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ABSTRACT

We point out the difficulties associated with measur-
ing the quality of an approximate (heuristic) solution by
“"Percentage-Error"” as is customary. We define a set of
properties that are to be expected from a proper measure
of solution quality and investigate the family of func-
tions which satisfy those conditions. In particular, we
show that for any class of 0-1 programming problems
approximate functions do exist and that they are uniquely
defined up to monotone transformations. We conclude with
several examples of linear functions which are suitable

for certain classes of problems.



I. Introduction

Consider the 0-1 integer progrem

(p) max c.x
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We will denote by U the universe of problems of the type p. For

pc U let
n <
F (p) =(xe{0,1]|j§1 aijxjoﬁbi iec M}
Z (p) = max cx
x € F(p)
0 (p) ={x¢ F(p) | cx = Z(p)

be the feasible set, optimal value, and optimal set for p respectively.

Let now PC U be a particular class of problems (say knapsack, travelling
salesman, set covering, etc.) and let A be an exact algorithm for P, i.e. such
that given any problem p € P, A finds an optimal solution, x € 0(p). The work
of Cook [17], Karp [ 6], and others indicates that for many interesting classes
of problems P (including the ones just mentioned), one is unlikely to find an
exact algorithm A which will be able to solve every problem p € P without,
on occasion, investing a computational effort which is essentially equivalent
to enumerating a significant fraction of the vertices of [O,l}N. It is also
well known that practitioners of Integer and Combinational Programming have
often been confronted with individual and classes of problems which defy

solution in '"reasonable" amounts of time. Thus, it is not surprising that
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a considerable amount of effort has been recently devoted to the analysis of
approximate (heuristic) algorithms, e.g., [ 3], [ 5], [7]. 1In contrast to an
exact one, an approximate algorithm finds a feasible solution, x € F(p), but
not necessarily an optimal one. The effectiveness of such an algorithm with
respect to the problem p must then be evaluated along two attributes: the
computational effort involved in finding x and the '"quality" of x as an ap-
proximation for the optimal solution. It is this second attribute which is
our domain of interest in this paper,

It will be more convenient to measure the 'quality'" of a given solution on
a negative scale, i.e., we will be concerned with measuring the '"distance', so
to speak, of x from an optimal solution. We will call this "distance'" the
Error associates with x and any function which attempts to quantify it, the

error evaluation of x relative to p, denoted EP(x,p). The main purpose of this

paper is then to investigate and characterize functions which can serve as error
evaluators. (It should be noted that this discussion has nothing to contribute
towards the resolution, and is independent of, the deeper question associated
with aggregating the characteristics of a given algorithm with regard to the
individual problems p € P, into a measure of effectiveness relevant to the
class P as a whole. It is only after a proper measure is established for the
individual problems that one needs decide whether averaging or worst case
analysis is the meaningful, tractable, practical, etc. method of aggregation.)
The organization of the paper is as follows. In section II we present a
set of properties to be expected from an error evaluating function and examine
them vis-a-vis the traditional ''percentage error' measure. In section III we
show that functions which satisfy the conditions introduced in section II do in-
deed exist. We then discuss the possible uniqueness of such functions. Finally,
in section IV, we conclude with several examples of error evaluating functions

for particular classes of problems,



IT. Basic Properties of Error Evaluating Functions

A given error evaluation function (E.E.F.) is not expected to perform
properly unless it satisfies a set of reasonable properties. 1In this section,
we attempt to propose such a set. To simplify notation, we will delete the
parameter P from our notation for EP(x,p).

The first two properties, A and B, require hardly a comment. An E.E.F.
should certainly be a monotone (at least weakly) function of the solution
value cx. Also, the error associated with an optimal solution can be conven-

iently set to zero. Thus:

2
Condition A. Let p € P, Xl,x € F(p)

2
cxlz cx = E(xl,p)s E(xz,p).

Condition B, Let p & P

x € 0(p) = E(x,p) =0

An E.F.F. often used by researchers is given by
El(x,p) = (cxp - cx) \ (cxp)
where x* € 0(p) is an optimal solution for p.
If P is such that for every p € P, cx? £ 0, then El(x,p) is easily seen to
satisfy conditions A and B. So, of course, do the functions

P

cX - CX

Ez(x,p)

Ey(x,p) = (cx” - ex)/ |c |

where C1 is the first (index wise) non zero entry in the objective row.

: 10 is x ¢ 0(p)
E4(x,p) 1 otherwise
ctce.

lLet us examine Ez(x,p) more carefully. One finds it hardly surprising



that this function is rarely proposed as an E,E,F. Intuitively, one feels

that the difference in the objective values is meaningless by itself and can

be gauged only relative to some other normalization factor. Put differently,
Ez(x,p) is unacceptable since its value can be arbitrarily manipulated by changes
of units in the objective function. Likewise, E3(x,p) can be rejected on the
grounds that its value depends on the particular order in which the variables

are indexed. Several authors have observed that similar objections can be often

raised with respect to E For instance, Cornuejols, Fisher and Nemhauser [ 2 ]

1"
examined a set of problems of the plant location variety. Such problems are
known to be invariant under addition of certain row constants to the cost matrix.
Yet, as noted in [ 2 ], the value of the error for a given non-optimal solution,
as measured by El(x,p), does change under such transformations. To overcome
this difficulty, an E.E.F. is proposed in [ 2 ] which is invariant under the
particular cost transformations in question. (An identical problem arises, of
course, when one applies El(x,p) as an E.E.F, for transportation problems,
general (as opposed to Euclidean) travelling salesman problems and the like).
A related objection to El(x,p) is brought forward by Korte in[ 7].
Consider say, the Binary Knapsack problem. This problem can be formulated as a
maximization or wminimization problem, the two versions being virtually equivalent,
But the value El(x,p) assigns to a given solution depends on the version chosen.
Even worse, one can show that for the maximization problem there exists a
fully polynomial, guaranteed performance (as measured by El(x,p)) approximation
scheme, [ 4]. Yet, the problem of solving the minimization version to a given
accuracy is NP complete [ 8]. As Korte suggests, this behavior casts some doubts
as to the appropriateness of measuring errors by El(x,p) for this class of problems.
Condition C below is designed to take account of the ideas brought forward

in the foregoing discussion. Basically, it enforces equality of the values



assigned by an E.E.F. to corresponding solutions in problems which are obviocus-

1y 'equivalent', but may appear different when viewed superficially. By equivalen:
we mean here problems which are related to each other by permutations of the

rows or columns, complementing of wvariables,and trivial algebric manipulations of
the objective function and constraints. But first we must digress for some
notation and definitions,.

For a problem p £ P, let us denote

c =c,
J
A = aij with aJ, (ai) the jth column (ithp )} of A.
b =">,
i
p =p, is '«" or "=" as the case may be.

1

We then have the more compact representation:

(») max cx
s.t. Axpb
Xe{0,1} "

On occasion, we will refer to p as (c, A, p, b).
For definitions 1 - 4 below, let p = (¢, A, p, D) € U, x€ F (p).

Definition 1 Let ¢ be a column permutation operator. By ¢p, we mean the

problem p' e, oA, p, B). x' =¢ x is defined accordingly.

Definition 2 Let m be a row permutation operator. By mp we mean the problem

p' = (c,mA, mp, wb). By nx we simply mean x.

Definition 3 Let SC N. We will denote by DS the operator which complements

the variables xj,j £ S.

i.e.:



with
S
S
i ¢S
ids
1
b, =b, « % a,
i i j€8 ij
Also
S ' A
Dx=x is given by
s 1-xj jes
j x5 jds

Unless specifically required, we will suppress the parameter S and refer to the

operator as D.

Definition 4 Let Mp ={1ic¢ M]pi is "="] be the index set for the equalities

of p. Let also

o
o AT QM € R+ be any set of M+l positive constants

Bo, .o BM € RMP be any set of M+l real, Mp dimensional vectors such

that the matrix B?, i€ Mp, j € Mp, is non singular. Then

Ga,sp=p=(C',A',p,b')
Where
c'. =q c, + ZB .o a
a'k.=akak. + 5 g%
] ] ieM 1 13
]
b =akb + Z Bkb
k. i i
icM
p
Obviously,



Again we will usually suppress the parameter g ,B and refer to the operator as G.

2
Definition 5 Let p1 € U, and let p € U be a problem obtainable from p1 by a

sequence of m, ¢, G and D operators applied in any order. We will then say
2 2 1
that p1 is reducible to p , denoted pl-» p . Also let x1 € F(p'), and let x2

1
be obtained from x by an identical sequence of operators. Then we say that

1

2 1
X corresponds to X_, X - x , relative top - p . One can easily verify that in

2’
2 2
this case, x € F(p ).

We are now ready to define the third property of E.E.F's:

1 2 2
Condition C. Let p ,p € P such that pl-a p . Further, let x1 € F(pl) and let

2 .
X~ correspond to x, relative to p1-+ p2,

1
Then:

1 1 2 2
E(x",p) = E(x ,p ).
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ILlL. TFurther Properties of Error Evaluating Functions

Condition C cuts significantly the number of available L.E.F.'s. TFor
instance, Hl(x,p) is excluded for several frequently occurring classes of
problems P. Naturally, for a given P, the questions arrise as to the existance
and uniqueness of an E.E.F. which satisfies conditions A-C. 1In this section, we
address these questions. The first is settled in the affirmative (Theorem 1). The
second in a qualified affirmative (Theorems 2 and 3). We open the discussion
with some technical remarks concerning the relation - .

Remark 1 It can be easily established that any of the row type operators,

m and G, commutes with the column type operators, ¢ and D. On the other hand,
m and G do not commute, nor do¢ and D. However, the following weaker form of
commutativity does hold:

(i) For every column permutation operator ¢ and every subset SC N, there

exists S'C N such that
[}

S S

The property goes the other way too, i.e., for every ¢ and every S'ggN, there
exists SC N such that (1) holds.
(ii) For every row permutation operator m and every set of constants g, B as
defined in condition C, there exists a set a', B ' such that
(2) ﬂG(I:B =GOL'B'TT
Again, the statement is true in the reverse direction too, i.e., for every set
a'B' there exists a set g, B such that (2) holds.

It also can be easily verified that any sequence of m type operators is in
itself a m type operator. ¢, G and D operators behaves likewise. Also, each

of the four types of operators contains an identity operator. Thus, definition 5

can be stated equivelently:



] [
[NN]

1 2
U. Then p~ - p iff there exists m, G, ¢, D such that

Definition 5': Let P, p €
2 1
P =me¢ GDp
1 2 s 1 2
In such a case, we say that x" = x relative top - p 1if:
2
X =g D Xl

Proposition 1

The relation » among problems is

. c 1 2 2 1
(1) Symmetric, i.e., p"» p = p - p

s .o . 1 2 2 3 1

(ii) Transitive, i.e., p = p , P = p = p = p

(iii) Reflexive, i.e., p—~ p

A corresponding set of statements can be made with respect to the relation - among
. . 1 2 3

the corresponding solutions x ,x ,x .

Proof:

(1) follows from the fact that each cperator has an inverse,

(iii) follows from the fact that each operator type has an identity, and

(ii) follows by the same reasoning used in the paragraph preceding definition 5'

Proposition 2

Let PC U be arbitrary. Then P has a unique partitiom:

P=U P such that
Lex?t
(i) PznPL'=¢forz "y

2 2 ]
(ii) Let ple PJZ,’ P € sz Then pl-. P <= L =4
Proof immediate from proposition 1.

We will refer to the Pg's as the equivalence classes within P. We will call two

individual problems equivalent if they belong to the same equivalence class,
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Remark 2
i . 1 2 . . .
Let p- ¢ P, i = 1,2 such that p" - p . The transformations involved in this

relation are not necessarily unique. It follows then that there may be more

2 2 2
than one distinct x ¢ F(p ) such that x1-4 x2 relative to pl-» p . For example, let
1
(p) max x, + x,
s.t.
2
x1 + 2x2<
2x1 + x2< 2
xl,x2 =o0or 1
1 1 .
and let x~ ¢ F(p' ) be (1,0). Consider
(pz) max le + 2x2
s.t.
xl + 2x25 2
2x1 + x2_<_ 2
xl,xz =0 or 1
2 S 1
One can observe that p =1 g GQ,BD p where
o) i . '
S=0; « =2; a =1,1i=1,2; mandg are the identity permutations.

2
The solution which corresponds to xl is then x = ¢ Dxl = (1,0).

But another set of possible operators which transforms p1 to p2 is given by
2 T S1
=n G D

P ¢ 5B P
where G and D are as before, but where ¢' permutes the columns of p1 and '
permutes the rows. Under these operators, the solution which corresponds to

1 . 1 2, 2 1 2 . .
x" relative top - p isy =¢ x = (0,1) # x . However, there is a considerable
similarity between the feasible sets of equivalent problems as the following three

propositions indicate.

"Proposition 3

For i =1, 2 let



2
be such that pl.é p . In particular, let

2 1
p =mqe GDp

1 2
For an arbitrary x € F(p ) let y € F(p ) be given by
y =¢ Dx

Then,

2

cy = klclx + k2 where kj_> o, k2 depend on the transformations

T, ¢, Gand D, but not on the particular solution x.

Proof Let us examine the effect of each of the transformations in question on
the value of the objective function of the corresponding solutions.

(1) Let p = (¢, A,p , b), p' = DSp, x ¢ F(p), x = DSx as in definition 3.

L. !

cx =7 cix = 3 c.x, +32 (-c)) (l-xj)

=2 ¢cx, =3 ¢, =¢cx +K

. . 2

jen I ges
where K2 = =% ¢, and does not depend on x.

jes
(ii) Let p = (C,Ap, b), p' =G ﬁj?,iie F(p), x' = x as in definition &.
[0d
c'x'' =% e xt =5 ¢, +72 B.Oa,,)x,
jew 73 gen 0 oaer 2N

=0° 5 e.x, +3% B.o Y a, x,6 =

aocx + 5 B?b_ =k cx +k
. ii 1 2
ieM
p
where k =ao >0, and k, = 2 B(_)b_ do not depend on x,
1 2, ii
ieM
p
(iii) It can be easily verified that m and ¢ do not have any effect on the

objective value. Q.E.D.

Proposition 4

i 2 . .
Let p ¢P,i =1, 2 such that pl-» p . Let AR S be the distinct

i
1 2 r(i)
i i
vitluen of ¢ X,lX( F(p )}, with the corresponding solution sets N?, l< 1< v(1),

and multiplicitles ni

i = lN; |. Then



-~ 12 -

(i) r(l)'= r(2) =r

(ii) n? = n? for 1 =1, ...r
2 1 1 2
Proof let p =1 v G D p be a particular transformation of p top . Let

xl,yl € F(pl), x2 =¢ D xl, y2 =¢ D yl. It follows directly from proposition
22 22 1 w2 4
3 that clxl> clyl<='.> cx >cy . Thus, x¢€ N1<=> p Dx =y< ¥ . Since

1 2
¢ D is a one to one transformation of F(p~ ) onto F(p ), we have that

n} =n,. To complete the proof, we have to repeat the argument with respect
to Ny, § = 2,...x(1). Q.E.D.

Proposition b

let pl,p2 € U be such that pl-q p2 and assume that there is more than one set

of transformations which induce this relation . In particular,
2 1
p =Tgeg GDp
but also
p2 =‘nv¢| G'D'pl
Let
1 2 1 2 v 1
XlGF(P);X =@ Dx'; y =¢ Dx.
Then
22 22
cy = C X

1
Proof Using the notation of proposition 4, let x1 € Ni for some 1< j< 1.
Then by the same logic applied in the proof of that proposition, we have that
2 2 2
X € Nj for the same index j. But then alsoy ¢ N 3 by the same argument. Thus,
22 22 2
cy

cx = = Zj Q.E.D.

We are now ready to address the existance and uniqueness icssues for thosa
E.E.F.'s which satisfy conditions A-C for a given class P. We will call such
E.E.F,'s proper for P. It should be noted that this concept is defined relative
to a given class P since condition C is in effect among problems within P only.
Thus, it is entirely possible to have an E.E.F. which is proper for one class of
problems P, but improper for another. Indeed, on occasion, one may wish to
éverride the equivalence between problems implied by the relation- . For instance,
one may feel that a standard transportation problem, whose constraints have been

manipulated by G and D type transformations, may not be easily recognized as
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identically., The same distinction can be made between general and Euclidean
cost traveling salesman problems, etc., Such cases can be conveniently handled
by a proper choice of the class P. (One would choose P to be the class of
standard format transportation problems in the first case,

Euclidean traveling salesman problems in the second). WNaturally, the larger
is P, the fewer are the functioms which are proper for it. One then may be
concerned that if P is large enough, a proper E.E.F. may not exist. This

possibility is ruled out by
Theorem 1 For every class pC U, there exists a proper E.E.F.

Proof Let p € P and let Zl_> 22... > zr be the distinct values of the objective

function with the corresponding solution sets N_, N

12 Nos» o eees Nr' Consider the E.E.F.

E*(x,p) = j-1 if X € Nj’ i.e. if cx = zj

It can be easily seen that E* (x,p) satisfies conditions A and B. The fact

that it satisfies condition C as well follows from propositions 4 and 5. Q.E.D.
Can we expect uniqueness of E¥ as a proper E,E.F, for P? The following

Theorem shows that every proper E.E.F. yields in a natural way a vast number of

new proper E.E.F.'s.

P be the partition

Theorem 2 Let E(x,p) be a proper E.E.F. for P. Let Pl"" )

of P to equivalence classes established in proposition 2. For each 1< k< 3,

let bk(-) be any non~decreasing function of one argument such that bk(O) = 0,

Then
E'(x,p) = b (E(x,p))  for p€ P
is also a proper E.E.F.
Proof We have to show that E'(x,p) satisfies conditions A, B and C. That it

satisfies A follows from the facts that E(x,p) satisfies A and that bk(-) is
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monotone, E'(x,p) satisfies B since E(x,p) does and since bk(O) = 0., It re-
mains to be seen that E'(x,p) satisfies condition C. Let then pl, p2 € P, such
that pl-a pz. It follows that pl,p2 € Pk for some 1< k< f. Hence, the
same function, bk(.), is used to define E'(x,p) for both p1 and p2. Let x1- x2
relative to pl-a p2. Since E(x,p) is proper

EGe,ph) = EG,p0)
but then

E'(x',p) = b EGLpD) = b (B ,pY) = B o ,p0) Q.E.D.

In light of Theorem 2, the uniqueness of proper E.E.F. is ruled out. It

is interesting to note, however, that every proper E.E.F. is accounted for by
applying a monotone transformations of the type referred to in Theorem 2 to

E*(x,p), the E.E.F. referred to in Theorem 1. Thus, as the following theorem

indicates, we have uniqueness of E*(x,p) up to monotone transformations:

Theorem 3 Let PC U and let E(x,p) be a proper E.E.F. for P. Then E(x,p)
can be represented as
E(x,p) = b (E*(x,p))
where E*(x,p) is the E.E.,F. referred to in Theorem 1 and bk(-) are the monotone

functions referred to in Theorem 2,

Proof The proof is by constructing the functions bk(-), l< k< 4. For every

1< k< 4, let us choose a representative problem pk € P

k _k k
N, ,N "'Nr(k)

12
objective value as in the proof of Theorem 1. For each 1< j< r(k), choose x

" arbitrarily. Let

be the partition of the feasible set of pk according to the

]
. A j k
arbitrarily such that x~ ¢ Nj . By definition
*, j k .
E¥(x,p) = j -1
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Since E(x,p) is proper,akj is well defined, i.e., its value depends on the

class Pk and on the index j, but not on the particular representative problem

k

0 - r(k)-1 only, it suffices to define bk on those values. Define

for j =1, r(k)

k j k %
p & P, and solution x? e Nj chosen. Since E"(x,pk) ranges over the integers

It then follows by construction that
k X k
E(x,p ) = b (E¥(x,p ).

Since pk ¢ P, was chosen arbitrarily, we have that

k
E(x,p) = bk(E*(x,p)) for p € P, -

It remains to be seen that bk(-) does have the properties asserted. Both follow

the fact that E(x,p) is proper. Thus, bk(-), k = 1..., is monotone since

condition A implies that(xkj is monotone with j. Also, condition B implies that

for x ¢ 0(pk), E(x,pk) = 0. Thus = 0 and hence bk(O) =0, k=1...4 Q.E.D.

5 al’k
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IV. Linear E.E.F.'s: Examples

The construction of Theorem 3 accounts for all the proper E.E.F.'s for
a given class P. However, this construction is intractable computationally,

since 1t calls for determination of the completve solution structure (i.e.,

i ), and for the identification of the appropriate

the sequence of the z
monotone function, bk(-), applicable to the problem in question. 1In this
section, we examine some linear proper E.E.F,'s which can be calculated on
the basis of considerably less information. One type of such functions

uses the concept of a reference point, brought forward by Cornuejols, Fisher
and Nemhauser [ 2 ]. Because of the vast richness of the family of proper
linear E.E,F.'s, the section is intended to be a sketchy, rather than syste-
matic, survey of some examples.

By a linear E.E.F,, we mean a function of the form

- : p
E(x,p) =B - acx
(x,p b b

p

where ¢” is the cost vector for p, Bp and ap > 0 are constants which depend

on p, but not on x. We will restrict our attention to the non-trivial case

ap > 0. From condition B, we get an alternative expression for E

E(x,p) = a_(z(p) - cPx)
denoting P

v. = 1/a
we have P p

E(x,p) = (z(p) - cpx>/vp

We refer to ¥ as the normalization factor. 1In order that E(x,p) be proper,
p

the yp's should be chosen in such a way that condition C is enforced. This

can usually be done in several ways as the following proposition implies,

k

Proposition 7. Let oy > 0, LA i = 1...k be arbitrary such that X w, = 1.
i=1

Let also El(x,p) = (z(p) - cpx)/Y;, i=1...k be proper linear E,E,F.'s for P.



Then, so do — k .
E(x,p) = (z(p) ~ cPx)/ = o y*
i=1 Lt P
— k . W
E(x,p) = (z(p) -~ cPx)/ 0 a,(yD) *
i=1 Y P
~ p i
and E(x,p) = (z(p) - ¢'+x)/ max Y

i=1,k P

Proof. It is obvious that multiplying a proper E.E.F. by l/a for a > 0,
leaves the E,E.F. proper (Theorem 2). Therefore, it is enough to consider
the case @i =1, i=1,...,k. Consider E first. Tt is enough to examine the

case k=2 since the general case follows by induction. Let then
~ 1 2
E(x,p) = (2() - Pex) /(v +v)

Let p, q € P, s.t. p — q and let x € F(p), x = y relative to p = q. We have
to show that
E(x,p) = E(y,9)

P

The statement is trivial if x € O(p). Assume, then, that z(p) - ¢ +x > 0.

. i .
Since E™ are proper for i = 1,2 we know that

(z(p) - CP‘X)/Y; = (z(q) - cq-x)/Y; i=1,2

since the numerator of the two expressions is non-zero

Y;/(z(p) - Pux) = vi/ (a(q) - ¢ox)

Adding the two equations for i=1,2, and flipping the numerator and denominator
back, we get the required result for E.

Let us now examine E with P> g, x and y as before. Since E- are proper:
@) - P /v = (2@ - Sn/y i=1,...,k
i, i
2(0) - Pex = (2(@) - ehem) - (/YD)

Raising each side to the power wl, and multiplying the terms together, we get:



k W k wi k i i Wi
I (z(p) - cPex) "= T (2@ -chx)y . 1 2] vDH
i=1 i=1 i=1 P 4
N ke
or sinve 5 W, = 1
i=1
k w
. i, i %1
(z(p) = ) = (2(a) - <Tx)/ 1L (v /)
i=) P 9
Rearranging terms, we get the desired result. ‘
Finally, comnsider E. We have to show that
(z(p) - c™x)/  max vy, = (2(q) - ePy)/ max oy,
i=1,...,k i=1,...,k
j i . j i
Let y. = max Y_. It is enough to show that y- = max Y . Assume,
Pi=1,...,k P T 4=1,...,k

) .
on the contrary, that Yq > yé for some 1 € £ € k. It then follows that
X 7 ) X
(2(0) = eP ) Y < (2(p) - Px) /Y= (2(@) - L) /Y < (2(Q) - Foy) /vy
But then, since EJ is proper,

(z(p) 'CP'X)/Yj = (z(q) -cq~y)/yj, a contradiction.
P 9 Q.E.D.

Proposition 7 suggests a strong relationship between normalization factors for
Proper E.E.F.'s and homogeneous functions of degree 1. This relationship is

further established in

Proposition 8. Let PZS U. For p € P, let c? the cost vector of p. Let

P be the row space spanned by the equalities rows, i € Mp’ of A
P . . P P
L be the orthogranal projection of ¢ on L
P p P
dF = -
c .
Then

E(x,p) = (z(p) - cPex)\£(d")

is a proper E.E.F. for p whenever f(dP) satisfies:



- 19 -

(i) for every i & {1,...,N}

£@?...a.P...aPy =£@,?,...-aP...a®
1 i P
(ii) for every i, j € {1,...,N}
. P P P Py _ p P p P
£ fafa? - @ afaPia

(iii) £f(d) is homogeneous of degree one, i.e.,

P P Py _ P P
f(ocd1 ,ad ,...,adn) otf(d1 ,...,dn)

2

Sketch of Proof and Discussion. Consider first the case MP =@, i.e.,, there

P ire both equal to

are no equality constraints in p. In this case, Lp and cL

(0,...0) and aP - cp. If Mp # 0, then dP is an invariant under G type transforma-

tions with(xo =1, i.,e., under additions cf multiples of the equality constraints

to the objective row., The case ofaG # 1, (i.e., rescaling of the objective row)

is taken care of by requirement (iii) which assures that such scaling will

affect the numerator and denominator proportionally. Condition (i) is designed

to accomodate complementing variables (i.e., D type operators). It can be (fully

or partially) relaxed if P itself excludes such operators. In other words, if

P does not contain any two problems which are cobtainable from each other by com-

p lementing a given column, then (i) can be relaxed with respect to this column.

For instance, one can argue that for, say, travelling salesman problems, the oper-

ation of complementing variables is rather unnatural and therefore problems

with complemented variables should be excluded from P. In such cases, there is

no need to insist on the symetry imposed by (i). (Allowing for complementing

variables, however, comes in very handy in the context of enumeration algorithms).
Condition (ii) ensures the invariance of E under permutation of columns

(¢ type operators), Again, it can be often relaxed in response to the structure

of P, For example, if P is the set of, say, plant location problems, there is
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a natural distinction betweé;—zgg—;ariables which represent the on-off status of
a plant and those which correspond to the distribution pattern. Clearly, there
is no reason to impose condition (ii) between these two sets of variables.
(Strictly speaking, in this case, f is not a function of d alone since specific
entries in d are identified by their respective columns in A. Nevertheless, we

will refer to the normalization factor as £(d)).

Examgles.

(1) Let d be rearranged such that

v
o

ldg 12 {ag | -

Let
£5(d)

1l
n M=

E o,

be the sum of k largest elements (in absolute value) in the (modified) objec-
tive row d. fk(d) satisfies (i), (ii) and (iii) and is then appropriate for
a normalization factor. For instance, if P is the class of (binary) knapsack

problems, then fl(d), which in this case, reduces to Ic = max[ci[, repre-

maxl
sents, in a way, a measure for what the algorithm is all about (since by round-
ing the optimal solution for the continuous relaxation of the problem, we get

a solution which is at most |cmax| units away from the optimum). Thus,

E(x,p) = (z(p) - cpx)/lcmaxl is, in my opinion, a meaningful measure for the
quality of a solution to the knapsack problem. I am not aware of any approxi-

mate algorithm for this problem which can guarantee a performance better than

the obvious level of 1 with respect to the measure.

(2) 1f the equalities defining the individual problems p € P are of the
transportation type, then d can be obtained from ¢ by simply adding row and

column constants in such a way that the row and column sums of d are zeroes.
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(This can be accomplished by a one pass scan of the rows and columns of c). If
we exclude from P problems in which some of the variables are complemented, we

can relax requirement (i) of Proposition 8. Let d be arranged such that

dTT > dTT e 2 d—_r
1 2 "n
and consider the range of (modified) costs

R
fo (@) = dTT - dTT
1 n

fR(d) measure the possible variability of the per unit cost over the different
routes. Multiplied by the total amount shipped, it yields an upper bound on
the difference in the objective function between any two feasible solutions to
p, and 1s therefore meaningful as a normalization factor. This measure can

be refined in several ways by considering the ranges of the individual rows

and columns and aggregating them as in Proposition 7.

(3) We finally consider a class of normalization factors obtained by
using a reference point, as suggested in [ 2]. For every p € P, let
xP € [O,l]N be a reference point (not necessarily feasible, not necessarily
integer). Let the operators ® and D be extended in a natural way to the Unit
Cube, B, so it will make sense to refer to the correspondence x4 y relative

to p -+ q, for x € B even though x ¢ F(p). (In this case, of course, y ¢ F(q).)

Proposition 9. Let P € U. For each p € P, let xP € B be such that:

(1) =z(p) > cPxP

(ii) Aa?xp = bi’ i€ Mp i.e., xP satisfies the equality

constraints of p

P

(iii) p- q => x" 4 x3

relative to p._, q.
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Then

E(x,p) = (z(p) - c¢Px)/(z(p) - cPxP)

is a proper E.E.F, for P.

Proof. The proof resembles closely that of Proposition 8 (which was sketched
only). The only comment in order is the fact that it is condition (ii),
rather than feasibility or integrality of x, which enforces the invariance

of E under G type transformations. Q.E.D.

p

There are a number of ways to choose x" to satisfy (i), (ii) and (iii).

1f Mp = 0, a generalization of the origin can be used by setfing

0 c, >0
P _ J -

1 c, <0
J
Similarly, if Mp is composed of a set of disjoint multiple choice constraints:
Z x, = ki
JESi

p

then x° can be obtained by picking the worst (cost-wise) ki variables from each

set s..
i

p

Alternatively, x° can be chosen as the solution of a given reference

heuristic algorithm for P which is invariant under the transformations in

P can be chosen as the

question. For instance, for the knapsack problem, x
solution of the greedy (in the sense of the cost to weight ratios) algorithm,
provided ties are broken properly. (E.g., breaking ties according to the

size of the cost coefficients is o.k., however, breaking them according to

the index of the variables in question is not.) Normalizing E(x,p) by



-
Lo

) D, e . . . .
z(p) - cpx‘, where x° is sbtained in this way, is even more informative than

normalizing by [c l since the denominator is an ex-post rather than ex-ante
max

bound on the relevant range of the cbjective function values. (The case z{p) -

cPxP = 0 must then be disposed by some other means.)
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