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§1l. Introduction

Let R" be the n~dimensional Euclidean space. Now, given a finite class
L of closed convex polyhedral subsets of Rn, which partition Rn, and a con-
tinuous mapping F from R" into RP, we say that F is piecewise linear on the
subdivision I if for each piece o in I, FO = F]o is an affine mapping, i.e.,
for some nXxn matrix A and an n vector a_, F (x) = A x - a .
g g’ "o g g
Several authors have contributed to the study of such mappings; see,
for example, [1],[2]1,[3]1,[41,[71,[9]1,[11]. One of the important results

established is that a necessary condition for F to be a homeomorphism is
sign det AO = constant, for all ¢ in I (1.1)

and it can be readily demonstrated that this condition is not sufficient
(see Figure 1.1. Here F(x) = y has exactly three solutions for each
vy # (0,0)). It is also known that the above condition implies that the
mapping is onto; see, for example, Chein and Kuh [1], Rheinboldt and
Vandergraft [1l]. Also, there are two sets of sufficient conditions that
exist, one set produced by Fujisawa and Kuh [4], and the other by Kojima
and Saigal [7]. We now discuss these conditions in some detail.

For an n Xn matrix A, let A(k) be the submatrix consisting of the first

k rows and k columns of A. Then, Fujisawa and Kuh [4] proved that:

Theorem 1.1l: Let Al,...,Am be the Jacobians of the pieces of linearity of

¥F. Then, F is a homeomorphism if

sign det Aj(k) = Ek (1.2)

for each k = 1,...,nand j = 1,...,m, Where € = +1,-1.



In a recent paper, Kojima and Saigal [y] established another set of
sufficient conditions. Let OpseeesO be the unbounded pieces in I, and
let Al,...,A" be the Jacobian of F on these pieces. Then, the following

theorem was proved in [7]:

Theorem 1.2: Assume that the Jacobians of the pieces of linearity of F
satisfy condition (1.1). Also, let there exist a matrix B such that
1-t)B + tAT is nonsingular for each t in [0,1] and i = 1,...,r. Then,

F is a homeomorphism.

In comparing Theorem 1.1 wifh Theorem 1.2, we see that the main condi-
tion of Theorem 1.2 is put only on the unbounded pieces. 1In this paper, we
will relax the condition (1.2) to unbounded pieces, and thus weaken the
sufficiency condition of [4]. Our approach is based on a homotopy introduced

b§ ijimﬁuféj and studied in Saié;i_fiéj. We also show that tﬁe condition of
Theorem 1.1 implies the condition of Theorem 1.2, and by én example show _
that they are not equivalent.

As is evident, the condition of Theorem 1.2 is a global condition, and
since we are dealing with a subdivision of R" such a condition can be readily
used locally. We also prove such a theorem, and show that this condition is
weaker than the sufficiency condition of Eaves [2]. By'pufﬁihg a condition
on the pieces, we also show that, in this case, a necessary and sufficient
condition is that the Jacobians of the pieces of linearity have positive
determinant.

In section 2 we present the weakening of the condition of [41'an& in
section 3 we show that the condition of Theorem 1.2 is weaker than that of

Theorem 1.1. In section 4 we obtain a result under a local version of the

condition of Theorem 1.2.



82. Extension of the Fujisawa-Kuh Theorem

In this section, we present an extension of the theorem of Fujisawa
and Kuh [4]. The extension we prove requires the sign property (1.2) only on
the unbounded pieces of the mapping.

For an n xn matrix A, let A(k) be the principal submatrix consisting
of the first k rows and first k columns of A, for each k = 1,2,...,n. We
call the determinants of A(k), k = 1,...,n, the leading principal minors
of A, Also, given a set of matrices Al,...,Ar, we say they satisfy the
sign property if for each j = 1,...,r and k = 1,...,n, (1.2) holds. We
observe that we can, without loss of generality, assume that € = +1 for
each k = 1,...,n. This can be readily seen since the matrices Al,...,Ar
have the sign property if and only if DAl,...,DAr have all leading principal
minors positive, where D is a diagonal matrix with Dkk==€kr1€k? where €y = 1.

Given any two matrices A7 and B, for each t in [0,1], define the n Xn

matrices

h| = (ad Ad h| ] -
cl(e) = @ad,ad, 4] el v @-0)B, BB, (2.1)

where A, 1is the ith row of A. Then, we can prove:

Lemma 2.1: The matrices Ci(t), k=0,l,...,n and t ¢ [0,1] are nonsingular

if and only if AJ87! has all leading principal minors positive.

Proof: Let Dk(t) = Ek(t)B'l, 0 <t <1, and some k. Then Dk(t) has the

partition: Co-

where det Ali(t) is a principal minor of a (k -1)x(k -1) and a kx k principal
submatrix of AB™! for t = 0 and t = 1 respectively. To see the "if'" part,

note that det(Dk(t)) >0 for t = 0, 1. Also det Dk(t) = det All(t)’ Since



the last row of A;; (t) is tA.kB_1 + (l--t)uk (where uy is the kth unit
vector), and the other rows are independent of t, det Dk(t) is a convex
combination of two positive numbers, ana is thus noﬁzero fbf-eaéﬁ f: The
"only if" part follows since if the two proper principal minors change sign,
then det Dk(t) must be zero for some t.

To prove our theorem, we shall need the following lemma from Kojima

and Saigal [7]:

Lemma 2.2. Let % in R" be such that det(Ac) > 0 (negative) for every o
containing X. Then, there exists an ¢ > 0 such that deg(F,Bs(ﬁ),F(i)) >1

(2 -1) for each § in (0,¢), where Bs(i) = {x:lx - x I < &}.
Proof: See Theorem 3.3, [7].

Using Lemma 2,2, we can weaken the Fujisawa-Kuh sufficiency condition.

Let o

-»0. be the unbounded pieces in I and let AJ, 3j l,...,r be the

12°°

Jacobians of the pieces of linearity of F in oj, j=1,...,r. Then, we

can prove:

Theorem 2.3: Assume that the Jacobian matrix of each piece of linearity of

F has a positive determinant. Also, let there exist a matrix B such that

A;B_l, j=1l,...,r have all leading principal minors positive. Then F is a

homeomorphism.

Proof: Let y be arbitrary. Then, consider the homotopy: For x € Gj,

(k -1)/n < t <k/n,

H(x,t) = Cl'l(nt- k+1)x - a.i’{(nt- k+1), (2.2)
where af{(s) =(a:{,---,a-f{_1, (l-s)af( + 8Yy» yk+1,-~~,yn)~ Now, H(x,t) is

continuous. Also, Ci is defined by (2.1). We claim that 51 (0) has no
unbounded component. This is true since the contrary implies that for

some Uj’ we can find a sequence (xp,tp)G H'l(O), p=1,2,...

such that < ¢ oj - and MXPH -+ +®, Also, on some subsequence



XP/ﬂxpu -+ x*, tp + t*, t* € [0,1] and x* # 0. Also, there exists a k and

k-1 _ £ <
n_ — =

a sufficiently large p' such that for all p > p', Hence

o
Ci(ntp—k+l)xp - jf((ntp-k+l) = 0 for all ;i p'. Dividing by
‘lxp“3 and taking limits, since Ci(t) is continuous in t, we have
Ci(nt*-—k-+l)x* = 0, From Lemma 2.1, this is a contradiction. To see that
it is one-to-one and onto, we observe that since H_l(O) is bounded for each
y, and det(B) > 0, the degree of F(x) -y is 1. Also, since the set
{x: F(x) = y} has isolated points, the result follows from the Poincare-Hopf
theorem [8], and Lemma 2;2.

This proof is similar to the proof of Theorem 5.1 of (7]. It differs
from it in the use of the homotopy (2.2). The homotopy (2.2) is based
on H, suggested by Kojima [6] for use when the mappings may be separable,
and follows the notation of Saigal [12]. Here the row-wise separability is

used.,

§3. Relationship between the two sufficiency conditions

The -aim of this section is to show that the sufficiency condition of
[7] is weaker than that of [4]. For this, we introduce the following from

Saigal [13]:

Lemma 3.1: Let A and B be two real matrices. Then (1- t)A + tB is non-

singular if and only if AB_1 has no real eigenvalues negative.

Proof: See Lemma 3.1.1 [13].
We now prove a proposition, before establishing the relationship between

Theorems 1.1 and 1.2.

Proposition 3.2: Let A have all proper principal minors positive. Then,

there exists an €* > 0 such that for every e € (0,e%*),

det(AE(e) - AI) > 0 for all A <0,



where

E(e) = g2

Proof: We will prove that there exists an e* > 0, bl"“’bn

> 0 such that

det[AE(e) - ALl > (=M™ + elb (-1 + 522‘11:2(-x)n'2

n-1 n
+oeee 4 g2 Tl bn_l(—l) + g2 -1

for all ¢ in (0,e*) and A < O.

This result is clearly true for n = 1, for which

det (AE(g) - AI) = =) + €ay,

b
n

and we can take b, = a,,. Now, assume that the result is true for n =

E |

1,2,...,r and consider the case n = r+1, Let A = [——l—?]. Then

a

det[AE(e) - AI] = det|{-=---f-2--
aE(e) g2 y= A
|
_ AE(e)! €2'p
= (-A)det (AE(e) - AI) + det] —==~ "~ %
aB(e), e? vy
= (-\)det(AE(e) - AI) + 6 (h,e)
and, from the induction hypothesis, there exists an e%, bl""’br > 0
such that for each € in (0,e*)
- -1
det (AE(e) - AI) > (=M {(-0)T + eb (-1)F
- T
ces’ 2 -1 - 27=1
+ + € b (-2 + ¢ br}



and we can write

2r+l -1 oF -
d(A,e) = ¢ det A + ¢ o (XA,e)

where ¢ (0,e) = 0, and ¢ (\,e) is a polynomial of degree r, and it is a

continuous function of ¢. Hence, we obtain

r+1

b
det (AE(e) =~ AI) > (=1 + gl 71 (-0F

r b r+1
+ oo + g2 -1Tr 0T+ €2 =1 det A

for all sufficiently small ¢ > O and every A < 0, and we are done.

. Now, let F be a piecewise linear function on the subdivision I, and
let T150,5ee050, be the unbounded pieces in I. Also, let A" be the Jacobian

of F on o i=1,...,r, respectively. Then we can prove that:

Theorem 3.3: Assume there exists a matrix B such that A™B™!, i =1,...,r,

has all leading principal minors positive. Then, there exists a B such that

AlB'l, i=1,...,r, has no negative real eigenvalue.

Proof: From proposition 3.2, there exists an ei > 0 such that for every e
i_- . . .
in (O,ez), A"B~1E(e) has no negative real eigenvalue. Hence, choosing an

e <€t for i =1,...,k, we define B =E(s)-1B and the result follows.

%
i
A consequence of Theorem 3.3 is that the conditions of Theorem 2.3 imply

those of Theorem 1.2. In figure 3.1 we present a homeomorphism satisfying

the conditions of Theorem 1.2 with

1 -
B = .

Since I and -I appear as Jacobians of the pieces of linearity, there exists

no matrix B for which the conditions of Theorem 2.3 are satisfied.



§4, A local version of Theorem 1.2

In this section we consider the conditions of Theorem 1.2 that if
Ai, i=1,...,r are the Jacobians of the pieces of linearity of the un-
bounded pieces then there is a matrix B such that (1- t)B + tAi is non~
singular for each t in {0,1], and i = 1,...,r. Since this condition is
only put on the unbounded pieces, it is global in nature, and the result
is then proved by a degree theoretic argument. We now show that there is

a local version in which the result can be proved as a corollary to the

Theorem of Palais:

Theorem 4.1: Let F map R" into Rn, and let F be a local homeomorphism.

Then, if [ FX) | + = as x| + @, F maps R® homeomorphically onto RE.
We now state our condition:

Condition 4.1: Let x be such that it lies in pieces OpseeesOs and let

1 r
A ,...,A be the Jacobians of the pieces of linearity of F respectively. There

i
exists a B such that (1 -t)B + tA is nonsingular for each t in [0,1] and

i=1,...,r.
We now prove our main theorem:

Theorem 4.2: Let F map R into R" and satisfy condition 4.1 for every x

in R®. Then F maps R" homeomorphically onto R".

. RN . B ] .
Proof: Our claim is that for every x in R, if x lies in TyseeesOs and

only these pieces, then there exists an extension of the pieces o5 to ci
such that ci, i=1,...,r, subdivide R®. From Theorem 1.2 the mapping is
thus a local homeomorphism at x. Since any PL mapping satisfying the above
condition is norm coercive (i.e., if | x| - « then [£(x) | + ®), our result

now follows from Theorem 4.1.



We now show that the Theorem 13.2 of Eaves [2] follows as a corollary
to the above Theorem 4.2.

Let Fi(x) be the ith csmpaheht fuhéfiaﬁ”bf'F: and let éJgéheric piece
of linearity of this function be ci. Now, for each x in R" define
cf,...,oi. to be the pieces in which x lies, for each i = 1,...,n, and let
a? be th: gradients of Fi on c? for each j = l,...,ri, respectively. Then,

define aFi(x) = hull{a;: j=1,...,r. } and
i

3F(x) = F, (%) x 3F, (%) x =++ x3F_(x).

We note that each element of 3F(x) can be associated with a matrix whose ith

row beloﬁgs to gfi(x).'_Hence, we will comsider the elements of 3F(x) as

matrices with this property.

We now state the condition of Theorem 13.2, [2].

Condition 4.2: For each x in Rn, each H in 3F(x) is nonsingular.

Theorem 4.3: Condition 4.2 implies condition 4.1.

Proof: This follows readily by observing that a piece of linearity o of F
is the intersection of certain pieces of linearity o" of Fi, i=1,...,n.
Then, for x € o, if A is the Jacobian of F(x), Ai € BF(xi). The result then

follows by observing that 3F(x) is convex.

Using Lemma 2.1, it can also be shown that condition 4.2 implies the
sign property (1.2) and thus Theorem 13.2 [2] also follows as a corollary
to Theorem 2.3.

As another corollary to Theorem 4.2, we now put conditions on the
pieces of linearity and then prove a necessary and sufficient condition for
F to be a homeomorphism. We will say that a subdivision of R” is regular
if for any two pieces ¢; and 0,, either g, 1 g, = ¢ or o; and 0, meet on

a common facet (a (n-1) dimensional face). An example of a regular
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subdivision of R? is given in Figure 4.1. We can then prove:

Theorem 4.4: Let F be a piecewise linear mapping from R" into RP, and let
the subdivision generated by the pieces of linearity of F be regular. Then,
a necessary and sufficient condition that F map R homeomorphically onto R"
is that the determinants of the Jacobians of the pieces of linearity of F

have the same sign.

Proof: We now show that condition 4.1 is satisfied, and thus the sufficiency

would follow from Theorem 4.2. Let x € g, MNYeoeN Gr and let the Jacobians

of the pieces of linearity be Al,...,Ar

. We now show that (1-t)Al + tat
is nonsingular for all t in [0,1] and i = 2,...,r. Since the subdivision

is regular, o; N o is a common facet. Hence
Al = Al 44 bt
i’i
for some column vectors ai and bi' Thus
i ] ] T
A-t)A" + tA* = A +taibi

and, using standard arguments, det ((1-t)Al + tAi) = det (Al + taibz) =
1+ th(Ai)—lai. But, since det Ai >0, 1+ b?_(Ai)—lai > 0, hence we have
our result since t < 1.

To see the necessity, assume that the determinants of the Jacobians
do not have the same sign. Then, there exist two pieces 0, and 9, such that
det (Al A2Z) <0, and o, N o, is a common facet. Thus, [(1- t)Al + tAa2]d=0
for some t and d # 0. We claim, without loss of generality, that there

exists X, € o X € g, such that x, -x, = d and X, + td € o, N g5

12 72 2 2 1
- = al - - A2 : 1 - =
Now, F(xl) F(xz) Atx, a; A x, + a,. Since A (x1 + td) a;
Az(x2 + td) - a,, we see that F(Xl) = F(xz), a contradiction.
We reproduce an example from [7] to show that any necessary and suffi-

cient condition for a mapping to be a homeomorphism must also include some
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information of the pieces, and thus these would be of the Theorem 4.4 type.

This example is given in Figure 4.2. The matrices

-1 1 1 =2 1 - -1 0
b b b
-2 0 0 -1 0o - 2 1
are Jacobians of the pieces of linearity of the mapping of Figure 1.1,
which is a non-homeomorphism, and thus from Theorem 1.2, there exists no
matrix B satisfying condition 4.1 at x = 0. As can be readily verified,

. . . n . s
this example is a homeomorphism of R™, and this is a counterexample to any

necessary and sufficient conditions put only on the Jacobians.

§5. Acknowledgment: Section 4 of this paper benefited from discussions

with A. Mas-Colell.
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