 eee s (2, 0))
Also, let uirh be the segment of Uy from (i) to(rh). Now uirh is
a shortest path from (i) to (rh), otherwise the length of uij could

be reduced, which is impossible. This means b, = 2(u ) = 1,
ir irl

1

b. = 2(u,_ ) = 2, etc. and the first part of the theorem is proved.
ir, ir,

To see the second part, note that the shortest path from (i) to (j)
involves going through every sector if vy = n-1. Q.E.D.

The reader should be aware that an analogous result can be shown

f (3
or columns by taking urhj segments of uij



Proof: It follows at once from the fact that the irreducibility
property of a square matrix is equivalent to the strong-connectedness

property of its graph (for a proof, see [ 31]).

An upper bound for the value k i.e. the length of the path

between (i) and (j) can be readily found.

Theorem 3: 1If there exists a path connecting sector (i) to (j) then

there exists a path of length k < n.

Proof: Let uij be a path from (i) to (j):

(4) ayy - {(i,rl) s (rpry) s s (ra_l,j)}

——

There are o-1 r's and sectors i and j, or o+l sectors listed. If
a > n-1, there must exist at least two of the r's, say r, and 1,
that index the same sector. This means that there is a circuit of

length at least one in uij’ Removing that circuit reduces uij by

at least one term. That is,

(3) uij = {(i,rl) 3oeee (rh’rh+1) > e ;<rh' rh""]-)

~

: (ra-l’j%} circuit

Let

(6) u’ij = {(i,rl) Do <£h’rh'+l) S oee. S (ra_l,j)

and £<u’ij) < t(uij) = g



However, even though the current measure interrelatedness is
not very effective, the approach taken by Yan and Ames offer valuable
insights into irreducibility of linear economies as exemplified by the
results we have just presented. The methodological contribution is also
important: it points towards the use of graph theoretic notions which
enable us to reach these results quickly. Having provided these
foundations a complete solution to the problem of measuring inter-

relatedness is now examined.

II. On measuring interrelatedness in a valued graph of input-output

relations

The objective of this section is to define a new interrelatedness
function meeting the objections raised earlier: (1) it should take
into account the strength of the linkage between any two sectors i
and j where (j) 1is input dependent upon (1); (2) in considering only
the shortest path “fj between (i) and (j) we choose to ignore the
simple fact that other feedback effects also exist; a whole family

of paths Oi. = {uij, Ve qu, cee “E } , can be found between i

J J
and j, and each such path reflects a different channel of input-
dpendence between sectors (i) and (j). To ignore all but the shortest
path in ¢ is bound to give us a very biased view and measure of inter-
relatedness between any two group of sectors. Furthermore since the aij
coefficients themselves are subject to some bias of their own due
to the necessity of aggregation - as we shall examine in the last
section of this paper - it is even more important to take into account
not only the whole family of paths Oij linking (i) to (j) - for any
pair of sectors i,j - but also the intensity of input-dependence by

which each path “;j € @, ; must be weighted in the completely general

J



Once this order matrix B has been obtained it was proposed
by the same authors to define a scalar-valued function on it (or any
submatrix thereof) that would ""measurd' the amount of "interrelatedness"
between any two subgroups of sectors. Specifically these authors
proposed to choose the reciprocal of the harmonic mean of the elements
of the appropriate submatrix of B viz
i1 R

1 r 8
®  Rlyos )t &L
v=1 w=1l

For instance if r=s =1 R(;) = E%E . Also it can be noted that R
ranges over the closed interval [0,1]; R =1 if and only if the cor-
responding elements of A are all strictly positive; and R = 0 if and
only if all the corresponding elements of B are infinite. A natural
question to be asked is then: does this interrelatedness function R
obtained from this order matrix B fully capture the notion of inter-
dependence that characterizes any general equilibrium system, and,
in particular, the input-output system? To answer this question we
can simply quote the statement of one of its fundamental limitations
as given by one of theauthors: '""This measure considers only the
existence of input-output relations between industries and disregards
the magnitude of transactions'" (see [19] p.92).

A second limitation also exists and should be mentioned: in de-
fining the order matrix B, only the shortest paths between any two
sectors are considered. However there is a whole family of paths of
varying lengths besides that shortest path for each pair of sectors
and a forticri for any two group of sectors. Discarding these con-
nections entails a very high informational loss and renders the inter-

relatedness function much less meaningful in its current formulation.



propose not to ignore the remaining paths but to take them into account
and weigh them according to their number - for a given length. To
obtain an average measure of interrelatedness based on this multi-
plicity of paths of various lengths, we could simply look at the

following matrix sum:

(10) SK=I+M+M2+M3+...+M>‘.

The first term in this sum (I) indicates all the paths of length O
i.e. the loops at each vertex; the second term refers to the paths

of length 1, etc. However, for obvious reasons, in any realistic
situation this sum would newver converge:finitely. Then if convergence
is ruled out we could simply truncate the series after some pre-

assigned upper bound X is reached and apply the R function as above
A
= A
with truncated values m, . = z (M)

bde L iy

An argument in favor of this truncated solution is simply that
it implicitly recognizes the fact that beyond a certain point (say A)
A-step input-dependence between any two sectors may be of little
relative importance simply because some or all of the input coeffi-
cients along this path are small, so that the cumulative effect cannot
be large. These remarks, however, are rather vague and unquantifiable
as they stand. We are now going to show that they can be made more
precise and quantified if we allow for differential linkage inten-

sities between the various sectors.
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interrelatedness function we are looking for. These two problems will

be attacked separately: first a solution will be proposed to take into ac-
count the whole family gij of paths for any (i,j) pair; and then that
solution will be incorporated in a more general scheme that will weigh

the paths u;. € é&j according to the level of input-dependence along

]
each path.

2.1, Families of paths and interrelatedness of order 1,2,...,)\

Again, let us consider the adjacency matrix M of the graph GA
of a given input-output system A. The following theorem states a

standard result in graph theory (see e.g. [ 2] [ 13]).

Theorem 4: Let G = (N,U) be a graph with vertex set N and edge set

U. Let M be its adjacency matrix. Then each entry pij of the matrix

P = MX indicates the number of distinct paths of length A from i to

j (L,7 € N).

| Thus by using Theorem 4 it is a simple matter to take into account
the number of elements (paths) pzj in each family gij for any (i,j)
pair. Algorithms for path enumeration exist and can be used if the
knowledge of each element in gij is desired. Actually for our purpose,
we can simply define a cless of multiple interrelatedness functions,

one for each value of X\ viz:

il .o ir 1 S 1
(9) Ry . = TS Z Z )
j1 cee Jg v=l w=1 1w

One such function exists for each value of A. The problem, hdwever,
1s to find an aggregate measure of multiple interrelatedness. Yan
and Ames chose to single out a different A for each (i,j) palr viz the

minimal one necessary to yield a path between (i) and (j). Here we
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2.2. Multiple paths, levels of input-dependence and generalized

interrelatedness functions

To motivate our discussion let us return for a moment to equation

(10) which reads

S=T+M+M +M + ... +M

where the M matrix is the adjacency matrix of Gp the graph of a given

input~output system A. Each term in S is a matrix whose entries

mij indicate the number of paths of length x () = 0,1,2,...) between

i input-output coefficients
to take into account the level of input-dependence between (j) and

A
(1) and iterate the A matrix )\ times the entry aij) is a measure of

(1) and (j). Now if we simply use the ay

the proportion of j's output which is technologically input-dependent
on i's output: more precisely given the technological framework
reflected by the 243 coefficients after exa;;iy A steps via inter-
mediate sectors T15T)5...,T, 3 proportion aij of 1i's output enters
as an input to sector j. This matrix AX provides us with an answer

to both objections that were raised earlier: it takes into account

all the paths of length X\ between (1) and (j) as well as their valu-

ations in terms of input-dependence. One need not worry whether an
aggregate and input-weighted interrelatedness function can be uniquely
defined or whether we have to settle for just a class of A such
functions - one for each pathof length A. It is a well-known fact that
the following matrix series:

Mn T =T+ A+ A2+ a3+ ... +al

Ao

converges to the limiting matrix

Z = (I-A)-'l provided Z a3 <1 for j=1,...,n.
i
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From an empirical standpoint as Yan and Ames have pointed out
this substochasticity condition is, of course, met, as soon as we
consider the open input-output model so we can simply use the zij
coefficients thus obtained to calculate the generalized - i.e. input-
weighted and with multiple paths-interrelatedness function between
any two group of secors (il,...,ir) and (jl,...,js). In fact we

can simply define this function R* as the arithmetic mean of the

appropriate entries in Z

il c e ir 1 r i
R* = s L .. 21 3
jp e 3 v=l w=l w

For instance, if v = n and s = 1 the jth sector's interrelatedness
with all sectors in the economy is simply the arithmetic mean of the
entries in the jth colummn vector zy in Z.

Thus, as we had mentioned at the end of the preceding section, we
can now see more clearly how a simultaneous solution to the intensity
of input dependence problem and the exigtence of multiple paths problem
is simply achieved by considering the non-negative inverse (Z) matrix.
An interesting illustration of the kind of solution we obtain with

this new measure R* is provided by the case of a perfectly triangular

economy:
417 - - %n
0
A= . 2;j3  #n
0 ann
' _
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I1I Some remarks on aggregation in input-output studies and its

effect on interrelatedness measures

A word of caution is now in order. Although most researchers in
input-output economics are fully aware of the problems raised by
aggregating data from various multi-product firms into sectoral data,
this notion of sector, as defined by a single homogeneous product, is
hardly applicable in practice. The problem we encounter in empirical
input-output studies is simply that given the immense diversity of
moducts which characterize modern industrialized economies, the
sectors must be defined as "aggregates'" of closely related products.
This notion of ''closeness'" is seldom explicitly elaborated upon:
more often than not this preliminarly aggregation takes place through
a certain choice of terminology; picking a name for a sector involves
such an aggregation and this is enough to introduce some spurious
relationships in the model. This kind of aggregation may of course be
compounded by some later explicit aggregation meant to reduce the
size of the matrix and hence the computational difficulties involved.
An illustration of this notion can be readily given; consider the

following diagram (taken from Noble [ 12])

Pig iron

-3
Ferromanganese~\\\§\\\\\\\\\ﬁ§ ////////a Automobiles
Chromium 3 ;;?ii 05__ 3 Containers

Nickel _____,,_———~“”"’——‘—‘$ \\\\\\‘ﬁﬂ etc.

Other Alloys



Then Z is also triangular.

pe i -1

291 ¢ -+ ¢ Z1p
z= i1 Zin
0 Znn
and for instance - N
1 z
R* 1. . .n B —%l since the first sector is completely
self-sufficient.

Sequentially we get

-, .
R¥* ) I ["*12’“222:]

since sector 2 1is self-sufficient with the exception of its reliance

-

upon some proportion of one's output as its first input. This argu-
ment applies in the same manner to the remaining sectors.

An empirical study and intertemporal as well as international
comparisons of the behavior of this R* function will be provided else-
where, For the time being we would like to turn to a sensitivity
analysis under aggregation of the interrelatedness measures we have

studied.
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not because of an arbitrary aggregation scheme but because of the
technology involved. Clearly a good measure of interrelatedness
gshould try to minimize the effects of such spurious links. This is
precisely the fundamental advantage of a weighted measure of inter-
relatedness as we have proposed here: even though it will not be able
to distinguish the amount of spurious input-dependence in the actual
amount given by the aij's (and, once aggregation has taken place,
this information is lost anyway, so no method can hope to retrieve
it in full) it will at least assign different weights to these
connections according to the length of each path. More precisely
the longer the path, the more likely are we to encounter a spurious
connection along one of its arcs; but the weights assigned to the
paths being products of a5 coefficients which are all less than one,
the effect of a spurious coefficient in that product becomes

increasingly smaller as the path grows larger.
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Looking at the above graph and assuming for instance that the
arcs are valued with the appropriate input coefficients of the
input-output matrix, it is clear that in order to use it for pre-
dictive purposes one fundamental assumption must hold, viz. that the
multiplication of the input coefficients yields a predictive func-
tional relationship. 1In the above example the production of containers
requires a production of pig iron of 3/10 times 5/10, 1i.e. 15/100.

In order to give good predictive results the inputs must be independent
of the composition of the output. Independence exists for the flows
of pig iron and manganese into steel mills but not for chromium and
nickel, because they go into stainless steel but not into carbon

steel. 1In short, a purchase order for carbon steel does not generate
requirements for production of chromium or nickel. This example is

by no means unique. In fact, the same problem occurs for most sectors;
and, thus, we must be careful to keep in mind that most empirical
input-output coefficients contain such distortion factors of the

level of sectoral interdependence beyond the first level of demand

as represented by the A matrix.

In regard to the problem of measuring interrelatedness between
groups of sectors in an economy, the difficulty we have just described
provides one of the strongest arguments in favor of the generalized
interrelatedness measure R* proposed in this paper. The reason is
simple: when we ignore the intensity of input-dependence between
sectors and collapse this information into an adjacency matrix we may
actually be taking into account connections that are, say, 90%, spurious
and only due to the aggregation format used. These connections,
however, carry exactly as much weight in the Yan and Ames interre-

latedness index (R) as the ''genuine' ones, i.e. the ones that arise
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