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1. Introduction. The economic equilibria on certain affine, multi-

commodity, transshipment networks have previously been studied by the
regional economists Takayama and Judge [4] via quadratic programming.
However, utilizing the economic equilibrium conditions directly, with-
out first passing to a quadratic programming problem, makes our approach
more general, This approach also provides additional information and
insight, as well as an alternative algorithm.

The economic equilibria on even more general (nonaffine) networks
have previously been characterized in [3] as the solutions to a general
(nonlinear) complementarity problem involving dual cones, but without
the specific results obtained here. The study of such equilibria began
at least as early as 1838 with the work of Cournot, and its history is
summarized in both [3] and [41].

Section 2 of this paper develops the appropriate economic equilibrium
conditions, whose solutions are subsequently characterized in Section 3
as the solutions to a standard linear complementarity problem. Section
4 then describes a rather general situation in which Lemke's algorithm
either finds a solution or shows that no solution exists. Section 4
also describes two different situations in which a solution is always

found. Finally, Section 5 proves the results described in Section 4.

2. The model. The problems studied here can be conveniently represented
by a directed graph, with a finite number of nodes and links, on which
a finite number of commodities can be transported.
Each node i represents the set of "producers' and/or "consumers'" at
a specific spatial location; and each link s represents a specific

transport facility for transporting commodities from some node i to a



2=

different node j. (In particular then, there are no loops, i.e., no
links connecting a given node to itself.) Each link is directed to
coincide with the direction of a possible transport of commodities; so
there are at least two links comnecting those nodes between which there
is a possible transport of commodities in either direction.

Both the nodes and the links are enumerated in any order, comsecu-

tively beginning with one -- as illustrated by the graph in Figure 1.

Figure 1

For clarity, the nodes are always indexed by the symbol i or j, and the
links are always indexed by the symbol s or t.
To describe the topology of a general graph, suppose that

the symbol i+ denotes the set of all links s directed out

of node i, while the symbol>#i denotes the set of all links

s directed into node 1,
Needless to say, the absence of loops means that ia{T§i==¢:for each node
i, Moreover, a given node i can be an "exporter" omnly if f;¥=¢, and
an "importer" only if Qiaﬂ¢. Consequently, a given node i for which
id=?ﬂi==¢ can be neither an exporter nor an importer and is said to be
"isolated",

In addition to the preceding notation, suppose that



the symbol )s denotes the "tail" of link s (i.e., the
unique node i such that s Ei;b, while the symbol s)
denotes the '"head" of link s (i.e., the unique node i
such that s €=i).

In particular then,
s €14 if and only if )s=1

wnile

s€ai if and only if s) =1i.

Needless to say, the absence of loops means that )s #s) for each link s.

For the graph in Figure 1, note that there are no loops, and note
that none of the four nodes are isolated (in fact, each node might be
either an exporter or an importer). Finally, to illustrate the preceding
notation, note that 2=+= {2, 3} while »2 = {1, 5}; so )2=)3=2 while
1) =5) =2,

Each commodity ¢ represents either a '"raw material", an "intermediate
product”, or a "finished product”; and each might be produced and/or con-
sumed by various nodes, as well as transported over various links., The
commodities are enumerated in any order, consecutively beginning with
one, and are always indexed by the symbol c.

We suppose that

the excess quantity of commodity c produced by node i
is a variable 9% (which is positive when node i pro-
duces more of commodity c than it consumes); and 9
denotes the vector variable with components S

Similarly, we suppose that



the unit price of commodity c for node i is a variable

Pscs and 1 denotes the vector variable with components

Pic*

We also suppose that
the quantity of commodity c transported via link s (in
the direction of link s) is a variable z°Cx» 0; and z°
denotes the vector variable with components zsc.
Similarly, we suppose that
the unit price for transporting commodity c¢ via 1link s
is a variable psc; and ps denotes the vector variable
with components psc.
Notationally,
the symbol z denotes the vector variable with vector
components zs, and the symbol q denotes the vector
variable with vector components qy -
Moreover,
the symbol p denotes the vector variable with vector
components ps and P,
There are six conditions that collectively characterize those vectors
(z, q; p) that place the network in a state of economic equilibrium.
Two of the conditions involve only the quantity vector (z, q), and one
of the conditions involves only the price vector p. The other three con-
ditions involve both (z, q) and p.
The two conditions involving only (z, q) are the non-negativity con-
dition

2° >0 for each link s (la)



and the commodity conservation condition

q.= 2 z° - 2 2° for each node i. (1b)
i+ i

3

sc
(Note that although =z is non-negative by virtue of our choice of link
direction, 9. might be either negative or positive, depending on
whether node 1 is a net exporter or a net importer of commodity c. Need-
less to say, for any isolated node i, condition (1b) actually asserts
that q, =0.)
i

The single condition involving only p is the price-stability con-

dition

s .
p)s+p zps) for each link s. (lc)

(Note that condition (lc) just reflects the following circumstances.
For any link s, if the unit purchase-price p)sc of a given commodity c
for node )s plus the unit transport-price pSC for commodity ¢ on link s
were less than the unit selling-price ps)c of commodity ¢ for node s),
some "entrepreneur" would obviously begin to purchase as much of commodity
c as possible from node )s to be transported over link s for resale to
node s) -~ an economically unstable situation.)

One of the three conditions involving both (z, q) and p is the

complementarity condition
(=%, pyg*+p° =P y) =0 for each links. (1)

(In view of conditions (la) and (lc), note that condition (1d) just re-
flects the following circumstances. For any link s, if the quantity 25¢
of commodity ¢ being transported over link s were positive and if p)SC

plus pSC were greater than PS)c’ some entrepreneur would obviously be

. sc
losing money and hence would begin to lower z to zero -- another



ecanomically unstable situation.)

The remaining two conditions involving both (z, q) and p relate

supply and demand to price. 1In particular, we assume the affine relations

pi==Aiqi-kai for each node i, (ie)

where the Ai and a, are given constant matrices and vectors (that can
arise from inverting the difference between given supply and demand quan-

tities originally expressed as affine functions of price). We also assume

the affine relatioms

ps==ASzS+aS for each link s, (1)

where the A® and a° are given constant matrices and vectors (that arise
from describing the transport prices as functions of transport volumes).
Each solution (z, q; p) to the economic equilibrium conditions (1)

is termed an economic equilibrium. For purposes of illustration, con-

sider the 2-commodity network described by both the graph in Figure 1 and

the data in Figure 2,
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Figure 2

An economic equilibrium for this example is computed via Lemke's algorithm

at the end of Section 4.

3. A linear complementarity formulation. As previously noted, for any

isolated node i, condition (1b) asserts that qi==0, which implies via
condition (ie) that P; =2, In particular then, equilibrium excess sup-
plies and equilibrium prices are immediately determined for each isolated
node., Consequently, we can assume (without loss of generality) that the
network under study has no isolated nodes.

Condition (1b) now asserts that the excess supplies 44 depend (only)
on the transport quantities z°. Therefore, conditions (le) and (1f)

imply that the prices P; and ps also depend (only) on the transport



P s . . -
quantities z~; in particular, condition (le) can be replaced by the comn-
dition

p. =A, {2 2t -5 zii:'}+a. for each node 1. (1e'v)
i it . i
i~ -1

Consequently, the "slack variables"
s b s )
W =p)s+p -Ps) for each link s (2)
also depend (only) on the transport quantities zs; in fact, with the con-

stants

vséas+a -a . for each link s 3
)s ’

s)

condition (2) can be replaced by the condition

W =ASzS+A)S{ Tzt D 2" -AS) (D2F- 5 zt}+vS
Ys—+ -+ s s)-+ 3)
(2")
for each link s,
Needless to say, condition (lc) can be replaced by the condition
w> =0 for each link s; (1c")
and condition (1d) can be replaced by the condition
(z®, w°) =0 for each link s. (1d")

The net result is that the solutions (z, q; p) to the economic
equilibrium coaditions (1) can be described entirely in.terms of the

solutions (z, w) to the "linear complementarity conditions"

z=0 (z, wy=0 w20 (4a)

w=Mz +v, (4b)



where
s
M denotes the matrix with (matrix) elements M t that
make condition (2') equivalent to condition (4b).

In particular, each solution (z, w) to the linear complementarity con-

ditions (4) provides a solution (z, q; p) to the economic equilibrium

conditions (1) wvia the equations

ps =A%2° +a° for each link s (5a)
q, =2 z° -2 2° for each node i (5b)
T -1
Pj_:Ai{E z25-2 zs}+ai for each node i; (5¢)
i= =i

and all solutions (z, q; p) to_conditions (1) can be obtained in this

way.
Now, elementary graph-theoretic considerations and an inspection of

condition (2') show that the matrix elements

(AS A FAL) ifEss

(Ayg +AL)  if t €)saN-s) but t#s

A)S if t€ )s'}-; but t ﬁA—ys)

MSt _ AS) if t€-s) but t£)s~
- (A)S +AS)) if t€s)4N)s

- A)s if t g—»)'s but t ﬁs)‘—t

- As) if t€ s“)‘—»ﬁbut t E‘-‘»)s

&0 if otherwise.
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For purposes of illustration, note that the graph in Figure 1 gives

rise to the matrix and vector in Figure 3.

1 1
A +AT | - (A HA,) -A, | 0 A, v
S(A4A) | A A +aZ A 0 -A 2

172 172 2 2 v
M || vl = -A A A +A A" -A -A v
2 2 273 3 2
4 4
0 0 -A, Ay, A -A, v
A -A -A A Ath A0 | v
2 2 2 Sy 27 v
Figure 3

Hence, the data in Figure 2 gives rise to the linear complementarity

conditions (4) with the data in Figure 4,
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4 -1 1 -2 11]-1 1 0 0 1 -1 -1
2 3] -2 -2 0o -1 0 0 0 1 2
-2 1 3 0 1 -1 0 0 }-1 1 -1
-2 -2 2 3 0 1 0 0 0 -1 -5
- - - - 1 -1 -

[M H vl = 1 1 1 1 3 3 1 1 2
0 -1 0 1 2 3 -1 -1 0 -1 1
0 0 0 0| -1 1 2 =2 0 2 0
0 0 0 o |-1 -1 4 2 1-2 0 -3
1 -11 -1 1 ]-1 1 0 2 2 -3 2
0 1 0 -1 o -1 -2 0 4 2 4

Figure 4

A solution for this example is computed via Lemke's algorithm at the end

of Section 4.

4, The main results. To solve the linear complementarity conditions

(4), we apply "Lemke's algorithm" to the modified conditions

z2=0 {(z, w)=0 w20 (6a)
‘W=Mz+ez++v z+20, (6b)
where
1 if kaO
e 8
k
0 if v, >0
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and

+ ... .
z 1is an additional scalar variable,

Conditions (6) clearly have solutions z =0 and w=ez++v for sufficiently
large z+. Starting with such a solution, Lemke's algorithm performs
certain "pivots" that attempt to generate a solution (z, w) to the linear
complementarity conditions (4) by driving 2t to zero. The complete
algorithm and a proof of the following theorem can be found in either [2]

or [1].

Theorem O (Lemke). If the matrix M is "copositive plus", in that

(i) {(z, Mz) =20 for all z=0,

(ii) (z, Mz)=0 and z20 imply that (Mt+M)z*0,
then Lemke's algorithm either generates a solution to conditions (6) with
z+=0 (in which event a solution to conditions (4) is obtained), or it

generates a solution to the conditions
ZM<0 {z, Mz)=0 z20 {(z, v)<0 (7

(in which event no solutions to conditions (4) exist).
The following three theorems are the main results of this paper.

Theorem 1, If the matrix Ai is positive semi-definite for each node i,
and if the matrix A° is copositive plus for each link s, then Lemke's
algorithm either generates a solution to conditions (4) (and hence a
solution to the economnic equilibrium conditions (1)), or it demonstrates

that no such solutions exist.



13-

Theorem 2, If the matrix Ai is positive semi-definite for each node i,

and if the matrix A° is "strictly copositive'" for each link s, in that
(1) (z%, 2%2° )>0 for all z°=0 for which z° #0,

then Lemke's algorithm generates a solution to conditions (4) (and lence

a solution to the economic equilibrium conditions (1)).

Theorem 3. If the matrix Ai is positive definite for each node i, and

if the conditions

z%20 (2%, A®2%)=0 (2%, a®) <0 €))

have no solution for each link s, then Lemke's algorithm generates a
solution to conditions (4) (and hence a solution to the economic equili-

bfium conditions (1)).

For purposes of illustration, note that the data in Figure 2 satis-
fies the hypotheses of Theorem 2. Consequently, Lemke's algorithm gen-
erates a solution to conditions (4). In fact, computer calculations

produce the solution vectors
1 2 3
z" = (.2353,.7059) z" = (0,2.2941) z- =(1.5294,0)
4 5
z = (1.0098,.2451) z- =(0,0).

These vectors then generate, via relations (5), the additional solution

vectors
1 2 3
p-=(-.5294,-.2941) p~=(1.2941,.2941) p = (2.529%,2.5294)

o= (1.2549,1.2549) p° = (-1,1)
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qq = (.2353,-1.5882) q, = (1.2941,1.5882)
a5 = (-.5196,.2451) q, = (-1.0098,-.2451)
p, = (-.7647,.8824) p, = (-1.2941,.5882)

py = (1.2353,-1,2745)  p, = (2.4902,-.0196)

Collectively, these vectors constitute an economic equilibrium (z, q; p)
for the 2-commodity network described by both the graph in Figure 1

and the data in Figure 2.

5. Proofs, The following lemma is used repetitively and is of some

interest in its own right.

Lemma. TFor the matrix M (defined immediately after conditions (4)),

{z, Mz)=2J (z®, INCRE DS (qi, Aiqi> for all z,
s i

with the understanding that q is determined by z wvia the commodity con-

servation condition

Proof. Conditions (4b) and (2'), together with elementary graph-theoretic

considerations, show that
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(Z, W-V> =Z (ZS: WS'VS>
s

(z, Mz)

S S s
2.4z", A’z +A)sq)s -As)qs)>

s
B s ,s s s - s
_.?(z , Az )+§ {z .’~A)sa)s>‘-§'<z s As)as)>

n

> (=®, ASZS>+§ (Z=%, Aq,) =D (Zz",4,q,)

s i= i =i
S S
=2 (2%, A%2°)Y+2 CHp Aiqi>- q.e.d.
s i

Proof of Theorem 1. According to Theorem 0, we need only show that M is
copositive plus, Furthermore, since the sum of two copositive plus
matrices is clearly copositive plus, we actually need only show that
Agdiag (Al, A2, «.s) and M- A are each copositive plus,

Now, A is copositive plus because A® is assumed to be copositive
plus for each s. Moreover, the Lemma shows that M- A is positive semi-
definite because Ai is assumed to be positive semi~definite for each 1i.
This completes the proof because each positive semi-definite matrix is
copositive plus (a fact that is an immediate consequence of the observa-

tion that (Nt-FN)z==O characterizes the "critical points" for

{z, Nz)). q.e.d.

Proof of Theorem 2, First, note that AS is copositive plus for each s
because A° is assumed to be strictly copositive for each s. Consequently,
the hypotheses of Theorem 1 are satisfied.

If Lemke's algorithm demonstrates that no solution to conditions (4)
exists, Theorem O asserts that a solution z to conditions (7) is generated.
In that event, the second condition (7) along with the Lemma and the

hypotheses of Theorem 2 show that (zs, Aszs>==0 for each s. The third
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condition (7) and the strict copositivity of A® for each s then imply

that z° =0 for each s, which contradicts the fourth conditiomn (7). g.e.d.

Proof of Theorem 3. First, note that the hypotheses of Theorem 1 are
satisfied.

If Lemke's algorithm demonstrates that no solution to condition (4)
exists, Theorem O asserts that a solution z to conditions (7) is generated.
In that event, the second condition (7) and the Lemma imply that

0=2, (zs, ASzS>+E {(q., A.q.).
< ; 171t
From the third condition (7) and the hypotheses of Theorem 2, we now

infer that both

(zS,ASzS> =0 for each s (9)
and

(qi, Aiqi>=0 for each 1i. (10)

Moreover, the fourth condition (7) and the defining equation (3) along

with elementary graph-theoretic considerations show that

)

-a

)s

_ s _s
0>{z, v)—?(z,a+a &)

=7 (2", a§>+§ (zs_.,. a)s>_-§ (“ZS;‘-aS))

s

=2 (2%, %)+ (D 2%, a) -D (D 2%, ap)
s

i i i =i

s s
=2 (%, 8%+ (o, )
s i

Since the assumed positive definiteness of Ai for each i implies via

relation (10) that qi=0 for each i, we infer that
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0> (zs, as>.
s

Finally, the third condition (7) and relation (9) along with the pre-
ceding inequality clearly contradict the last hypothesis of Theorem

3. - g.e.d.
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