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81. Introduction

Let S be a closed convex polyhedral subset of Rn, the n-
dimensional Euclidian space, and let I be a class of closed convex poly-
hedral subsets of S which partition S. A function F from S into S is
called piecewise continuously differentiable (PCl for short) on the
subdivided polyhedron (S,Z) if it is continuous, and for each piece
o in I, F0 = F|o (the restriction of Fto o) is a continuously differen-
tiable mapping. The problem we consider in this paper is that of estab-
lishing conditions under which F maps S homeomorphically onto F(S);
i.e., F is one to one and onto.

One of the early works establishing such a result is that of
Gale and Nikaido [6], which is often used to establish the uniqueness
of solutions. Their result states that if S = {x: a; = Xi'é bi} and
F is a continuously differentiable mapping from S into RP, then if the
Jacobian matrix DF(x) of F has all principal minors positive, then F
maps S homeomorphically onto F(S). H. Scarf [21] had conjectured that
since in the nonlinear eemplementarity problem, such a strong requirement
on the Jacobian can be considerably weakened (see, for example,

Corollary 2.6, Saigal and Simon [19]) , Such a weakening

should be possible for the hypothesis of the Gale-Nikaido theorem.



This was verified by Mas-Colell [12]. He also further generalized the
result to the case when S is a compact .convex polyhedron, and showed
that such a result would be false for non-convex objects. The proof of
[12] involved the use of degree theoretic arguments (a possibility of
which had been foreseen by H. Scarf). Later, Garcia and Zangwill [7]
again verified this conjecture, using the norm-coerciveness theorem
[5.3.8, 15]. Their result is on a rectangle S, but a slight weakening
of the requirement on the derivatives was achieved. In this paper, we
further generalize this result. In one generalization, using degree
theoretic arguments similar to those of [12], we establish the result
for PCl mappings. In the other, we find conditions under which this
result holds, when the derivatives may be singular. Under a similar
hypothesis involving negative determinants, we. show that our approach
fails for PCl cases. In Kojima and Saigal [11l], such an hypothesis was
successfully used in the context of the nonlinear complementarity‘
problem.

In case the restriction to each piece in I of the mapping F is
affine, we call it a piecewise linear mapping, and, for brevity, PL.
Considerable attention has been paid to the study of such mappings (see
for example, Eaves and Scarf [4], Fujisawa and Kuh [5], and Ohtsuki,
Fujisawa and Kumagai [14]), as well as to the problem of generating PL
approximations (see, for example, Charnes, Garcia and Lemke [1], Kojima
[8,9], Saigal [18]). In addition, several authors have contributed to
the conditions under which such mappings are onto (see for example Chien
and Kuh [2], Rheinboldt and Vandergraft [15]). Also, a set of conditions
under which the mapping is a homeomorphism are developed in [5] and [14].
In this paper, we present a sufficiency condition which appears

weaker than that of [5], and for some examples, i.e., [Fig. 7, 5], our



condition is satisfied. By an example, we show that it is not necessary,
and that any condition only on all subsets of the Jacobians of the
pieces cannot be necessary and sufficient.

After presenting the terminology and notation in section 2, in
section 3 we calculate the local degree of certain PCl mappings. In
section 4 we prove the extension of the Gale-Nikaido theorem for PCl

mappings, and show by a counter example that the appropriate negative
condition on certain minors of the Jacobian is not sufficient to guaran-
tee a homeomorphism. In section 5 we prove a sufficiency condition
under which a PL mapping is a homeomorphism and in section 6 we present
two PL mappings which are homeomorphisms. One of these mappings is
generated by the Samelson-Thrall-Wesler [20] partition theorem, and the
other by the recent result of Kojima and Saigal [10] relating to the
linear complementarity problem with negative principal minors. The later
example is presented in the hope that it will help to generate conditions
insuring homeomorphisms with the hypothesis that certain minors of the
Jacobian are negative. Finally, in section 7, we show how our results

can be extended to include the case when the appropriate minors of the

Jacobian may be zero.



82. Notation and Definitions

In this section we present the notation and definitions that
will be needed in the subsequent sections. In particular, we establish
some properties of subdivided polyhedrons and functions on them.

By a bounded polyhedron, we represent the convex combination of

a finite collection of points. Also, given a set T, we represent by

r r
i.e. = = z . =
HT the subspace spanned by T, i.e., HT {y:y iéikixi’ i=lvkl 1,
xist} ~ T, and thus the origin is contained in H . A convex set of the

form {x + Ay: A 2 0} is called a half line. We will call the convex
hull of a finite collection of points and half-lines in R" a convex
polyhedral set. The dimension of a set is the dimension of the subspace

spanned by the set.

rd

. The interior &, and the boundary 3¢ of a set-o, are the
relative interior and boundary of the set in the affine subspacé Hc + 0. Also,
a subset 1 of o "is called a face of ¢ if for every x and y in ¢
0 <A<1and (1-A)x + Ay in T imply x and y are in t. It can be
readily confirmed that the faces of convex polyhedral sets are also
convex polyhedral sets. For an n-dimensional set ¢, a (n~l)-dimensional
face is called a facet.

Now, given a convex polyhedron S and a finite class I of non-
empty subsets of S, we say (S,I) is a subdivided convex polydedron of
dimension n if:

a) elements of I are n-dimensional convex and polyhedral, and
are called pieces;

b) any two members of I are either disjoint, or meet on a
common face;

c) the union of the pieces in [ is S.
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4Let (S,Z) be a subdivided compact polyhedron of dimension n,

with S in R°. Then, there exists an extension I' of & such that (Rn, Z')

is a subdivided polyhedron. This can be observed by defining the pro-

jection mapping:

l|x-p@ |]= min || x-y || (2.1)
y-eS

and noting that I” is generated by adding the pieces P_l(T) for 1 a face of

some o in I to thoée‘already in I (see figure 2.1).

Now, let F: S - R® be a continuous function on a subdivided
polyhedron (S,I). We say F is PCl, i.e., piecewise continuously differ-
entiable, on (S,I) for each piece ¢ in I .if there exists an open set Bc
containing ¢ such that Fc = Flo can be extended to Bc continuously
differentiably. In particular, it is called piecewise linear if Fc is
affine, i.e., F (x) = A x - a_ for some nxn matrix A and n vector a_.

o o o o] g

Now, given a subdivided compact polyhedron (S,I) and a mapping

n . . 1 . 1 . n oo,
F: S »+ R which is PCT on (S,Z), there exists a PC™ extension to (R ,I')
when the subdivision I is extended by the projection mapping (2.1).

This mapping is FoP: RP - Rn, and as can be readily verified, it is

PCl on I'.



Figure 2-1




§3. Local Degree of pct Mappings

In this section we consider subdivided polyhedron (Rn,Z), and a
PCl mapping F: RY > R". Our aim is to get sufficient conditions which
establish the local degree of such a mapping. We now have a lemma,

which will then be used to prove the main result:

Lemma 3.1 Let % be such that DFo(i) is nonsingular for all o containing
®. Then, there exist positive numbers « and € such that
A >
[|[F(x) - F®) || £ of|x-2|] (3.1)

for allxe B (&) = {x:||x-%|| = e}.
€

Proof: Let ol, 02, e o s ok be all the pieces of I which contain %.
Then, there is a &§ > 0 such that
k

Bé(x) CiT;Iloi
Let o'e {oi: i=1, . . .k} . For each xeBo(x) N o', we have

[[FG) - FR[| = [[DF_, (@) x-2)[| + of|[x-%[[)
and since DFU,(X) is nonsingular, there is a a' > 0 such that

[|Fx) - F@®)|] 2 20" ||x-2|]| + o(]|x-2}]).

Hence, there is a § > ¢' > 0 such that

[[FG) - F@®) || = a'|[x-%]| for all xeB_(2) N o'
and letting & be the smallest &' and ¢ be the smallest ¢', we have our

result.
n
Lemma 3.2 Let F be continuously differentiable, and H a subspace of R

of dimension = n-1. Then F(H + wv) contains no open set, for all veRn.

Proof: Let P be the projection mapping P:R" - H, and consider FoP:

R" > R®. We note that rank (D(FoP)) is less than aequal to the dimension
of H. Hence, from Sard's theorem, Milnor [lB],FoP(Rn) contains no open

ball, and thus F(H) since P(Rn) = H. The result follows by considering



FoP' where P' = P + v.

We now prove our main theorem:

Theorem 3.3:
Let 28Rn, such that det(DFc(i)) is positive (negative) for every
containing &. Then, there exists ¢ > 0 such that deg(F,Bs(i), F(R))

+1 (é -1) for each § in - (0, g).

By Lemma 3.1, we have ¢ > 0, a > 0 satisfying the hypothesis of
the lemma. We shall now show the theorem for the case when det (ch(ﬁ))
> 0 for all ¢ containing X.

Let 0 < § < ¢, B = Bs(i), y = F(®) and 3B the boundary of B,
Then, from lemma 3.1,

[IF(x) - F(®)]] 2 as for all xe3B.

Since F is continuous, there exists a . # > 0 such that
IlF(x)—qll = a8/2 for all x in 3B and q in hull { F(B B(;:))}

Let qeB (X). Now, consider the mapping G(x) = F(x) + y-q,

and the homotopy H: Bx[0,1] - R® defined by H(x,t) (1-t)G6(x) + tF(x).
Then, for (x,t)in 3Bx[0,1] we have

al2. .

v

[JEG, ) - y]] = |]F@ - (ty + Q-0))]]

Hence, by the homotopy invariance theorem, deg (G,3,y, = decg
(F,B,y).

Since DFO(x) is nonsingular for all x in B.N ¢ and ¢ containing
%, using the inverse function theorem, it can be.established that
F(Ba(ﬁ)) contains an open ball U, Also, from lemma 3.2, the image

F(t) of a proper face 1t of any piece ¢ contains no open ball.



9. .

Thus, we can choose a q in U such that B = {xeB: G(x) = g}
does not intersect any facet of a piece g. Hence, as the B is a set of
isolated points, and the local degree of each xeB is +l, we have, from
the fact that the degree of a mapping is the sum of local degrees (from
the Poincare-Hopf theorem, Milnor [13]); that

deg (G,B,y) 21
and we have our result.

We observe that the above result cannot be strengthened. For
this, consider the piecewise linear function of Figure 3.1. The degree
of this mapping at 0 is 2 and the determinant of Jacobian of the linear

mapping on each piece is positive.



10

1
a4 - 1 0
11 0o 1
-1 1
-1 0

—
o

4x = -Xx

Figure 3.1
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84, PCl Homeomorphisms of Convex Polyhedrons

Let (S,Z) be a subdivided compact polyhedron, and let F: § -+ Rn
be a PCl mapping. In this section we consider the conditions on F and S
under which F maps S homeomorphically onto F(S), i.e., F(X) = y has a
unique solution for each yeF(S). The results presented in this section
are in the spirit of the recent extension of the Gale-Nikaido theorem [6]
by Mas-Colell f12] (see also Garcia, Zangwill [7]).

Let P: R* =+ S be the projection mapping (2.1), and let G: R® + R
be the mapping

G(x) = FoP(x) + x ~P(x) (4.1)

We observe that G is a PCl mapping on the subdivided polyhedron
®"%,z").

We now state our condition, which is the same as the one used
by Mas- Colell [12] (compare also with condition (ii), Corollary 2.6 of

Saigal and Simon [19]).

Condition 4.1 Let x in S lie in a face T of S. Also, let x be an

element of g where g in § is a piece such that dim g O T = dim T’.HT be

the subspace spaﬁned by T and % the projection mapping of R? onto HT.

Then, the linear mapping PTpDFB(x): HT > HT.has positive determinant.
Under this condition, the following can be proved as is done

for Lemma 1 in [12] (see also [lemma 3.4, 19]).

Lemma 4.2: Let x be arbitrary, and lie in the pieces di, i=1, .. ., k
in Z'. Then Det DGo(x) > 0 for each ¢ = Oi’ _i==l, .« .5 k.

We now prove our main theorem.
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Theorem 4.3: Let (S,I) be a subdivided compact convex polyhedron, and
let F: S + R" be a PCl mapping. Also, let F and S satisfy condition

4.1, Then F maps S homeomorphically onto F(S).

Proof: Extend & to a subdivision L' using the mapping (2.1), and let
the mapping G of (4.1) be the corresponding PCl extension of F.

Now, from Theorem 2.3, since the condition 4.1 implies that the
determinant of ¢ ig positive in each piece, for each x in Rn, there
exists an open ball B such that

deg (G,B,F(x)) %= 1. (4.2)

Let A be a nxn positive definite matrix, and consider the
homotopy

H(x,t) = (1-t)Ax + t(G(x)-y) (4.3)
for any yeF(S). We now show that H—l(O) is bounded, and thus the degree
of G-y is +1 since it is homotopic to a map of degree +l1. But, this is
true, since for sufficiently large x, XTAx > 0 and

XTG(X) - xTy = xTx - xT (FoP(x) - P(x) -y) > 0@
since FoP(x) - P(x) + v is bounded.

Now, using the Poincare-~Hopf theorem and (4.2), we conclude
that, for each 'y in F(S), {x: F(x) = y} is a singleton, and we are

done.

Note: This theorem is false if the property of positive determinants is
replaced by negative determinants. A counterexample for a PL mapping is
given in Figure 4.1. This demonstrates that such an extension for Cl

mappings involving I = {S} may also be hard, and conjecture that in

this case, the result is true (see also. [12]1).
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€5. On PL Homeomorphisms of R

In this section we give a set of sufficient conditions for a
piecewise linear function in R® to be a homeomorphism. Let (Rn,Z) be a
subdivided polyhedron, and let

F:R" + R"
be piecewise linear on this subdivision, i.e., PCl with affine on each
piece of I. Sincé L contains a finite number of pieces, outside some
compact region, points of R" lie in some unbounded piece in E. Let
these unbounded pieces be numbered ¢

1’ 02, . o ey ck for some k, and let

Flci(x) = Aix - a; for some nxn matrices Ai. Then, we can prove:

Theorem 5.1: Assume that the Jacobian matrix of each piece of linearity
of F has a positive determinant. Also, let .there exist'a matrix B such
that (1-t)B + tAi is nonsingular for each te[0,1] and i =1, . . ., k.

Then, F is a homeomorphism.

Proof: Let y be arbitrary. Then, consider the homotopy

H(x,t) = (1-t)Bx + t(F(x)-y); te[0,1] (5.1)

We claim that H—l(O) has no unbounded component. This is true,
since the contrary implies that for some({, we can find a sequence
(xp,>tp)eH-l(0),p =1, 2, . . . such that xpeci and ||xpll-—#w. Also,
on some subsequence xp/[!xpll - x*,tp > t*, t*c[0,1] and x* # O.
Hence, from (5.1) (l-tp)Bxp + tP(A:.Lx:‘p - ai) - tpy = 0. Dividing by
I]xpll and taking limits, we get

(1-t*)Bx* + t*Aix* =0
which is a contradiction. Now, to see that it is one to one and onto,
we observe that since H—l(O) is bounded for each y, and det(B) > 0 (see

Saigal [17]), from the homotopy invariance theorem, the degree of



15

F(x)-y is -1 for all y. The result then follows from Theorem 3.3.

The onto part of the theorem also follows from the works of
several authors, including Chien and Kuh [2], Rheinboldt and Vandergraft
{16]. The sufficiency condition of Theorem 5.1 is different from that
of Fujisawa and Kuh [5]. In Figure 5.1 we present a homeomorphism
satisfying the conditions of our theorem with B = [1 -i . Also,

2 2
since I and -I appear as Jacobians of the pieces ogilinearity, no linear
transform of it will satisfy the condition of TS], though there is a linear
transform for which the homeomorphism of [Fig. 7,5] will satisfy the
condition. Now consider the example of Figure 5.2. This is a.homeOmorphism
which does not satisfy the condition of Theorem 5.1, and is thus a
counterexample to the necessity of our condition. To see this, note that

-1 © 1 -2 1 27 -1 o
the matrices , s s , are Jacobians
2 1

-2 1 o -1{ fo -1

of the pieces of linearity of the non-homeomorphism of Figure 4.1,

and, for these, thus, there is no matrix B satisfying the conditions
of Theorem 5.1. We also observe that this example is also a counterexample
to any set of necessary and sufficient conditions §ut on all subsets of
the Jacobians of the pieces of linearity.
Theorem 5.1 is true if the property of positive &eterminants
is replaced by negative determinants. Also, if the unbounded pieces satisfy the
conditions of Theorem 5.1, it can be readily shown that {x : £(x) = y} has

an odd number of elements, if each of its elements lies interior to some piece.



A corollary to Theorem 5.1 is the following result which can
also be considered as an explanation of the boundary condition 4.1.
Let (S,Z) be a subdivided compact convex polyhedron, with F:S —+ R" a

piecewise linear fumnction. Then, we can prove

Corollary 5.3: Let (S,I) admit an extemsion (Rn,Z') such that F can be

extended to F' on R" with F'|o' _ affine, and F' satisfying
the conditions of Theorem 5.1. Then F maps S homeomorphically onto
F(S). |

Two applications of this corollary are given in the next

section.
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86. Two PL Homeomorphisms

We now present two PL homeomorphisms; one satisfies the suffici-
ency condition of Fujisawa and Kuh [5] while the other does not. The
first homeomorphism is constructed by the use of a matrix which has
gll principal minors positive, and thus establishes the sufficiency part
of the Samelson, Thrall, Wesler [20] partition theorem. The other is
constructed by using a matrix which has all principal minors negative.
In the process of the construction, we will prove the main theorem of
Rojima and Saigal {10], and this can be conéidered a degree theoretic
proof of the same. We now introduce the necessary notatiom.

Let I = {1, . . ., n} and U and V be nxn nonsingular matrices.
Now, for any J I, let WJ = (Wl, . o ey Wn) be the nxn matrix with

U jeJ
Wi = (6.1)

' j#J

Also, let pos(A) = {y: ¥y Ax, s z 0} represent the cone generated by a
_ . > . < A

matrix A. For J & I, let o(J) = {x: x; = 0, jeJ and 5, = 0, jéJ},
and by % = {e(J): F & I}, 1In this case, (Rn,Z) is a subdivided poly-
hedron. Now, define the PL mapping F: R® + R" by

F(x) = I U.x, + Py V.x, (6.2)

eJ .
j 373 jgg 1

for x in o(J).

6.1 The First Homeomorphism

We now prove our first homeomorphism theorem:

Theorem 6.1 Let U, V, W., J € I, be defined as above, and let det (U) > 0,
det (WJ) > 0 for each J. Then F is a PL-homeomorphism of R" onto Rn,

on the subdivided polyhedron (Rn,z).
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Proof: On each piece of I, F(x) = WJx for xe0(J). Also, det (U—1Wj) =
det (U_l) det (W;) > 0 for all J. By choosing J 233 1, we can show
that each principal minor of U"—lWJ is positive. Hence, for eéch J, we
have det ((1-t)U + tWJ)) = det (U)(det((l-t)I + tU-lWJ) > 0 since U-lWJ
has all principal minors positive (see Lemma 3.1.1, Saigal [17]).
Hence, the result follows from Theorem 5.1.

As a corollary of this theorem, we prove the sufficiency part

of the Samelson, Thrall, Wesler [20] partition theorem.

Corollary 6.2 Let U,V, W., J €I be defined as above, and det (U) > 0;

with det (WJ) = (-l)IJI when [J] is the number of elements in J. Then,

the collection of cones A = { pos(W): J = 1} partitioms RT.

Proof: Define

¥, itd

and we note that the mapping F(x) = WJx, xe0(J) is a PL mapping. Also,
since det (ﬁ&) > 0, F(x) is a PL-homeomorphism from theorem 6.1. This
corollary follows by observing that the cones of A are images of the

cones of Z.

6.2 The Second Homeomorphism

In this section we consider U = E (the identity matrix) and
i f 0 a matrix having all principal minors negative. Then Kojima and
Saigal [10] have shown that F defined by (6.2) is not a homeomorphism
of R on the subdivided polyhedron (Rn,Z}' In this section, we will
show that there exists a PL-homeomorphism G of Q = Rp\Rﬁﬁ onto Q such
that Fog is the identity mapping on Q (where Rn+ is the ﬁﬁn—negative

orthant).
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Now, define L' = Z\\c(I). Then (Q,Z') is a subdivided polyhe-
dron (which is not convex). Define F as the restriction of F as'(defined

by (6,2))to Q. We now state some preliminary results.

Lemma 6.3: Let V + 0 and have all principal minors negative. Then,

there is a d > 0 such that Vd > O.
Proof: See Lemma 2.1, [10].

Lemma 6.4: Let V have all principal minors negative. Then all proper

principal minors of V—l are positive.

Proof: See Lemma 4.1, [10].
Now, for d > O such that Vd > 0, consider the homotopy:

H(x,t) = (1-t)V(x+d) + t[F(x) + Vd] (6.3)
Lemma 6.5: H T(0)(MQx[0,1] = .

Proof: Assume the contrary that there is a (x,t)¢3Qx[0,1] with
(x,t)eH—l(O). Then, x z 0 with J = {j:xj > 0}, ,Jw <n. Thus, if
J# 0, (1-t)Vx + tWox = -Vd, or multiplying by V-l, we get

(1-t)x + £V Wox = - d. (6.4)
Now, let A be the - principal minor of V-l in VQlWJ. "Then, from
(6.4) we can conclude that AX < 0, X > 0 has a solution. But, from
Lemma 6.4, A has all positive principal minors, which leads to a contra-
diction, [6]. Also, J # @, since the contrary implies that x = -d.

We are now ready to prove our main result.

Lemma 6.6: {x:F(x) = -Vd} is a singleton.
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Proof: Assume the contrary. Then, since Lemma 6.5 implies that in
H-l(O) no solution inside Q lies on a component . intersecting 3Q, there
must be an unbounded component inside Q.
But, since f(x) = W.x for some J &I, and V-l-W

J J

principal minors, using arguments of theorem 5.1, we get a contradiction.

has all positive

Thus, the result follows.

Theorem 6.7 For any yeQ, T = {x: F(x) = y} is a singleton. Also,

T <q.

Proof: For any yeQ, y # O and thus T No(I) = @... Hence,
for each x in T, det DF(x) is the same as the determinant of some principal
minor of V, and so det DF(x):-< 0. Hence, from Theorem 3.3, deg (F,B,y)
S -1 for some neighborhood B of x.
Now consider the homotopy
H(x,t) = F(x) + (1-t)Vd - ty.
and we note that H(x,0) = 0 has a unique solution X = -d, from Lemma
6.6. Hence the degree of H(x,0) is -1. Also, H-l(O)tz‘Qx[O,l] is bounded,
and hence by the homotopy invariance theorem, H(x,l) has degree -1.

Since deg (F,B,y) = deg (F,B,y) € -1, the result follows.

We now prove the main result of this section.

Theorem 6.8: Let V * 0 and have all principal minors negative, U = E
and F as defined by (6.2). Then there exists a PL-homeomorphism G on

a subdivision of Q such that FoG is the identity on Q.

Proof: Let A be as in corollary 6.2 and let A' be the collection of poly-
hedrons of the type &i =c N {x:xi £ 0} i=1, .. ., n and ceA.
Then it is readily confirmed that (Q,A') is a subdivided polyhedron.

Define G:Q » Q by y » {x:F(x) = y}. This is well defined by
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Theorem 6.7. Also G is PL, and for y in pos(WJ), J# I, G(y) = WJ-ly,
and that it is a homeomorphism of Q onto G(Q).
We now give an example of such a mapping G Let V = - ?

4 -6

For this case

1 2 -1 0
W=V, Wiy = W = ,
p w Tl L y 1
3 01 1 1/3 -1
-1 -1 -1
W, = W = , W =
¢ 2 1/ t o -1¢]” 13 L1

The pieces of linearity of the mapping G are given in Figure 6.1
Also, as can be readily confirmed, G, in R2, has a PL extension
onto R2 which is also a homeomorphism of R2. For the above example, if

one added R+2 = g{(I) to the set A', and extended the mapping Gmaby

G(y) yeQ
G(y)=
Wy yeo (1)
-1 1/3
where W = (the matrix consisting of the nontrivial columns of
4 -1/6

W{i})’ G maps R2 homeomorphically onto R2.
We conjecture that G has such aan.extens®n in n dimensional

Euclidian space as well, but see no way to prove this.
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§7. Extensions When the Jacobians May be Singular

Our aim in this section is to extend the results of Sections
3 and 4 to cases when the Jacobians of the mappings may be singular.
Our main assumption is that for any y in Rp, the sets of the type
{x:F(x) = y and DF(x) is singular} are finite. We then show that the
results of section 3 can be extended, and thus a further extensién of
the Gale-Nikaido theorem [6] is obtained.

We consider a subdivided polyhedron (RP,Z) and consider a PCl
mapping F: R” + R” on it. Then, an extension of the Lemma 3.1 is the

following.

Lemma 7.1: Let % be in R™ and o O be the pieces in which it

10

lies. Suppose that {xsoi: F(x) = F(R) and DFU (x) is singular} has at
i
most a finite number of elements, for each i. Then, for each EO x 0,

there is a 0 < ¢ < EO such that

[|F(x) - F)|| >0 if |k - &]] =e.

Proof: Let €g. > 0, y= F(R) and X = U__{xeci: F(x) = y and DFcﬁ (x) is
singular}. Since X is finite, there is a positive number 3§ < eol

such that B = Bs(x) C:U-ai and 3BfX = f. Hence, for each x inj3B, we

have either F(x) # y or F(x) = y and DFU(x) nonsingular. In the former
case, by the continuity of F, there exists ¥(x) > 0 such that yéF(BY(X)(x)),
and in the latter case, by Lemma 3.1, a vy(x) > 0 such that yEF

[By(x)(x) \ {x}1. LetvVvs= » ;{gBBint (BY(X)(X)), and, as can be

readily confirmed, V is an open set im Rp with 3B=V and F(x) # y for

all xeV\ 3B.

Hence we can choose 0 < g < § with the required property.
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We now use Lemma 7.1 to compute the local degree of a mapping.

Theorem 7.2: For every piece ¢ in £ y in Rp, let

(7.1) det DF (x) 2 0 for all xeo.

(7.2) {xeo: DFG(x) is singular} contains no open set.

(7.3) {xe0: F(x) = y and DFG(x) is singular} has at most a finite
numbe:,of elements.

. n ) .
Then, for every x in R and e, > 0, there is 0 <& < ¢

8 a

such that

v

deg (F, B-e(§>, F(2) 2 1.

Proof: Let x in R" and €g > 0. By Lemma 7.1, there is a positive
number ¢ < €g such that for B = Bs(ﬁ), y = F(x) we have
[|F(x) - y|| > 0 for all xeds.
Using arguments identical to those of Theorem 3.2, we have our result.
We note that if, in (7.1) we assumed that the det (ch(x)) = 0,
then, by an identical argument, we could establish that deg (F,y,B) = -1.
We now weaken the hypothesis of Condition 4.1 so that we can
obtain a further generalization of the Mas-Colell [12] generalization
of the Gale-Nikaido Theorem [6].
Consider a PCl mapping F:S > R on the subdivided compact

convex polyhedron (S,Z). We now state our conditionm.

Condition 7.3: Let T be a face of S and o a piece in I such that the

dimension of T = o N T is the same as the dimension of T. Then
(7.4) PT ol DF&(x): HT > HT has non-negative determinant for each x in .

(7.5) {xet: PT.DF (x) is singular} has at most a finite number of
o .

elements.
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We now show that if condition 7.3 is satisfied, then the condi-

tions of theorem 7.2 are satisfied.

Lemma 7.4: If F satisfies the condition 7.3, then the mapping ¢ defined

by (4.1) satisfies the conditions of Theorem 7.2.

Proof: Let (Rn,E') be the subdivisiom on which G, defined by (4.1), is
PCl, and let ¢ eE'_be an unbounded piece., Then.there exists a face F
of S and Gef such that if Tt = ¢ N T, dim T = dim T, .and B(x)et for
all xeo; and

Dgc(x) = PTDFG(BEX)) + 1 --PT for all xeo. Now, by using the
same argument as in the proof of Lemma 1 of [12], we have (7.1), and

det DGc(x) = 0 iff PTDFB(géx)) is singular. (7.6)
If dim HT = (0, then DGc(x) = I for all xeo and (7.2) holds. We now take
dim Hyp z l. Now, assume the set {xeo : DGc(x) is singular} contains an
open set X. Then, the projection PT(X) of X into HT is open and
By DF=(Pn(x)) is singular on P (X). Since, dim B} = 1, this
contradicts (7.5). Thus we have shown (7.2). It follows from (7.5)
that there exists a finite number of points xl, x2, e ey = in T such
that PTDFE(X) has a positive determinant if Xet and x # xi, i=1,
m. Let yeRp and Y = { xeo : G(x) = y and DGc(x) is singular}. By (7.6)

we obtain

m . . .
YeU {xeo: Béx) = xl, F(xl) +x -x= v}
i=]1
m . .
cU { xeRn: F(xl) +x ~x= v}
i=1

and we see that {xeRn: F(xl) + xl - x y} has at most one element,
and thus (7.3) follows.

Thus, we obtain the following theorem.

*
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Theorem 7.5: If F satisfies condition 7.3, then F maps S. homeomorphically
onto F(§8).
Proof: The theorem follows directly from Theorem 7.2, Lemma 7.4, and the

argument used in the proof of Theorem 4.3.

§. POSTSCRIPT. Recently it was brough to our attention that G. Chichi-
linsky, M. Hirsch and H. Scarf have also verified the extension of the
Gale-Nikaido theorem as considered in [12]. In.addition, Y. Kawamura has
extended the homeomorphism theorem of Fujisawa and Kuh [5] to the case where

the functions are Lipschitz continuous.
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