Discussion Paper No. 310
A METHODOLOGY FOR AUTOMATED SYSTEMS DESIGN
by

Edward A. Stohr’

January 1978

* Northwestern University, Graduate School of Management, Evanston, Illinois 60201

ABSTRACT

Most information systems involve the processing of various
types of transactions and their subsequent aggregation according
to various classification schemes for the purpose of management
reports. A method of systems analysis and information processing
system design is discussed in which the logic of such information
systems is expressed as a graph and is implemented using only a
set of prewritten subroutines. The description involves graph
representations of work-flow in the organization and of the
multiple classification schemes used for reporting. The logical
description of the system can be considered to consist of 'classifi-
cation' and 'report processing' schemas which coexist with the
conventional data base schema defined over the records of the master
and transaction files of the data base. Their function is to
provide the intelligence necessary to automatically implement
the processing required to generate status reports for the

organization.

DISCUSSION PAPER NO. 310

A METHODOLOGY FOR AUTOMATED SYSTEM DESIGN
by
Edward A. Stohr

1. Introduction

The problem of complexity in systems design is the subject
of much present research and a number of different approaches have
been proposed. Much progress has been made in improvement of the
coding process by techniques such as structured programming
(Dijkstra [3]) and 'chief-programmer teams', (Mills [12]). At a
more ambitious level, attemps are currently being made to auto-
mate the entire systems design process. Techniques for producing
and analyzing a machine readable problem statement and data dic-
tionary have been advanced by the ISDOS Project (Teichroew [18],
Nunamaker, et.al. [14] and Langefors, [10]). Methods for producing
a suitable data base design from the problem statement are also
being developed (Nunamaker [13]). Progress relating to the auto-
matic production of running computer programs from the problem
statement is being made by Gerritson [7]. This paper is similar
in spirit to the latter work, but takes a different approach in
that the objective is to eliminate as far as possible the necessity
to write specialized code for certain types of application.

The paper describes a software system which is currently
being developed where the underlying idea is to express the 'logic'
of the information system as data rather than :to have it embodied

in computer programs. This reduces the necessity for coding and

gives the resultant system a high degree of flexibility. As far
as possible, the computations necessary to produce management re=
ports are carried out using a istandard set' of programs which are
logically equivalent to matrii'and other linear algebraic operations.
A key task of the system analysis for such a system involves the
production of 'system logic files' which define both managerial
requirements for reports of various kinds and the logical relation-
ships existing between the data inputs to the computing process
and its outputs. The standard set of programs use the 'system
logic files' together with data concerning the current state of

the system and current transactions to produce the required
managerial reports. The 'system data files' (records describing

the state of the system and transaction records) are maintained

by traditional methods--possibly by a 'data base management

system' (DBMS). The underlying philosophy of the system is shown
in Figure 1.

Many of the reports produced by management information
systems simply involve the aggregation of data according to
multiple classification systems. Examples are financial reports
(balance sheet, income statements), managerial accounting reports
(standard costing systems, responsibility accounting) and marketing
reports (sales classified by product, by region and by salesman).
The list is almost endless. The techniques to be described rely
on the fact that such classification schemes can be described

both graphically and algebraically. The systems analyst will be

SYSTEM DEFINITION PHASE:

System Trees

. System Matrices

1
2
J 3. Node Information File,bt
_—’J ————1 4. Transaction Information
Files

5. Aggregate Transaction

\;__—’/j Vector File, Tt

6. Active Domains

System
Logic \ 7. Report Descriptions
File

REPORT GENERATION PHASE:

MANAGEMENT
REPORTS

UPDATED
SYSTEM STATE, b
t+

1

9 >
] STATE OF ~———~
V5T, b, ~——]
————————P —
<4
TRANSACTION
B DATA, T
\) | t _A
EYSTEM STANDARD DATA BASE DATA BASE
Fgc;lc SET OF MANAGEMENT
LE PROGRAMS SYSTEM

MAJOR SYSTEM COMPONENTS

FIGURE 1

-3 -

able to visualize and define the system primarily in terms of its
representation as a graph (flow diagram or tree) while the
standard set of programs will implement the algebraic description.
The design process will be automated in the sense that the system
analyst will communicate with an on-line program and that algo-
rithms ‘will be provided to transform his system definition into
the algebraic format of the systems logic file. The systems logic
file can be viewed as a 'classification schema' which is super-
imposed, on the usual hierarchical,network or relational schema
defined over the transaction and master files of the data base.

The examples to be described will concern both accounting
and non-accounting applications. The system representation to be
used was first proposed by Eaves [4] and Butterworth [2] in an
accounting context. Related work is contained in Lieberman and
Whinston [11], and Shank [17]. Everest and Weber [5] describe a re-
lational schema for accounting systems and suggest an approach
similar to that adopted here in a concluding paragraph. The present
paper attempts to generalize this work by extending the techniques
to various other applications and by designing an automated inter-

face for systems analysis in large-scale data processing systems.

2. Representation of Information Classification Schemes

Routine information processing systems usually perform two
functions: (1) recording, validating and processing of trans-
actions, (2) aggregation of the values of the transactions in some
hierarchical scheme for the production of management reports. In

this paper we are primarily concerned with the latter function.

-4 -

However, the methods adopted imply a highly structured approach
to the design of the processing function as well.

A representation of an order-entry and sales processing
system is shown in Figure 2. The leaves of the tree represent
the various (possible) stages in the processing of an order. The
intermediate nodes represent the departmental/functional/accounting
classification scheme. Finally, the root of the tree is an arti-
ficial node which binds the various sub-trees together.

A transaction changes the state of the system and can be
uniquely represented by a directed arc joining two leaves in the
tree. The direction of the arc corresponds to the direction of
the flow of paperwork, money, material, etc. associated with the
transaction. Thus the transaction defined by the arc (6,12) repre-
sents the backlogging of an order after it has been approved by
the credit department. The addition of an arc defines a unique
loop in the tree. Except for the node nearest the root, all the
nodes on this circuit have their states changed by’the transaction.
For the transaction just mentioned, the loop passes through nodes
6, 12, 7 and 2, in the direction indicated. The number of orders,
their value and physical quantity of product involved in the credit
department (node 6) are decreased while the corresponding quanti-
ties in the production department (node 7) and in particular, in
the backlog queue (node 12) are increased.

Thus a preliminary description of the processing system can
be given by a hierarchical classification scheme and a list of

transactions as shown in Figure 2., Note that various forms such

LOST
SALES

ROOT
2
| ORDER
CUSTOMER PROCESSING 3
SALES
5 7 9 /// \\\\ 10
SALES CREDIT PRODUCT | [SHIPPING CREDIT CASH
~ ORDERS DEPT. DEPT. DEPT. SALES SALES
11 . 12
IN
PROCESS BACKLOG

TRANSACT IONS
No. Defining Arc Description

1 (1,5) CUSTOMER ORDER TAKEN BY SALESMAN

2 (5,6) ORDER SENT TO CREDIT REVIEW

3 (6,11) CUSTOMER CREDIT APPROVED; ORDER IN PROCESS

4 (6,12) CUSTOMER CREDIT APPROVED; ORDER BACKLOGGED

5 (6,1) CUSTOMER CREDIT DISAPPROVED; ORDER RETURNED

6 (12,11) BACKLOGGED ORDER PLACED ON PRODUCTION SCHEDULE

7 (11,8) PRODUCTION COMPLETED ON ORDER

8 (8,9) SHIPMENT TO CUSTOMER ON CREDIT SALE

9 (8,10) SHIPMENT TO CUSTOMER ON CASH SALE

10 (9,4) CUSTOMER RETURNS UNITS RECEIVED AND REJECTED (CREDIT SALES)
11 (10,4) CUSTOMER RETURNS UNITS RECEIVED AND REJECTED (CASH SALES)

CLASSIFICATION AND AGGREGATION
- ORDER PROCESSING AND SALES -

FIGURE 2

".,5 -

as purchase orders, shipping documents, invoices, etc. would be
associated with the leaf nodes, and transaction files with the
arcs, To complete the system description in the sense of a form
driven system analysis technique such as SOP [9] or a computed-
aided technique such as the Problem Statement Language (PSL) [17]
more detail can be added, however these descriptive techniques
will not be elaborated upon here. Instead, we will describe an
algebraic analog of the information in Figure 2 and show how it
can be used to generate the required managerial reports.

Flows toward the root node in Figure 2 will be considered
positive and those away from the root node negative. If there are
m nodes (not counting the root node), and n transactions, the in-

formation in Figure 2 can be represented by an mxn 'systems matrix'

S, as shown in Figure 3. Here éach row corresponds to a node and
each column to a transaction (loop) with the 1l's and -1's indi-
cating the direction of flow according to the above convention.
Note that the node nearest the root for any given loop has a zero
entry in the matrix (the flow at that node is both towards and away
from the root). A column of S describes the effect of 1 unit of
the associated transaction type on each node, while a row shows

how its associated node is affected by each transaction. For
simplicity we will consider the case where the n transactions are
measured on a single dimension (for example, dollar value). Let T

be an n-dimensional vector with element Tj representing the

Transaction

Node | (1,5) | (5,6)| (6,11)| (6,12)| (6,1) | (12,11) | (11,8) | (8,9) | (8,10) | (9,4) | (10,4)
1 -1 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 -1 0 0 -1 -1 0 0
3 0 0 0 0 0 0 0 1 1 -1 -1
4 0 0 0 0 0 0 0 0 0 1 1
5 1 -1 0 0 0 0 0 0 0 0 0
6 1 1 -1 -1 -1 0 0 0 0 0 0
7 0 0 1 1 0 0 -1 0 0 0 0
8 0 0 0 0 0 0 1 -1 -1 0 0
9 0 0 0 0 0 0 0 1 0 -1 0

10 0 0 0 0 0 0 0 0 1 0 -1

11 0 0 1 0 0 1 -1 0 0 0 0

12 0 0 0 1 0 -1 0 0 0 0 0

SYSTEMS MATRIX
- ORDER PROCESSING AND SALES. -

FIGURE-3

cumulative flow of transaction type j for the time period.l In the
example, T4 is the total dollar value of orders backlogged during
the time period. Then the product ST gives the net change in the
dollar value of transactions at each node in the tree. Let the
subscript t represent time and define bt € R" such that bit = value
of transactions at node i at.time t. Then the net change in state

of the processing system is described by the difference equation
(1) b, = 0

(2) b ,, =b, + ST ot =0,1,2,...
t t

t+l
Let S+(S-) be the matrix obtained from S be replacing all 1l's (-1's)
by zeroes then the cumulative inflows (outflows) from each node

are given by (3) and (4):

+ 4, ot
(3) bt+l = bt + ST,
(4) biyp = b +S T

In addition to its use in the present context, the algebraic repre-
sentation (1) through (4) is useful in simulation and forecasting
applications, [ij. It must be emphasized that the algebraic repre-
sentation represents the logical description of the process only. The
physical implementation involves quite different data structures

and processes for reasons of efficiency and economy of storage.

lThe case where the transaction volume is to be recorded in terms
of more than one dimension (for example, dollar value and physical
quantity) is accommodated simply by considering T to be an nxk

matrix where k is the number of dimensions considered.

-7 -

A representation of the traditional balance sheet and income
statement accounts for a small business is shown in Figure 4. Each
node in Figure 4 corresponds to an 'account.' The tree has two sub-
trees representing the asset accounts and the liability and equity
accounts. The income statement accounts appear as a sub-tree under
a '"Profit and Loss' account, which serves to connect the income
and balance sheets. A standard cost accounting system can be added
as a sub-tree of the inventory account as discussed later. All
of the other leaves of the‘tree might have (one or more) sub-trees
attached to them if and when further detail is required. Alter-
natively, the tree in Figure 4 might represent the accounts for
only one division ofa multi-division company in which case it might
be regarded simply as a sub-classification of the corporate accounting
system. It often happens that more than one classification will be
associated with a given node of the tree. This occurs for example
at the inventory node, if management requires both a departmental
cost break-down ('responsibility accounting') and product cost
break-down (e.g. ‘standard cost accounting'). 1In this case the
hierarchical 'classification schema' is no longer a tree but a
'confluent hierarchy' with more than one hierarchy having common
leaf nodes. Finally, the approach also provides flexibility with
regard to accounting methods. For example, to add a cspability
for producing 'replacement cost' accounting reports as well as
'historic cost' reports it is only necessary to generate the re-
quired transactions and to add 9 or 10 rows and columns to the

systems matrix (Frigo [6]).

Acct,

A
a L3
O @ @
C MR PE/INV M
® O @
R w F
SR @

1

3
s
5
6
7
8
9
10
11
12
13
14
15
16
17

{(Node) Symbol Description
A Assets
L&E Liab. &Equities
CA Cur. Assets
FA Fixed Assets
L Liabilities
E Equities
C Cash
AR Accounts Rec.
PpE Prepaid Exp.
INV Inveantory
MS Marketable Sec.
BVA Bk, Val. Assets
CcD Cum, Deprec.
CcL Cur. Liab.
STD Short-term Debt
LD lLong-term Debt
RE Retained Earnings
. Node No.
Ko, “Tre .o -os (From), (To)
1. Cash Sales 42,7
2. Sales on Account 42,8
3. Sales Force Sal. Exp. 1,46
&. Advertising Expense 7,47
$. Cost of Gnods Sold 22,43
6. Coll. of Acct, Rec. 8,7
7. OLfice Salaries Exp. 7,48
8. Lab. Costs Pd, in Cash 7,21
9. Mat. Used This Period, 20,21
10. Overhead Pd. in Cash 7,21
11. Misc, Overhead Exp. in 9,53
the Cur. Prd, but Pd for
in Prior Prds.
12, Dep., Exp. in this Period 26,50
13. Inventory Increase 21,22
14. Cash Pur. of Inventory 7,20
15. Pur. of Inv. on Acct. 28,20
16. Payment of Acct. Pay. 7,28
17. Equip. Bought for Cash 7,25
18. Pur, of Equip. on Acct. 28,25
_19. Sale of Equip., for Cash 28,7

(at Cost)

€ (DL
O L§s) O
BvA (2 D @ a@®m ® oo Yo O -
S W/ REN\GS)
© @ O @ QD @ O @O &
L B KE B D A M AT R @
(33 & &
EBT | m
BTG G)
IE
oL () G9 o
6 {40 (D SWE
s W s O
@ KD G WX
E® &) (€
Acct. Acct,
{(Node) Symbol Description (Node) Symbol Description
18 cs Common Stock 35 PD Pref. . Dividends
19 PS Preferred Stk. 36 EBIT Earn. Bef. Int &Txs
20 RI Raw-Mat. Inv. 37 1E Interest Exp.
21 wp Work-in-Process 38 OPI Oper. Income
22 FI Finished Gd,Inv. 39 01 Other Income
23 BL Bk-Value bf Land 40 Gl Gross Income
24 BB Bk-Value of Bldg. 41 S&AE Sell, & Adm. Expense
25 BE Bk-Value of Equip. 42 SR Sales Revenue
26 BD Bldg. Depreciation 43 CGS Cost of Gds. Sold
27 ED Equp. Depreciation 44 SE Selling Expense
28 AP Acct, Payable 45 AE Adm. Expenscs
29 AcE Accrued Expenses 46 SfP Sales force Pay Exp
30 DT Deferred Taxes 47 AJE Advertising Exp.
3t P/L Profit/Loss 48 OfP Office Payroll Exp.
32 cb Common Dividend 49 oC Other Costs
i3 EBT Earn. Before Taxes 50 DE Depreciation Exp.
34 T Taxes 51 OE Other Expensc
Acct.Entries ATranu. Node No. Acct.Entries Trans.
Db/Ct No. No, Terelrge o7 s (From), (To) Db/ct No.
C/SR 100 20. Gain/Loss from Sale of 39,7 c/o1 306
AR/SR 101 Equipment
sfp/c 102 21. Dep. of Sold Equip. 7,27 ED/C 307
AdE/C. 103 Clcared from Bks.
CGS/FI 104 22, Rev. from Marketable Sec. 39,7 c/o1 400
C/AR 105 23, Interest Expense 7,37 1E/C 491
ofp/c 200 24, Taxes Paid in Cash 7,3 T/C La2
wp/C 201 25, Ad). for Tax Difference 30,34 T/0T 403
WP/RI 202 26. Deferred Taxes Pd. in Cash 7,30 br/c 404
WP/CD 203 27, Pref. Div., Pd. in Cash 1,35 PD/C 405
OE/PE 206 28. Com, Div. Pd. in Cash 7,32 cp/c 406
29. Com. Div. Pd. in Stock 18,17 . RE/CS &a7
30. Repayment of Lgterm Debt 7,16 Lp/C 403
DE/BD 208 31. Repayment of Shitterm Debt 7,15 TD/C 409
F1/wp 209 32, Proc. from Shtterm Loan 15,7 C/$1D 410
R1/C 300 33. Pur., of Marketable Sec, 7,11 MS/C 411
RI/AP 301 34, Proc. from Sale of Mktable 11,7 c/¥s 412
AP/C 302 Securities
BE/C 303 35, Proc. from Issuance of 18,7 c/cs 413
BE/AP 304 Common Stock (at Par)
C/BE 305 36. Proc. from Issuance of Com. 17,7 C/RE 414
Stock (in Excess of Par)
37. Proc. from Iss of Pref Stk 19,7 c/ps 415
38. Issue of Longterm Debt 16,7 c/1D 416
FIGURE 4

Classification and Transaction Schemas for an Accounting System

- 8 -
The systems matrix for the accounting system has a 'plus'
sign associated with an accounting 'debit' and a 'minus' sign
with a 'credit.' At time t+l the conventional accounting balance,

b in all accounts (including the standard cost, responsibility

t+1°

accounting, etc. accounts if present), is obtained very simply by

using equation (2).1 Reports corresponding to the traditional

balance sheet, income,and sources and uses of funds statements

can be specified simply in terms of the appropriate subsets of bt‘
When a report is to be generated the system to be described

consults the classification schema ('system logic file'), automat-

ically determines the required subset of 7_ and generates the

t
submatrix of S required to produce the report. Again it should be

noted that the elements of bt and T7_ correspond in the physical data

t
base to file records and will normally contain many data items.
Thus in the accounting application there will normally be fields
in the bt records containing descriptive information, the budgeted
amount, the balance in previous time periods, etc. The aggregate
transaction vector Te summarizes the total transaction activity
over a time period. The elements (records) of T, can be maintained
permanently by the system or can be generated as required by an
aggregation process performed on the underlying transaction files,
We end this section by stating some simple properties of
this representation [2]:
(1) A row in S (or S+ of §7) corresponding to a summary

account is the sum of the rows for all the accounts

immediately subsidiary to that account.

1Care must be taken to zero-out the income statement accounts in

bt before (2) is applied.

-9 -

(2) The sum of the balances of the leaf node accounts is
zero and as a consequence the system is always

'in balance.'

3. Logical System Design

This section outlines the design of a system which uses the
raw data carried by transactions, together with the previous state,

b of the system, to produce an updated system state, b and to

t’ t+1°?

perform the computations for a wide range of management reports.
Some of the reports may be 'preplanned' others 'ad hoc.' We are
not concerned with the format of the reports -- only that the re-
quired information is made available to the report writing sub-
routines. The distinguishing features of the proposed system are
that it uses only a few 'standard routines', that it can be used
for a wide variety of applications -- both accounting and non-
accounting, and that the logic of the system is expressed by data
structures rather than by a programming language -- consequently,
the system possesses great modularity and flexibility.

The logic of the system is described in terms of Bachman
diagrams in Figure 5. The objects in full outline are static data
structures explicitly stored by the system; the dashed outlines
indicate structures which are generated as required by requests
for reports. Assuming that the organization's data base is main-
tained by a data base management system (DBMS) there will exist
a schema such as that depicted in Figure 5(a). The DBMS can be

used in the usual way for the input,update and maintenance of the

i
Ny

(a-\ TYPICAL CONVENTIONAL SCHEMA (b) CIASSIFICATION SCHEMA
(rg}ationshigsbgetween

(for an accounting system, see [4]) ements o

SYSTEM ‘ SYSTEM

1 1
ACCQUNT
[fransaction TYPE i
Date _— 1]
by ACCOUNT (element of oy
b) 1 o AN i
Transaction | [R |
i [_: '_____ ! i
i N N " !
LEDGER \) ’ i\ AR H
i coaq N /0N
t) A |
| / vy \ }
| IMPLICIT CLASSIFICATION]
SUBS IDIARY
ACCOUNT
Y
TRANSACTION '
(c) REPORT SCHEMA (d) TRANSACTION & PROCESSING
I F————— SCHEMA
1 1 ISPECIAL (oR |
_DiSTANDARD)]
REPORT [¢ --DIFORMAT [LEAF NODE OF
W T R e 1 ()
2
M lqj:
LEAF NODE NON-LEAF NODE lARC:TRANSACTIONJ
OF TREE IN|¢ OF TREE IN T
)] M 1 (b)

P |
1 PROCEDURE OR |

' FILE |

(e) UPDATING PROCESS

= ST
bea™ Bt ST

where schemas (b) and (d) imply S

FIGURE 5
Logical Structure of Report Management System

- 10 -

master and transaction files.and for the routine or ad-hoc queries
which require the record relationships maintained by the DBMS.
Normally it would also be used to produce the required management
reports (such as the balance sheet, income statement, etc. in an
accounting system) which are based on hierarchical classification
schemes. In the proposed system the classification schema will
be logically and physically distinct from the schema used to main-
tain the data base. The logical separation helps to remove 'the
confusion between the real entity and a classification scheme
applying to that entity...' (Everest and Weber [5]). The physical
separation is imposed for reasons of efficiency in the search

and retrieval operations to be described later. This also allows
the report to be generated by standard sub-routines' rather than
special purpose data manipulation language (DML) code which would
have to 'navigate' through the higher levels of the hierarchy.

The logical relationships shown in Figures 5(b), (c) and
(d) and the 'standard subroutines' which operate on this informa-
tion to produce management reports and update the state of the
system will be referred to collectively as the Report Management
System (RMS). The RMS invokes the DBMS as shown in Figure 5(c¢)
whenever it is necessary to perform an aggregation operation on
the underlying transaction files.,

The classification schema (Figure 5(b)) has been described
previously,the only new item being the 'implicit classification'
sub-tree. To illustrate the meaning of this consider the order
processing and sales system introduced earlier and assume that

there are two products (Pl,Pz), two customer classes (Cl,Cz),

- 11 -

and two regions (Rl’Rz)‘ Management will require performance
information classified according to these dimensions as well as
according to those indicated by the classification scheme in
Figure 2. We look at an order as consisting logically of the

data fields:

ORDER DATE | CUSTOMER | REGION QUANTITY PRICE |
NO CODE CODE

Suppose management requires a report on the current month's
sales classified by product within region within customer class,
(Figure 6(a)). To be consistent with the representation developed
in Section 2 we might add the sub-tree shown in Figure 6(b) to the
SALES node in Figure 2, thus zugmenting S by an 'aggregation'
matrix. In Figure 6(b), node C1 indicates that total sales are to
be accumulated for customer 1, node C]_R1 indicates that total sales
are to be 'aécumulated for customer 1 in region 1, etc. The
transaction vector T is augmented by: (ClRlPl’ ClRle,.o.,CszPz),
where CinRk is the total value of transactions for cﬁstomer
class i product j and region k for the time period. Note that
we now have two distinct classification schemes for sales -- cash
versus credit sales and total sales by product, region and customer
class. This is indicated by the Bachman diagrams in Figure 6(c).
Obviously this method rapidly becomes unwieldy.when: there are more
than one or two products, regions and customer classes -~ especially
since sub-trees similar to that in Figure 6 might be attached to
any of the nodes in Figure 3. These sub-trees are not therefore
stored explicitly. Instead, they are generated by the standard

routines when and if required; or, more precisely, the standard

(a) Report Request:
REPORT SALES CLASSIFIED BY PRODUCT WITHIN REGION WITHIN CUSTOMER

(b)
SALES
C,R,P, CRyP| C R\, C,RIP) C,R
(c) SALES SALES SALES i
TYA%CASH -'_'J{"'7 e S
i] i I
OR CREDIT . CUSTOMER | REGION
l_-_-_----l '--—-r_—-
i ____y}____ N
ORDERS ‘ REGION | i PRODUC? ----
U o oo) emmm e
.Y _ .
{ PRODUCT ! T
D e e e e

. S
ORDERSI

AGGREGATION SCHEMES FOR SALES REPORTS

FIGURE 6

- 12 -

routines carry out steps which are logically equivalent to using
(2) with the appropriately augmented system matrix.

The 'Report Schema' (Figure 5(c)) and the 'Transaction
Processing Schema' (Figure 5(d)) will be explained more fully
in subsequent sections. In summary, the 'systems logic file'
of Figure 1 contains:

(1) Systems Trees: physical representations of the
hierarchical relationships in the classification schema. The
systems trees are defined during the system definition phase and
are used to generate the systems matrices. They are also used
during the report generation phase to determine the transactions
which are required to produce a given report. Separate trees may
be stored for each major system or subsystem and each mode of
classification within a system.

(2) System Matrices (in sparse matrix form): the algebraic
representation of the system of aggregation. They can be used
directly as input to the report generation routines. They are also
used during the report generation phase to determine all the nodes
affected by a given transaction. One system matrix may be associ-
ated with each of the trees in (1). Systems matrices are stored
only for much used routine reports since the RMS is capable of
generating the data structure necessary to perform the aggregations
for ad-hoc reports.

(3) Node Information File: this file contains the code
number and name of each node in the systems trees together with

other pertinent information. It also contains pointers to the

- 13 -

nodes' positions in the systems trees and matrices and to the
state file, bto

(4) Transaction Information File: this file contains the
code number and name for each defined transaction together with
pointers to the elements of 7 (1f they are stored egp;icitly) and
to the DBMS calls required to retrieve and aggregate the informa-
tion in the underlying transaction files.

(5) Active Domains: 1list of valid code values for elements
in a classification scheme (see next section).

(6) Report Descriptions: Header information for the report
together with information defining the order in which information
is to be presented to the report writing routines or alterna-

tively the names of any special purpose report routines.

4. System Definition Phase

Figure 7 demonstrates the general form of tne proposed
interface for the data base administrator. The underlined words are
prompts from the system definition programs or keywords in a DBMS
query language such as that described in Haseman and Whinston [8].
Some details are omitted from the figure for reasons of brevity.

In general code numbers as well as names would be input to identify
the nodes and transactions, however only names are used in the
illustration.

The name.of the classification schema is input first and
the root declared to be 'SYSTEM' since this is the highest level
of the hierarchy. If multiple subclassification schemes are

present the root may be a leaf or non-leaf node in an already

SYSTEM NAME:
SALES ORDER PROCESSING

CLASSIFICATION NAME:
SALES ORDER PROCESSING

ROOT :
SYSTEM

CUSTOMER < ROOT
ORDER PROCESSING < ROOT
SALES < ROOT

SALES ORDERS, CREDIT DEPT, PRODUCT DEPT, SHIPPING DEPT <
ORDER PROCESSING

IN PROCESS, BACKLOGGED < PRODUCTION DEPT

IMPLICIT SUBCLASSIFICATION SCHEMA:
COMBINATIONS (CUSTOMER, PRODUCT, REGION) < BACKLOG, IN PROCESS, SALES

DOMAINS:
CUSTOMER - WHOLESALE, RETAIL
PRODUCT - PRODUCT 1 THRU PRODUCT 2
REGION -~ EAST, WEST

ELIMINATE:
(, PRODUCT 1, WEST)

TRANSACTION FLOWS:
CUSTOMER ORDER TAKEN BY SALESMAN: OUTSIDE, SALES
ORDER SENT TO CREDIT REVIEW: SALES, CREDIT
CREDIT APPROVED, ORDER IN-PROCESS: CREDIT, IN~PROCESS
CREDIT APPROVED, ORDER BACKLOGGED: CREDIT, BACKLOG

TRANSACTION SEARCH INFORMATION:
CUSTOMER ORDER TAKEN BY SALESMAN:
FILE ORDER, AGGREGATE (PRICE X QUANTITY) WHERE STATUS = 1;
ORDER SENT TO CREDIT REVIEW:
FILE ORDER, AGGREGATE (PRICE XQUANTITY) WHERE STATUS = 2;

: SYSTEM DEFINITION PHASE
FIGURE 7

- 14 -
existing schema. The hierarchical structure and node names are
input next with the symbol '<' meaning 'is the child of.'

The "Implicit Sub-Classification Schema'" allows a further
breakdown and aggregation of the information coded on the trans-
actions themselves. Thus, the 'Combinations' line declares that
summary transaction information is to be retrieved by the system
for évery combination of customer, region and product. Logically
the multiple subclassification schemes indicated in Figure 6(c)
are declared to exist under the Backlog, In Process and Sales
nodes, However, the associated classification schema will not
be generated and stored explicitly in the systems file. The
'domains' for customer, product and region have to be declared
and maintained so that the requisite valid combinations can be
generated for validating and reporting purposes. The list follow-
ing the 'eliminate' prompt indicates infeasible combinations of
domain values (thus, for example, product 1 is not sold in the
western region).

The transactions are described next with the name (and/or
code number) of the transaction followed by the names of the two
leaf nodes which define the transaction's effect on the nodes
in the tree. The order in which the nodes are listed defines the
direction of flow (from, to). For each defined transaction the
'transaction search' information describes how the associated
element of 7 is updated. 1In this case this is done by invoking
a DBMS query language command which opens the specified file
and aggregates over an implied or actual field based on a condition

statement. In general more than one transaction file may be

- 15 -

involved. However in the illustration it is assumed that the trans-
action flows indicated in Figure 3 are all recorded in the 'ORDER'
file and that they are distinguished by a status code field appended
to the record defined earlier. Thus orders in the (logical) trans-
action stream defined by the arc (1,5) have STATUS = 1, etc.
Finally, the required production reports are listed (not
shown). Logically all that is required here is the name of the re-
port and the list of nodes in the required order. If all of the
nodes in a sub-tree are to be included in the report it is only
necessary to state the root node of the sub-tree -- the system uses
the classification schema to automatically produce the report. The
hierarchical level of the nodes in the schema is used to help

format the report.

This completes the logical description of the information
classification and reporting schema. Subsequent modifications
and additions to the schema can be made in a similar manner with-
out affecting the logic of the system processing and report
generating routines. File space for any resulting additions to
the vectors bt and T would have to be allocated. However, it is
important to note that the order in which the files bt and T are
stored is immaterial and that these files should never have to be
sorted into any order other than that declared by (or implicitly

derived from) the system definition.,

- 16 -

5. Report Generation Phase

We first describe the process by which regular production
reports are generated. Assuming that the relevant state (bt) and
transaction (Tt) vectors are available, it is only necessary to
execute calls to two 'standard' report generating routines --
one to perform the aggregation via (2), (3) or (4), and another
to print the resultant information. (A specially written report
formating routine can be substituted for the latter routine if
desired.) Information concerning any special formating require-
ments is stored in the 'Report Schema' (Figure 5(c)). These calls
could be executed from a host language program whose only other
function would be: (1) to open and close the files containing
the required report-definition and the associated vectors bt and
Tes and (possibly) (2) to update the vector bt'

The system design outlined in Section 3 can also be used
to provide the intelligence necessary for the generation of
ad hoc reports. One example of a report request is given in
Figure 6(a). As another example suppose that this period and
year-to-date sales are to be printed classified on a cash or credit
basis only and that this is not a regular (predefined) production
report. The request would be stated:
REPORT SALES
The steps involved are as follows:

(2) The relevant system tree (Figure 2) is accessed and
the sales node located. The leaf nodes in the sales sub-tree are
then located. Only transactions beginning or ending at these nodes

need be identified.

- 17 -

(b) The relevant leaf nodes are Credit Sales and Cash

Sales. Reference to the associated rows in the Systems Matrix

(Figure 3) identifies the four transactions which are involved --
namely, those associated with columns 8 through 11 of the Systems
Matrix (and elements 8 through 11 of the transaction vector).

(c) Generating the sub-matrix defined by the rows and

columns mentioned in (b) and retrieving the relevant elements of

b and T the report can quickly be obtained using the logic . of:

equation (2).

6. Conclusion

This paper has described the logical design of a system for
managing the processing of information for management reports.
Some considerations relevant to the physical implementation are
outlined below; others will be discussed in a later paper.

The first questions concern the storage of the records

associated with the bt and T, vectors. These must be readily

t
accessible to RMS. 1In many éxisting systems the elements of bt

and T, are stored together with the associated application file.
Thus this month's aggregate transactions (debits and credits)

to Accounts Receivable might be stored in"the Accounts Receiéable
master file, For RMS to function efficiently it will be helpful

to consolidate the state and aggregate transaction records for

a given classification schema into two separate files. 1In addition

the data-base administrator must decide which elements of .

T, are to be stored, explicitly and which are to be generated

- 18 -

as required by aggregation processes defined on the underlying
transaction files, as illustrated by the DBMS calls in Figure 7.
Extensive information of this kind is stored on most existing
systems -~ indeed past values of the state and transaction variables
are usually maintained also because of their usefulness in
management reports as a yardstick for gauging current results.

The second set of questions concern the updating of the
elements of bt and Ter In an on-line system it is possible to
update the appropriate elements of these records as soon as each
transacfion received by the system has been validated. This will
enable up-to-date ad hoc management reports to be obtained at
any time.

Finally, it is possible to define the logical structures
necessary to implement RMS via the data definition language of
the DBMS itself. 1In the system currently being implemented this
alternative was not adopted because it was desired to optimize
the retrieval capabilities of RMS (storage of bt and Tt) for a
given probability distribution of management requirements for
reports. These aspects are discussed more fully in Ormancioglu,-

[16].

10. Langefors,

REFERENCES

Blin, J.M., E.A. Stohr and M. Tanniru, "Development of a

Corporate Information System,'" Proc, COMPSAC 77, Chicago,

November 1977, pp.

Butterworth, John, "The Accounting System as an Information

Function,'" Journal of Accounting Research (Spring 1972), pp.1-27.

Dijkstra, E.A., "A Constructive Approach to the Problem of

Program Correctness,' BIT 8 (1968), 174-186.

Faves, B. Curtis, '"Operational Axiomatic Accounting Mechanics,"

The Accounting Review, Vol. XLI, No. 3, July 1966.

Everest, Gordon C. and Ron Weber, '"A Relational Approach to

Accounting Models," The Accounting Review, Vol. LII, No. 2,

April 1977.

Frigo, Mark L., "Utilization of Replacement Cost Information

Within an Accounting System'" (unpublished paper).

Gerritson, Rob, ''Understanding Data Structures,'" Working Paper
75-08-01, Decision Sciences Department, The Wharton School,

University of Pennsylvania.

Haseman, William D. and Andrew B. Whinston, Introduction to

Data Management, Richard D. Irwin, Homewood, Illinois, 1977.

International Business Machines Corporation, ''Study
Organization Plan Documentation Techniques'" (Form No. C20-8075),

White Plains, New York 01961.

Borje, Theoretical Analysis of Information Systems
3

Auerbach Publishers, Inc., Philadelphia, 1973

11.

12,

13.

140

15,

16.

17.

18,

Lieberman, Arthur Z. and Andrew B. Whinston, "A Structuring

of an Events-Accounting Information System," The Accounting

Review, April 1975.

Mills, H.D., "Chief Programmer Teams Principles and Procedures,"

IBM Corp., Gaithersburg, Md., FSC 71-5108, 1971.

National Cash Register Company, "A Study Guide for Accurately

Defined Systems,'" Dayton, Ohio, 1968.

Nunamaker, J.F., Jr., ""A Methodology for the Design and

Optimization of Information Processing Systems,' Proceedings,

Spring Joint Computer Conference, AFIPS Press, Montvale,

New Jersey, 1971, pp.283-294.

Nunamaker, J.F., Jr., Benn R. Konsynski, Jr., Thomas Ho,
and Carl Singer, ''Computer-Aided Analysis and Design of
Information Systems,' Comm. ACM, 19, December 1976.

Ormancioglu, Levent, '"An Automated Report Generation System-

Design and Optimization,' unpublished Ph.D. Dissertation,

Northwestern University.

Shank, John K., Matrix Methods in Accounting, Addison-Wesley

Publishing Company, 1972,

Teichroew, D., '"Problem Statement Analysis: Requirements for
the Problem Statement Analyzer (PSA),' ISDOS Working Paper
No. 43, Departmentof Industrial Engineering, University of

Michigan, Ann Arbor, 1971.

