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DYNAMICS UNDER UNCERTAINTY

1. TINTRODUCTION

This paper is a preliminary investigation of dynamics under uncertainty.

We attempt to develop a general approach to the continuous time stochastic pro-

cesses that arise in dynamic economics from the maximising behaviour of agents.

The analysis builds on recent results of Bismut [2,3] concerning the character-
isation of the extrema of stochastic variational problems over a finite horizon
and on our own investigations [6,7,20,21] of the stability properties of the

equations of dynamic economics.?

We consider a class of discounted infinite horizon maximum problems. While

it is convenient to pose the basic economic problem as a stochastic control prob-

lem, to obtain the full benefit of Bismut's elegant characterisation of a maxi-
mising process it is convenient to transform this problem into an equivalent

stochastic variational problem along the lines indicated by Rockafellar [27] in

the deterministic case and generalised by Bismut [2] to the stochastic case.

Within this framework we show that the idea of a competitive path introduced in

the continuous time deterministic case in [21] generalises in a natural way in

the case of uncertainty to a competitive process. We show, under a concavity

assumption on the basic integrand of the problem, that a competitive process

- which satisfies a transversality condition is optimal under a discounted catch-

ing up criterion (section 2).
In section 3 we examine the sample path properties of a competitive pro-
cess. If for almost every realisation of a competitive process the associated

dual price process generates a path of subgradients for the value function, we



call the process McKenzie competitive, since it was McKenzie [22] who first rec-
ognised the importance of this prcperty in the deterministic case. We show that
two McKenzie competitive processes starting from distinct nonrandom initial con-

ditions converge a2lmost surely if the processes are bounded almost surely and if

a certain curvature condition is satisfied by the Hamiltonian of the system.

The earlier convergence result extensively studied in the deterministic case
thus continues to hold in the stochastic case. The problem of finding suffi-
cient conditions for the existence of a McKenzie competitive process remains an
open problem.

Section 4 examines the long-run behaviour of the probability measure asso-

ciated with a competitive process. We give conditions under which a McKenzie

competitive process is a Markov process with an invariant probability measure

and show that under the curvature conditions of section 3 the competitive pro-

cess converges to a unique stationary stochastic process.

Section 5 is a preliminary analysis of intertemporal market equilibrium.

We consider the simplest case of rational expectations eguilibrium for a com-

petitive industry with a fixed number of firms producing a single output where

the firms face an exogenously given demand function for their final product.

We show that a sclution of an associated consumers' surplus problem, which we

call the extended integrand problem, generates a rational expectations equilib-

rium. We use the results of section 4 to give conditions under which the result-

ing Markov process converges to a unique stationary stochastic equilibrium pro-

cess. This generalises the earlier work of Lucas-Prescott [17] and the subse-
quent results of Brock [5] and Scheinkman [29].

A number of questions raised in this seétion are examined in greater detail
in [19] and [4]. 1In [19] Magill provides a more detailed analysis of the shadow

prices and risk costs on which firms base their investment decisions. The




security market, by indirectly informing producers of these variables in the pro-
cess of valuing the securities of the firms, is shown to play an important role

in determining an optimal allocation of investment among the firms. An alter-

native approach to the problem of intertemporal equilibrium is developed in the
paper of Brock [4] where the capital theoretic framework of this paper is relat-

ed more directly to the well-known financial theory of the capital market.

2, COMPETITIVE PROCESSES AND THE TRANSVERSALITY CONDITION

let (2, 9,P) denote a complete probability space, J a o-fieldon Q and P a

probability measure on ¥ . Let I=[0,») denote the non-negative time-interval

“and (I,M,u) the complete measure space of Lebesgue measurable sets M , with

Legegue measure u. Let (OxI,d,Pxu) denote the associated complete product

measure space with complete measure P xu and o-field H > F xM. Let (Rn,.M,n),

with n 21, denote the measurable space formed from the n-dimensional real Euclid-

ean space R" with o-field of Lebesgue measurable sets MDD Let

k(w,t) = (@x1,#) » ®, M)

be an H-measurable function (random process) induced by the following

STOCHASTIC CONTROL PROBLEM. Find an d-measurable control v(w,t) € U< RS,
s 21, such that

sup ffe-stu(w,t,k(w,t),v(w,t))dth(w), §>0 @b
veU QT

t t
k(w,t) =k + [£(w,1,kw,1),v(w,0))dr + Jo(u,1,k(w,0,v(0,1)])dz(w,1)  (2)
0 0
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is a nonrandom initial condition. u(-,k,v), f£(*,k,v), 0(*,k,v) are ¢ -measurable

where ueRl, f= (fl,...,fn) eRn, o=

random processes for all (k,v) in KxU <& R x R and u(w,*), fw,*), olw,*) are

. . m . .
continuous on I xKxU for almost all w, while z(w,t) eR, m21, is a Brownian

motion process. Let

31‘; = 3(2(&),‘[‘), TE [O:t])

denote the smallest complete o-field on 2 relative to which the random variables
{z(w,‘r), TE [O,t_:]} are measurable. We require that k(w,t) be S't—measurable for

all teI, so that f(+) and o(*) are nonanticipating with respect to the family

of o-fields {?t’ teI}. To ensure the existence of a unique random process

k(w,t) as a solution of (2) we make the following

ASSUMPTION 1 (Lipschitz and growth conditions). There exist positive constants

o, B, such that

(i) ”f(w,t,k,v)—f(m,t,ﬁ,v) ” + Ho(w,t,k,v)—o(w,t,i,v)” < a”k—EH

for all (k,v), (k,v) € KxU, for almost all (w,t) € Qx1I.

A

(i1) £ (o, £k, ]| + JloCo, t,k,9 ]| = 8(1+]x]|?)

for ail (k,v) € KxU, for almost all (w,t) QxTI,

0]

We will exhibit a Asufficient condition for a random process to be a solu-
tion of the_problem (1), (2) in terms of a certain price support property, the
nature of which is most clearly revealed by restricting the stochastic control
problem (1), (2) in the manner of Rockafellar-Bismut [27, p. 188; 2, p. 393] as

follows. Consider the new integrand



sup u(m,t,k,v)l flw,t,k,v) = i, og(uw,t,k,v) =0

o U
L{w,t,k,k,0) = Ve

-, if there is no ve U such that f(w,t,k,v)==ﬁ, o(w,t,k,v) =0

Remark. L(w,t,*) is upper semicontinuous for all (w,t) € ©xI and

L(w,t,k(w,t),E(w,t),o(w,t)) is M -measurable whenever k(w,t), ﬁ(w,t) and o(w,t)

are #-measurable.

We impose indirect concavity and boundedness conditions on the functions
u(w,t,*), f(w,t,*) and o(w,t,*) and a convexity condition on the domain K xU by

the following

ASSUMPTION 2 (Concavity-boundedness). L(w,t,*) is concave in (klg,o) for all

(k,ﬁ,o) £ Rn=<RP'XRpm, for all (w,t) € ©xI and there exists y eR, ly] <o, such

that L(+) <y for all (w,t,k,k,0) € @xIxR xR xR,

EXAMPLE. Consider the following matrices, whose coefficients are dl-measurable

nonanticipating random processes. Let {A(w,t),F(w,t),Hi(w,t)} be n xn,

{N(w,t),G(w,t),Di(w,t)} be nxs, {B(w,t)} be sxs, ci(m,t) be nx1, for

i=1,...,m. We require that [?A ﬁ] be positive definite for all (w,t) e x1I,
N' B

KxU = R"xR® and let
uw, t,k,v) = __% k A(w,t) N(w,t)i{k
v N'(w,t) B(w,t)!| v
flw,t,k,v) = Flw,t)k + G(w,t)v
m m .
o(w,t,k,v)dz = ) o dz, = ) (Hi(w,t)k + Di(w,t)v + oz(w,t))dzi

It is immediate that Assumption 2 is satisfied.



DEFINITION. Let (k,l.c,o) = (k(w,t), l.c(u),t) s o(w,t)) denote the H -measurable

random process defined by the equation

t t
k(w,t) =k + Jk(w,Ddt + [o(w,1)dz(w,T) (3)
0 0

where k0 ¢ K€ R is a nonrandom initial condition, and where there exists an

M -measuratle control v(w,t) € U such that
IE(U),T) = f(U),Tsk(w,T) ,V(U),T)]9 o(w,t) = U(U)9T9k(wsT) ,V(U),T))

for almost all (w,t) ¢ @xI. In view of Assumpticn 1

f(f”k(m,r)” dt + f”o(w,r)” dr}dP(w) < o, for all tel 3!
olo

We let ® denote the class of random processes satisfying (3) and (3)', where

Iz(w,T), o(w,1) are H-measurable and nonanticipating with respect to the family

of o-fields {‘&’t, teI}. The .control problem (1), (2) then reduces to the fol-

lowing

STOCHASTIC VARIATIONAL PROBLEM. Let L satisfy Assumption 2, let L(w,t,°*) be

upper semicontinuous for all (w,t) € x1I, and let L(-,x,v,s) be H-measurable

for all (x,v,s) ¢ R" XRn Xan. Find an #-measurable random process (k,l.c,o) e @

such that

sup [ 1% L (w, £, k(w,t), K(w,8), o (w,t) )dedP(w) (4)
(k,k,0)c@® Q I

In order to give (4) a broad interpretation we introduce the following

DEFINITION. Let & <(® denote a class of d.-measurable random processes

(k,l.c,cr). A random process (k,k,5) ¢ & is optimal (in X) if

i

T
f f " (L(w, t,E,k,5) - L{u, T,k,%,0))dtdP(w) 2 O (5)
Q0 :



for all random processes (k,fc,o) e .
DEFINITION. Let

p(w,t) : (2xI,H) » (R, MD)

denote an dl-measurable random price process dual to k(w,t). We let
(p-6p, p, M) = (f)(w,t) - ép(w,t), p(w,t), W(m,t)) denote the dl-measurable random

price process defined by the equation

t t
+ fﬁ(w,r)d'r + fﬁ(w,r)dz(w,T) (6)
0 0

plw,t) = P,

n . _
where po eR is nonrandom and where p(w,7) and 7T(w,7) are H-measurable random

processes, nonanticipating with respect to the family of o-fields {S"'t, t EI},

with values in (Rn,»M.n) and (an,Mnm) respectively and which satisfy

t
15 (w, 1) sz'r + Jl|m(w, 1) llzdr]dP(w) <, for all tel 65"
0

o"*\ﬂ

I

Let @ % denote the class of random processes defined in this way.

The following concept is fundamental to all the analysis that follows.

DEFINITION. A random process (1_<,1_<,5) e @ is competitive if there exists a dual

random price process ('1.3—6’;3, P, M) € ®* such that
(3-6p) "k +p'k +tr (75') + L(w,t,k,k,5) 2 (5~6B) 'k +P'k+ tr (Fo') +L(w,t,k,x,0) (7)

for all (k,l.c,cr) > RnXRHXan, for almost all (w,t) £ Ox1I.



Remark (Economic interpretation). A competitive random process is a random

process (k,k,G) ¢ ® that has associated with it a dual random price process

(ﬁ-dﬁ, D, ™ e ®* under which it maximises profit almost surely, at almost every

instant. For —-(p - 6p) denotes the vector of unit rental costs, -7 denotes the

matrix of unit risk costs induced by the disturbance matrix 5, while (1,P) is

the vector of unit output prices, so that

L+7p'k+ (P-6B)'k + tr (75")
is the (imputed) profit which is maximised almost surely, at almost every in-

stant, by a competitive random process.

Remark (Geometric interpretation). The random process (j.S—d'f), P, T) e P * gener-

ates supporting hyperplanes to the epigraph of -L(m,t,k,l'c,o) at the point (k,k,3)

for almost all (w,t) £ @xI. The hyperplanes parallel to a given supporting
hyperplane indicate hyperplanes of constant profit, so that the supporting hyper-

planes are precisely the hyperplanes of maximum profit at each instant.

Remark., Under Assumption 2 a random process (k,llc,o) e® is competitive if and

only if
(ﬁ(mst) - 8p(w,t), p(u,t), ﬂ(w,t)) € -BL(w,t,k(w,t) ,fc(w,t)o(w,t)) (8)

for almost all (w,t) ¢ QxI, where 3L denotes the subdifferential® of L(w,t,*).

(8) is a generalisation of the standard Euler-Lagrange equation.

DEFINITION. The Fenchel conjugate of —L(w,t,k,lz,o) with respect to (fc,o) will

be called the generalised Hamiltonian

s(w,t,k,p,ﬂ) = sup {p'l.c + tr (wo') + L(w,t,k,l.c,o)} {9)
(k,o) eRPxR™

Remark. g(w,t,k,p,n) is concave in k and convex in (p;ﬂ) for all (w,t) € @x1I

and is defined for all (k,p,n) ¢ R xRS xR



The following characterisation of a competitive path will be used in the

Corollary of Theorem 2.

LEMMA 1. Under Assumption 2, if G (w,t,*) is differentiable, a random process

(k,k,0) e @ is ccmpetitive if and only if

t t
k(w,tl) = ko + (j;‘gp(w,'r)dr + éﬁﬂ(w,'r)dz(w,r)

§)

t t
pluw,t) po + f[—"gk(w,r) + Sp(w,t)}dt + f‘rr(m,r)dz(w,r)
0

0

The equations (§), which will be called the stochastic Hamiltonian equations,

are a generalisation of the standard Hamiltonian canonical equations for a dis-

" counted stochastic variational problem.

DEFINITION. Assume that for all (x,v,s) e R xR x R°%
L(w,t,x,v,s) = L(x,v,s) for all (w,t) € Q%I

so that L is nonrandom and time-independent. When (4) is finite we define the

current value function, W(k) : " > R

W(k(t)) = sup E fe_G(T_t)L(k(w,T), k(w,T), o(w,T))dT (10)
(k,k,0)e® Tt

where Et denotes the conditional expectation given k at time t, and where k(t)

replaces ko as the initial condition in (3).
Remark. Under Assumption 2, W(k) is a concave function for all k K.

In establishing convergence properties, the following class of competitive

processes is of especial importance.

DEFINITION. A random process (k,k,5) ¢ @ is McKenzie competitive if it is com-

petitive and if the dual random price process Pp(w,t) supports the value function
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Wk(w,t)) - plw,t) "k(w,t) 2 W) - Fluw,t)'k (11)

for all ke Rn, for almost all (w,t) e Qx1I.

Remark. If (k,fc,o) e @ is McKenzie competitive then pO in (6) is determined by

the condition P, ¢ aw(ko) .

It is convenient for our purposes to recall Ito's Lemma [15, Thm. 6, p. 59]
in the following form. This result will be used repeatedly in the analysis that

follows.

LEMMA 2 (IT0). Let y(w,t), p{(w,t) denote H-measurable random processes

F(w,t) : (@xI,d) — R, M, o@t) : (@xI, &) — R, MM

which are nonanticipating with respect to the m~dimensional Brownian motion pro-

cess z, and satisfy, for almost all we Q,
t . t )
Ill}"(waT)lldT < @, f“p(u),T) ” dt < o, tel
0 0

and let y(w,t) : (OxI,H) — (Rr,,Mr) be defined by

t t
y(w,t) = yov + f}'f(w,r)d'r + fp(w,r)dz(w,‘t), tel
0 -0

+1
If V(t,v) :R°~ — Ris ¢! in t and c? in v then

t
vit, y(u,0)) = V(0,y ) + [V, (1, y(u, D) + BV (1, y(u,D}]dr
0

t
+ ny(T,y(w,r))'p(w,r)dz(m,r), tel
0

where ﬁV[t, v(w,t)] is the differential generator of the process V(t, y(w,t))

Bt y,t)) = Vy(t,y)'ir(w,t) + % tr (Vyy(t,y)p(w,t)p(w,t)') (12)
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THEOREM 1 (TRANSVERSALITY CONDITION).

A competitive random process (EJE,E) e £ with dual price process

(-6P, D, 7) ¢ P*, which satisfies the transversality condition

Tin Eoe—GTfj(w,T)'l_c(w,T) <0

T

is optimal in the class & of random processes for which

lim Eoe_éT‘ﬁ(w,T)'k(w,T) >0 (13)

T-»c0

Proof. The proof is a generalisation of the proof of Lemma 2 in Magill [21].

2 (w,t,k,k,0) = L{w,t,k,k,3) - L(w,t,k,k,0) + (P -6p) (k-k)

= . (14)
+3'(k-k) + tr (RG-0)")

denote the flow value lcss function for the random process (k,l.c,o) induced by

the random price process (1;3—65, P, W) of the competitive process (k,k,5). Multi-

. -6t . ; :
plying by e , integrating and rearranging terms, gives

T T
-5 - = _ . -85T = .
Eofe T[L(w,'r,k,k,c;) - L(w,r,k,k,o))d‘r = Eofe GTﬁ(w,T,k,k,c)dr
0 : 0

(15)
E =31 2 - Y »
+E0fe Efj_ﬁf’)'(k"k) +p'(k-k) + tr [ﬁ(o—'&)'ﬂdr
0
Lemma 2 applied to the function

- _5 _ —
V(t,k-k,P) = e tp'(k—k)

with (k-k, p) satisfying equations (3) and (6), leads to
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e 5w, )" (k(w,T) - E(w,T)) - $(w,0)" (kw,0) - k(w,0))

O +—H

e_aTl:(ﬁ— §p) "(k-k) + 'f)'(fc—li) + tr (‘Tr(0~6)'):ld'r
+ [T 5 (0 -5) + (k-K)'T)dz(w,1)
0
In view of (3)', (6)' and Proposition I-1 in.[2] we have

T
E fe T (0-) + (k-F)'T)dz(w,7) = 0
0

so that

T | :
5, [0 G- 4 5oy ex (1o-3)") Jar

0

(16)
= £, 50,1 " k() - K(w, D) - E $(w,0) ' (k(9,0) -k (u,0))
(15), (16) and k0=1‘<0 imply
T -8 - . T -8T = .
Eofe T(L(m,‘t,k,k,&) - L(w,T,k,k,O))dT = Eofe T-i!’,(w,'t,k,k,o)dT

0 0

(17)

+ EO[%‘GTﬁ(w,T)'(k(w,T)-E(w’T)i]

Since the competitivity of the process (k,k,3) e & implies i(m,t,k,ﬁ,o) 20,

(17) gives at once

T .
1im Eofe 6T(L(m,r,E,E,s) - L(w,7,k,k,0))dt 2 lim Ee STﬁ(m,T)'k(w,T)
T>co 0 ' T>w

- lim Eoe_STﬁ(w,T)'E(w,T) 20

T->w

so that (k,k,3) is optimal in the class cf random processes for which (13) is

satisfied. A
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3. CONVERGENCE OF McKENZIE COMPETITIVE PROCESSES

The sample paths of a McKenzie competitive process starting from nonrandom

initial conditions have a remarkable convergence property. Consider a point

k,0 €K and a McKenzie competitive process emanating from this point. Under as-

sumptions, which include a strict concavity assumption on the basic integrand

L, a McKenzie competitive process emanating from any other point ko e K converges
almost surely to the first process. This result, which has its origin in the
dual relationship between the prices and gquantities of a McKenzie competitive

process, may be stated as follows.

THEOREM 2 (ALMOST SURE CONVERGENCE) .

Let Assumption 2 be satisfied and let the function L be time-independent

and nonrandom as in (10). If two McKenzie competitive random processes

(k,k,0) ¢ ®, (K,k,5) ¢ @ (18)

with associated dual price processes

(-6p, p, M ¢ ®*  (5-65,5,7) ¢ @* | (18)"

starting from the nonrandom initial conditions

(kozpo), (ko,fac)

satisfy the following conditions

s , n__n )
(i) there exists a compact convex subset M@ R xR such that for all tel

(k(w,t), p(w,t)) (k(w,t;ko),p(w,t;Po)) e M

(k(o,t), B0, 0)) = (k(u,t5E ), Blu,t55,)] e X

for almost all we
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(11) there exists p >0 such that the function

V(k-k, p-5) = -(p-5)'(k-k) (19)
satisfies
£ V(k-k, p-p) £ -u|/k-k, p-p) |} (20)
for all (k-k, p-B) ¢ Y = {(k-k, p-P) | (k,p), (k,B) & M}

(iii) the value function is (a) strictly concave (b) differentiable (c) strict-

ly concave and differentiable, for all ke K where K = {k | (k,p) =M}

then (i), tii) and (iii)(a) imply
k(w,t) - k(uw,t) —> O a.s. as t>®

(1), (ii) and (iii)(b) imply

plw,t) - p(w,t) — O a.s. as t>o

(1), (ii) and (iii)(c) imply

(k(w,t) -k(w,t), pluw,t) —ﬁ(w,t)) — 0 a.s. as to®

Proof.* The first step is to show that V is a nonnegative superm.::-xrtingale.5 To

this end consider two points k, k ¢ K. Using the subgradient inequality (11) we

define the value losses at k and k by

Alk; D) = W) - W(k) + p'(k-k), P e aw(k)
- _ - (21)
ACk; p) = W(k) - W(k) + p'(k~k), p e aw(k)
The concavity of W(k) at k and k implies 420, A20 so that
A+48=-(p-7)"(k-k)=v20 (21)'

To simplify notation let y= (yl,yz) = (k-k, p-p) and let Y, = (kO—EO, PO_I_)O) .

Since the processes (18), (i8)' are nonanticipating with respect to the Brown-

ian motion process z, and since they satisfy (3)' and (6)', we may apply Lemma 2
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to the function V(y) =—y1'y2 to obtain

t t
V(y(w,t)) = V(y,) + B V(y(w,1))dt + [h(w,1)dz(w,1) (22)
0 G
where “h=-[(k-k)'(m-T) + (p-7)"(c-3)]

In view of (3)', (6)' and Proposition I-1 in [2]

Ih(w, 1) ||?dtdP(w) < ® for all tel

/
Q

Ot

t
so that fh(w,'r)dz(w,'r) . tel
0

is a martingale with respect to the family of o-fields {gt, t sI}. But then

E(h(w,t) | ‘}T) = h(w,t) = 0, T<t, T,t el

for almest all we R, so that (22) implies

t oy
E[v{y(w,t)) | 'J—TJ = V(y(w,1)) + E[[bv(y(w,e))del a'r}

T

and by (20)

E[v(y(w,t)) - vfy(m,T)) | ?T] = E{Eﬁv(y(m,e))de | 3’_{} <0

Thus E[V(y(w,t)] | ?T] s V(y(w,T)), TSt, T,tel

for almost all we @, so that V(y(w,t)) is a supermartingale relative to the
family of o-fields {?t, teI}. Since V(y(w,-)] is continuous for almost all
we Q by the almost sure continuity of y(w,*), the conditions of Doob's super-

martingale convergence theorem [23, p. 96] are satisfied. Thus there exists a
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random variable vo(w) >0 a.s. such that

V{y(w,t; YO)) —> \)O(w) a.s. as t->r» (23)

The next step is to show that \)0 (w) =0 for almost all we Q. Suppose therefore

that \)O(w) >0 for all weA e Q with P(A) >0. Then

0<% = fv (w)dP(w) = [v (w)dP(w)
0 QO 0 A 0

The tnequality 0 5 (lly, - lIy,lI]* = Ily, 12 + liv, 1% - 21y, 11y,

v

implies Flvll? 2 Iy My it 2z 1y/v,] (24)

(20), (22) and (24) imply

T
8(T) EV(y(w,T;YO)) - Viy) = EIﬁV[y(w,r;yo))dr
) 0

T _ T
Ef-ully(w, 3 yo) sz'r < Ef—zuv(y(w,r; yo))dr
0 0

A

In view of (21)', (24), and the fact that Y is a bounded set, there exists

0 <a <» guch that

0 = V(y(u,t; yo)) < %lly(w,t;yo) |2 <a a.s. for all tel (25)

(25) and the fact that V(y(w,t; yo)) is a measurable function of (w,t) for all

(w,t) € 2% [0,T], allow us to apply Fubini's theorem [14, p. 147] for all T<w=

T T
B(T) &< —Zuf fV(y(w,r;yo))deP(w) = —2uf fV(y(w,r;yo)}dP(w)dr
. Q0 0 Q
If we let \-fo(t) = jv(y(w,t;yo))dp(w)
Q

T
then B(T) < —Zuﬁo (t)dr
0
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(23), (25) and the bounded convergence theorem [14, p. 110] imply

Vo(t) —> Go as t -+

Hence for any O<¢ <30 there exists Te such that t > Te implies

0
] T
so that - B(T) £ -2u f ('\'50- e)dt
T

€

Thus B(T) can be made arbitrarily negative by suitable chcice of T <~, thus con-
tradicting Vz0. Thus vo(w) =0 for almost all we®, as was to be shown.

To complete the proof we note that Az20, A20 impliés that V=0 if and
"only if A=A=0, which implies that W is an affine function on the iine segment
connecting k and k. Thus if W is strictly concave k-k = 0. If W is differen-
tiable in k, the affine function between k and k defines a hyperplane which

coincides with the tangent hyperplanes at k and k so that p-F = Wk(k) —Wk(E) = 0.

If W is differentiable and strictly concave, V=0 implies k~k = p-p = 0 and

the proof is complete. A

Remark. It is natural to conjecture that the results of Theorem 2 may be ex-

tended to the case where L is time-dependent provided W(k,t) satisfies the con-

ditions in (iii) uniformly for all teI.

Remark. Consider the flow value loss € in (14) and recall the definition of

the value loss A in (21). If we define 2 = ¥ (w,t,k,k,3) by transposing the

barred and unbarred terms in (Jl4), as in the definition of A in (21), then

2+ 2 =DvV-sv

If flow value loss arguments are made on the surface L(k,k,c) in the same way

that value loss arguments are made on the surface W(k) in the proof of Theorem 2,
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it may be possible to show that
(l.c(w,t), G(w,t)) - (li(w,t), E(w,t)) —> 0 a.s. as t>® (26)

by imposing boundedness conditions on each of the terms in (26) and giving suf-

ficient conditions for® V+0 a.s. as t >,

Notation. It is useful to view the matrix of risk induced prices 7 as being

composed of m p-dimensional column vectors

11 1m
| m cee T
1 m
T= T oo T_| =1.
nl nm
T eee W

The generalised Hamiltonian may then be viewed as a function of m+2 n-dimen-

sional column vectors

§ (k.p,m = G (k,p,m,..., 1)

COROLLARY (HAMILTONIAN CURVATURE CONDITION).

The following conditions are sufficient for (20). For all (k,p,m) eMXan

8
s T8 2T . .
(i) K = s is uniformly positive definite

71 G,

(ii) ‘g 147 i=1,...,m are non-negative definite.
il

Proof. In view of Lemma 1, the competitive process (k,l.c,a) e®, (p-8p, p, M e ®*
is a solution of the stochastic Hamiltonian equation (§). Similarily

(E,E.,B) e®, (5—65, P, M) e ®®* is a solution of a Hamiltonian system (g). If we
appiy Lemma 2 to the function (19), then (20) becomes

_ =1 P -\, B v i -1y > . - ! = -
BV(y) =-| (k-k) & 5+ (»® (§p-§p) +.Zl(ﬂ -77) (§T!i-‘§ﬂi) +6(p-p) (k-k)] (27)

1=

where ?}k:gk(i’ﬁ’ﬁ’ and similarily for gp’ 'g , i=1,...,m. Let A, 3B,
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Cl" .o ,Cm be n xn matrices, A and B pcsitive definite and Cl,. . ,Cm non-negative
definite. Consider the following curvature condition on the generalised Hamil-

. tonian ‘9 (k,p,m

G&E,p,m £ Glk,p,m + G (R-K) - 3 &-%)'AR-K)

m . .
—_— - > T = _ ._1_ 1
§k,5.™ 2 Gk,p,m +G G-p) + izl}’jﬂi(ﬂ ™)
+7G-»'BG-p) +5 L (F-m)C G -1
i=1
if we make the same evaluation at (k,p,7) in place of (k,p,T) we obtain
Gk,5,M <Gk,5, M +G k-0 - 3 k-1 "ak-k)
- - S ] o i i i
§k,p,m 2§k,5,M +G (p-5) + izlgﬂim -7)
(29)

m . . . .
+3@=-5)"Bp-5) +5 | (*-T)'c(m -T)
i=1

multiplying (28) and (29) by -1 and adding all four inequalities gives

m . s
el P . = ! v 1 1,1 v
05 k-B)'"(§ -F) + -5"§,-§) + izl(n -7) @ﬂi“‘é’vﬂﬁ

m . . . .
- &-B'AK-F) - G-B'B(p-5) - ] (r -T)'c (m-T)
i=1

but then by (27)

m . . . = -
BVG) s -((k-fc)'A(k-E)+(p-f>>'B<p—f>> + )@= e =T +<s<p-fa>'<k-k)]

i=1

We now choose the matrices A=-—§kk, B ='§pp, Ci= e i=1,... ,Am so that
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¢ ) .
_ _Ty Y T =y = l__l o l_..l o =\ '"r1_i
BVG) s - (k) 'CG) (F) + (-5) G, , (o-P) +izl('ﬂ ) gwiﬂi(ﬂ ™) +6(p-P) '(k k)}
— ) — =
k-k| [§, $1][k-%] ,
s-l [ J < -ullyl
P 2 pp| (PP
I R i i 5
since z (m =7 )"S , (T =-T")2 0, u>0 being the minimum eigenvalue of K. A
i=1 TTl‘lTl
A T oir i
DEFINITION. The function ‘g(k,p,'rr; v) = u(k,v) +p'f(k,v) + z ™ o (k,v) will be
i=1

called the generalised pre-Hamiltonian.

Remark. g(k,P,ﬂ) = sup ‘é(k,P,'ﬂ'; V)
—_—. velU

If we assume that the maximum lies in the interior of U, then the condition

'§V=0 leads to the optimal control
v& = v¥(k,p,m
so that the generalised Hamiltonian is given by
g(k,p,ﬂ) =‘§[k,p,7r; v*(k,p,'f.’))

Using the fact that '§v=0 we obtain

A

Gic =§k+@v'vi G
S
G- ﬁni +§V'V§i ='§ﬂi

so that the m+2 matrices required for the Hamiltonian curvature condition are

It
i

£ (k,v¥(k,p,m))

ot (k,v*(,p,m) i=1,...,m

readily evaluated without explicitly calculating the generalised Hamiltonian,

A A i
= S = ] = P i =1.
gkk .S'kk + -gkv Vi .§PP fv VP, gﬂiﬂi o, Vﬂi i=1,...,n (30)

—_t — ) m

A BRI i

EXAMPLE. 'g(k,p,ﬂ; v) = —%[k‘} LA Ii”ik-} + p'(Fk +Gv) + z mt (Hik+Div+oo)
' v N' B v ‘ i=1
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A o ir
‘gv=p'c—k'N-v'B+Zﬂ D, =0
i=1

since B is positive definite, B-1 exists and

m .
vk = v*(k,p,m) = B_l (G'P - N'k + Z D:;_ﬂl)
i=1

= - = - = _ 1,0 - = o - =11
ykk A, ﬁkv N, g B N $0 that'gkk (-A NB N')

1 -1
f =¢G v¥ = B 'G' so that =GB G’
? .gpp

v P
ol = D., vk = B_ID'. so that '§ ., . = D.B_ID'., i=1l,...,m
v i i i mini i i
Thus the Corollary requires that
r -
s J(a-¥BTIN") %I
Ko = 8 -1
I GB G

‘<, . s . -1 A . . . -1 .
be positive definite, since B ~ positive definite implies§ . . = D.B D' is non-
vﬂlﬂl 1 —1

negative definite, i=1,...,m.

The reader is referred to Magill [21, sec. 4] for a detailed geometric and

s s . - S ‘s
economic interpretation of the K curvature condition.

4, CONVERGENCE TO INVARIANT PROBABILITY MEASURE

In this section we consider the long-run behaviour of the probability
measure of the prccess arising from the maximising behaviour of agents. To
this end we consider problem (1), (2) with u, f, and o nonrandom and constant

over time.

Let W(k(t)] denote the current value function
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W(k(t)) = sup Et fe_é(T-t)u(k(w,T),‘v(w,r)}dr (31)
velU t
' t t
where k(w,t) = ko + ff(k(w,r), V(w,r))dr + fc(k(w,T),'v(w,T))dz(w,T) (32)
0 0

Let W(k) be a ¢? solution of the generalised Hamilton-Jacobi equation [12, p.159]

u(k,v¥) + S"*W(k) - sW(k) =0

where  u(k,v¥) + ‘bv*w(k) - SW(K) = sup {ulk,v)+DW(K) - sW(k)}
velU

BWW =W 0"k, v) +5tr (i, Kok, ok,v)")

and where we assume that v* is a unique interior maximum such that
vE(k) = v*(k, W, (k) , W x))
DEFINITION. Let v¥* denote an optimal control which solves (1), (2). If v¥* de-

pends only on the current state, v¥*=v¥*(k), then it will be called an optimal

policy function.

LEMMA 3. If an optimal policy function v*(k) exists such that

£¥(k) = £(k, v¥(k)), o*(k) = ok, v¥(K))

satisfy a Lipshitz condition for some a e R, for all k,i c K

l£%k) - £2 (k) || + ||o*(k) - o* (k) || 5 of|lk- k]| (33)

then the optimal process

t t
k*(w,t) =k + [£%(k(w,7))dt + [fo* (k(w,1))dz (w,T) (34)
0 0 .

6

is a continuous® Markov process.

Proof. (Dynkin [11, Thm. 11.4, p. 349].)
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ASSUMPTION 3 (Compactness). K is compact and k*(w,t) eK for all (w,t) e Qx1I.

We recall some basic facts associated with the analysis of the homogeneous
Markov process (34). The reader is referred to Dynkin [11] for a complete
analysis.

Consider the measurable space (K,B) with Borel o-field &, the o-field
generated by the open sets of K. Let ®(K,B) denote the space of continuous

functions on K and let "V'(K,B) denote the space of finite countably additive

set functions defined on ®. The Markov process (34) induces a transition func-

tion on (K,®)

Pt(k,A), keK, Aece@®, tel

where Pt(-,A) is a ® -measurable function for each Ae ® and Pt(k,-) is a count-

ably additive set function for each k EK; satisfying

Pt(k,A) 20 for all A @, Pt(k,K) =1, tel (35)

The transition function leads in turn to a family of linear mappings on the

spaces €(X,B) and V(K,B) defined by

T .g(k) = [e(P (k,dy), ge¥e, kekK, tel
K

T:d)(A) = fP (Y9A)¢(d}7)s. peV, ASB’ tel
R t

The property of conditional expectations combined with the Markov principle and

the time homogeneity of the process leads to the semigroup property

T:T’S" = T:+t’ s, t el (36)

The spaces €(K,B) and V(XK,B) are related by the scalar product

(259) = [g)$(dk), geT, ¢&V
K
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in terms of which the mappings Tt and T:, t €I satisfy the basic relation

(T8, 9 = (s, Ti®), ge¥, eV, tel 37

DEFINITION. ¢ e V(K,8) is called a probability measure if ¢(A) 20 for all

Ac®B and ¢(K) =1. The set of probability measures in V (K,B) is denoted by

I(K,B8). We say that ¢ e I(K,B) is an invariant probability measure if

T:¢ =¢ for all tel

¢ is thus a fixed point for the family of mappings {T:, tel}.

Since K is compact by the Riesz representation theorem’ [10, p. 265],

eK,B)*="V(X,B). If we endow V'(X,B) with the weak® topology then we say

- that the net qb_r e V' converges weakly to ¢ €V (in short ¢TE-> ¢) if
(g, 4>T—d>) — 0 as 1> for all ge€(X,B)

LEMMA 4. If an optimal poliicy function exists that satisfies (33) and if As-

sumption 3 is satisfied then

(1) T: is continuous in the weak® topology of V(K,8) and

T: : IK,B) — II(XK,B) for all tel

(ii) I(K,8) is a convex weak® compact subset of V(K,8).

Proof. (i) We start by showing that (33) implies

Tt :e®,B8) — wX,8), tel (38)

To this end let k(w,t; ko) and k(w,t; k1) dzncte solutions of the Ito equation
(34) where ko and kn are nonrandom initial conditions such that Hkn— k0 | ~o
as n+, In view of the Lipshitz condition (33), by a result of Dynkin [11,

p. 344, equation 11.36] for any € >0 there exists a nondecreasing function y(t),
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t €I such that

Blo] lko,t5 k) - kGo,esk) | > €) < D8k -k |17

Thus for any geT(K,B), tel

[

[Tglk(o,t5 %)) - glklw,t3k ))1dP(w) = Eglk(u,t; k)] - Eglk(w,t; k ))
0 0 n 0

Ttg(kn) - Ttg(ko). -~ 0 as n~+> ©

since P[ml Ig(k(w,t;kn)) - g(k(w,t;ko))l > 8} —> 0 as n>o®

Since ko e K is arbitrary, Ttg(k) is continuous in k for all keK and (38) fol-

lows. Now suppose

(g, ¢T-¢). — 0 as 1+ for all gee(kX,B)

then by (37)

(g, TH(O_-9)) = (T &, 6 -0) — 0 as oo

for all gee(K,8), since T, 8 ee(K,8) by (38). To complete the proof of (i)

we note that (35) implies that for any ¢ e I(K,B), tel

¢, (A) = T*(A) = [P (k,A)p(dk) 2 0, Ac®
t K t
¢, (K) = T*(X) = [P (k,K)¢(dk) = ¢(K) = 1
K
so that T:¢8H(K,<B).
(ii) This follows from Assumption 3 and [26, Thm. 6.4, p. 45]. A

THEOREM 3 (INVARIANT PROBABILITY MEASURE).

If an optimal policy function exists that satisfies (33) and if Assumption

3 is satisfied then the Markov process (34) has at least one invariant probabil-

ity measure.
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Proof. Since V' (X,®B) is a linear topological space in its weak* topology and
since the semigroup property (36) implies that {T:, teI} is a commuting family
of mappings, the result follows from Lemma 4 and the Markov-Kakutani fixed

point theorem [10, Thm. 6, p. 456]. A

Remark. Let HT* denote the set of all invariant probability measures of the

process (34) under the condition (33). Theorem 3 asserts H’I‘* ¥ é.

THEOREM 4 (CONVERGENCE TO INVARIANT PROBABILITY MEASURE).

If an optimal policy function exists that satisfies (33), if conditions

(i), (4i) and (iii)(c) of Theorem 2 are satisfied and if ¢ ecII(X,B) denotes

the probability measure at time t eI for the process (34), starting from a non-

random initial condition k0 e K, then cbt converges weakly to a unique invariant

probability measure ¢ as t +=, for all nonrandom initial conditions kO e K.

Proof. By Theorem 3 ¢ eI'[T'* exists. Let F(x) = ¢(k | k gx)} denote its distri-

bution function. By a well known result of real variable theory since K& Rn,

¢ may be characterised by F [16, pp. 95-98]. Choose kO eK. Let k(w,t; kO) de—
note the solution of (34) and let d)t and Ft(x) denote the associated probability

measure and distribution function at time t e I. Werecall the following definition.

DEFINITION. Let Ft(x), teI and F(x) denote distribution functions defined on

A
KCR'. We say that Ft converges weakly to F (in short Ft —> F) if

Ft(x) - Fx) — 0 as t+~ for all xeC(F)

where C(F) denotes the set of continuity points of F.

’ A
The following result is well known [1, p. 18]. _]_?t —> F if and only if g;t L
Now consider any ¢ >0. Let n be a random variable with distribution func-

tion F(x) and let k(w,t; n) denote the solution of (34) with initial condition
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n. Then by the formula for total probability

Pr{(w,n) | Hk(w,t;ko) -k(w,t3n) || > €}

= [P(u] Hk(w,t;ko) ~k(u,t [n=y) | 2 €)dF(y)
K

furthermore by the bounded convergence theorem [14, p. 110]

1im [P{w | [[k(w,t; k) - k(u,t [n=y)] 2 €)dF(y)
TeK (39)

= f t]:.im P{w | Hk(w,t;ko) -k(w,t | n=y)|| 2 €)dF(y)
K —~C0

Using the result on almost sure convergence in Theorem 2 and the fact that al-

most sure convergence implies convergence in probability [16, p. 151], we obtain

Puw| ”k(w,t;ko) -k(u,t [n=y)]] 2€) = 0 as t>e

for all y K, so that the limit in (39) is zero. But then

||k(w,t; ko) -k(w,ts n) H — 0 in probability as t—>

Since convergence in probability implies convergence in distribution [1, Thm. 4.3,

p. 26] we obtain

B
Ft —> F  so that q>t ¥ ) (40)

Consider EO e K, l_co #ko. Let k(uw,t; EO) denote the solution of (34) and let -(I)t
and f‘t(x) denote the associated probability measure and distribution function
at time teI. By an argument similar to the one above we may select H)aHT*,

with distribution function F(x) and show that

- - - -
F,—> F so that ¢ti’—>¢ (41)

We now make use of the following lemma.
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LEMMA 5. If k(w,t), k(w,t) denote random processes with distribution functions

g%(x), Ft(x), if there exists F(x) such that FtEL’ F and if |[k(u,t) -k(w,t) || =0

in probability as t >= then Ft 2, r.

Proof. (See Billingsley {1, Thm. 4.1. p. 25].)

Since it follows from Theorem 2 that

Hk(m,t;ko)-i(w,t;EO)H ~—> 0 in probability as t-—+w

(40); (41) and Lemma 5 imply ¢ =¢. Since in the weak® topology ¢t ($t) can

converge to at most one limit, the proof is complete. A

5. RATIONAL EXPECTATIONS EQUILIBRIUM

In this section we will show how the concept of a competitive process in
conjunctioﬁ with the stochastic Hamiltonian equations Cg), provide a useful
framework for the analysis of rational expectatioﬁs equilibrium. We examine
in particular a rational expectations equilibrium for a competitive industry in
which a fixed finite number of firms behave according to a stochastic adjustment

cost theory, by creating an extended integrand problem analogous to that of

Lucas-Prescott [18]. By applying Theorem 4 to the extended integrand problem,
we show that the capital accumulation process of the firms in the industry con-
verges to a stationary stochastic equilibrium process.

Consider therefore an industry composed of Nz 1 firms, each producing the
same industry good with the aid of nz1 capital goods. All firms have identical
expectations regarding the industry product's price process, which is an &{-

measurable, nonanticipating process
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r{w,t) : (2xI,H) > RY, M) (42)

The instantaneous flow of profit of the ith firm is the difference of its revenue

i1 . . . .
r(w,t)f (k (w,t)) and its costs Ci(vl(w,t)) where kl==(k11,...,kln) and

i i1 in . , th
v =(v ,...,v ) denote the capital stocks and investment rates of the i

i, i i, i . .
firm, and where f (k") and —-C (v') are the standard strictly concave production

and adjustment cost functions. 1If §>0 denotes the noanrandom interest rate,

then each firm seeks to maximise its expected discounted profit by selecting an

4¢ -measurable, nonanticipating investment process

vi(w,t) : ale,%f)'+ (Rn,J&n) i=1,...,N

such that

swp E o 0T r (o, e (kEw,0) - ¢ (v s, 1) Jan
i 09
v (w,t)

. t ., - t . . .
K (w,8) = kb + [vi(u,mdt + Joo (kK (w,))dz" (w, 1) (43)
° o 0
.41 T o494, i3y, ij
o (k)dzm = J (@ + oOJ)dz 4 (44)
j=1

s 2 s

i i . . . i
where H J, OOJ are nxn and nx 1 matrices with constant coefficients and z (w,T)
is an m—dimensional Brownian motion process. This model is a simple stochastic
version of the basic Lucas-Mortemsen [17, 24] adjustmeat cost model, with the
standard additional neoclassical assumption that the investment and output pro-
.th _. . .
cesses of the 1 firm have no direct external effects on the investment and
th _, .
output processes of the k  firm, for i#k.

On tke product market, the total market supply which is given by

N . .
Q(w,t) = ] £ (k" (w,1))
i=1
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depends in a complex way through the maximising behaviour of firms on the price
process (42). On the demand side of the product market we make the simplifying

assumption that the total market demand depends only on the current market price

v
o

Qpe,t) = ¥ (x(w,0)), r2

where P@Q >0, V'@ <0, Q

v
o

DEFINITION. A rational expectations equilibrium for the product market of the

industry in an # -measurable, nonanticipating random process (42) such that

QD(w,t) = Qs(w,t) for almost all (w,p) e QxI (45)

Remark. The firms' expectations are rational in that the anticipated price pro-

cess coincides almost surely with the actual price process generated on the

market by their maximising behaviour [25].

Consider the integral of the demand function

¥(Q = ?w(y)dy, Qz0
0

so that ¥'(Q) = v (@, ¥'(@ =v'(Q <0, Qz20

DEFINITION. We call the problem of finding N f-measurable, nonanticipating
investment processes
1 N nN N
(T (@,t)y cvns v (w,8)) ¢ (@xT,H8) > (R, M)

such that

0 N . . N . .
sup Eofe-sr[%( X flﬁkl(m,r)]] - 2 Cl(vl(w,r)i]dr &)
0 i=1

fvl(m,t),...,vN(m,t)) i=1

where (kl(w,t), ...,kN(w,t)) satisfy (43), (44), almost surely, the extended

integrand problem
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THEOREM 5 (RATIONAL EXPECTATIONS EQUILIBRIUM).

If the generalised Hamiltonian of the extended integrand problem (&) is

differentiable, if

(®(wst)s B, 8)) = (R (0,t)s vuvy B (0y8) s B (wrt) s nes Piw,t))

is a competitive process for (&) which satisfies the transversality conditien

1im Eoe'sTﬁ(w,T)'E(w,T) < (46)

T

In
o

and if for any alternative random process k(w,t) with ko _——_—_l-co

lim Eoe-éTﬁ(w,T)'k(m,T) >0 (47)

T->c0

then the ¢ -measurable, nonanticipating random process

N . .
Fu,t) = w[ Tty 0)) | 48)
i=1

is a rational expectations equilibrium for the product market of the industry.

Proof. Since the generalised Hamiltonian for the extended integrand problem is
differentiable, (l—c(w,t), ﬁ(w,t)) is competitive if and only if, writing (‘g) in

shorthand form,

dki = hl(pl)dt + ol(kl)dzi
i=1,...,8 (49)

i .1 ' N i, i~ 1
dp = [6p - ¥' () £ )t i

ﬂlJol::.]L]dt + 7z’
i=1 k j

1 k

I ~1H

-1

where h' = (c,) (48) and (49) imply

v
ak* = htph) + ot (xhHazt
. ‘ - ' ) m o o i=1],...,N (50)
dp = [(Sp:L - r(t.o,t)fl:.L - Z ﬂijoli]dt + rtdz"
kK 3=l ok
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(46), (47) and (50) are sufficient conditions for each firm to maximise expected
discounted profit, by Theorem 1. (48) implies that (45) is satisfied and the
proof is complete. . _ A

Remark. Theorem 5 reduces the analysis of a rational expectations equilibrium

to the much simpler analysis of the extended integrand problem ‘(E).

Let ‘g(k,p,'n) denote the generalised Hamiltonian for (&), then the K(S con-

dition reduces to

x' (-G, . )x 2
min —Zkk > (%J for all (k,p) ¢ Rn><Rn (51)
x#0 x'(§ y x :
PP
(‘{’"fll(fll)' yE 1} ‘P"fll(fNN)'
k° k k'k k™ k
where .Skk = : °. :
W"fNN(fll)' L [W"fNN(fNN)' + \yvaN N]
o k k k' k k k /]
- —_
C 11 0
-1 v'v .
) = . = C
(.Spp - v
N
0 C NN

(51) thus imposes a curvature condition on the production and demand functions

relative to the adjustment cost function. The condition is particularily sim-

0, ¥'=1) with quad-

ple in the case of an infinitely elastic demand curve (¥"

ratic production and adjustment cost functions. In this case the smallest

eigenvalue of the matrix
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KK

in the metric induced by the matrix Cvv must exceed (%}2, which is a condition
on the productivity of capital for each producer relative to the cost of adjust-
ment similar to that examined by Magill [21].

Let W(k)==W(k1,...,kN) denote the current value function (31) associated

with the extended integrand problem (£), then the optimal policy function is

v¥(k) = {hl(w &), .o, B N(k))] = £*(k) (52)
k! k

Since o*(k) is given by (44), if (52) satisfies a Lipshitz condition, if (51)
and Assumption 3 are satisfied, then by Theorem 4 there exists a stationary

distribution function F(x) = F(xl,...,xN), for the capital stocks of the N firms,

'r
such that Ft éi% F, where Ft(x) = Ft(xl,...,xj) denotes the distribution func-

tion at time te I for the process (34) generated by (44) and (52). The rational

expectations equilibrium for the competitive industry thus converges to a sta-

tionary stochastic equilibrium process.
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FOOTNOTES
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. We should also refer to the related work of Cass—-Shell [8], McKenzie [22]

and Rockafellar [28].

See Rockafellar [27, p. 207] and Bismut [2, p. 398]. |

We are grateful to F. R. Chang for helping to modify the proof into its
present form.

For a thorough analysis of this remarkable class of stochastic processes
the reader is referred to Doob [9, ch. VII] and Meyer {23, chs. V, VI].

We say that the process k*(w,t) is continuous if k*(w,-) is continuous for
all tel, for all we Q.

Since K< Rn is a metric space, every finite countably additive set func-

tion is regular. See Parthasarathy [26, Thm. 1.2, p. 27].



