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ABSTRACT

In this paper we consider the application of the recent
algorithms that compute fixed points in unbounded regions to the
nonlinear programming problem. It is shown that these algorithms
solve the inequality constrained problem with functions that are
not necessarily differentiable. The application to convex and

piecewise linear problems is also discussed.






THE FIXED POINT APPROACH TO

NONLINEAR PROGRAMMING

R. Saigal

1. Introduction

In this paper we consider the problem
min go(x) (L.1)

gi(x) =0 i=1, .. ., m (1.2)

where go and g; are arbitrary functions on a set XCRn, the n-dimensional
Euclidean space. The set X may be discrete, but for simplification, we
assume that the convex hull of X is Rn, and that there existé a sub-
division of R" with vertices in X. One such example of X is the grid
of integers, for which efficient triangulation procedures exist. Sens
Todd [16].

Our approach is to consider piecewise linear approximations
g. , 1 =0, . . ., minstead, and then to solve the continuous problem
by the fixed point algorithms. We thus obtain an approximate solution
to (1.1-2). Such an approach has been successfully used in [8]. We note
that gi2 are not differentiable. Since they are piecewise linear, a
notion of a generalized subdifferential can be readily defined. This is
the same as the generalized gradient of Clarke [1}, and for convex gil,
the same as the subdifferential of convex functions, Rockafellar [9].

Since the fixed point algorithms of Eaves and Saigal [3] and Merrill [6]



can successfully find fixed points of certain point-to-set mappings, we
formulate this problem as such a point-to-set mapping problem which can
then be solved by these algorithms.

Hansen [4], Hansen and Scarf [5], and Eaves [2] had recognized
the potential of applying these methods to nonlinear programming, but
the full potential was explored by Merrill [6]. 1In section 3, we present
extensions of several of his results for the convex case. Traditional
descent type methods for solving this problem are summarized in Mifflin
[7]1. Also, in [7], a stecpest descent type algorithm, using the mapping
of [6], is presented.

In section 2, we present a brief overview of the fixed point
algorithms; in section 3 these algorithms are applied to the constrained
and unconstrained convex problems; in section 4 we introduce piecewise
linear mappings and establish the necessary and sufficient conditions
for local minimization of the constrained and the unconstrained problems;
in section 5 the application of the algorithms is discusséd; and in
section 6 we discuss the computational aspects. Finally, in the appendix,
we present the computational experience of solving some fairly large

nondifferentiable problems.



2. The Algorithms

We now give a brief description of the algorithm of Eaves and
Saigal [3] implemented on the subdivision J3 of R™x (0,D]. We will assume
that the nonlinear programming problem is being solved by this algorithm.

The triangulation J3 of RnX(O,D] has vertices in RnX{D.Z_k} for

k=0,1, 2, .. .. Also, v = (v ., v ) is a vertex if v =
n+1

1° n+l

-k . . . .
D.2 for some integer k and Vi/V is an integer for each i. In case,

nt+l

for a vertex v, vi/v is an odd integer, it is called a central vertex.

n+l
Any simplex in J3 then has a unique representation by a triplet (v,m,s)
where v is a central vertex, m is a permutation of {1, . . ., n+tl} and s
is an n-vector with s; e {-1, +1}. A complete description of J3 can be
found in Saigal [11], and Todd [16].

Given a point to set mapping 2 from R” into nonempty subsets of
Rn, and a 1-1 linear mapping r from R" into Rn, we say a n-simplex o =
(Vl, e e, Vn+l) is

(a) r - complete if 0 € hull{ r{o) },

(b) 2ur - complete if 0 & hull {r(ov)uvi(o)},

(c) & - complete if 0 € hull {&(c)}.

These algorithms, starting with a unique r-complete simplex 9
containing the unique zero of r, generate a sequence of Qur- complete

simplexes Oo Oy 02, s s Oy e e In case these simplexes lie
>

in a bounded region, it can be readily shown that if they are

from J3, there is a subsequence G. 5 0. s O. 35 o« « o3 T, 5 s o =y
i i i i
1 2 3 k
n -k ,
2— complete simplexes such that OiC:R x {D.2 7} and, so the diameter
k
of o, approaches zero as k approaches «.
k

Thus, the failure of the algorithm implies that it has generated

fur- complete simplexes sufficiently far from Xg» the unique zero of r.

of



In applications to nonlinear programming, we will freqently
choose

rix) = X=X
and define a point-to-set mapping 2 such that if, for some x, 0el (%),

then x is a solution to our problem.

We now prove the following result:

Theorem 2.1: Let Ol, Ops = = s Ops = = = be a sequence of - complete

simplexes which lie in a bounded set and the diamater e, of

k Sy approaches

0. In addition, let & be a upper semi-continuous point-to-set mapping
with £(x) nonempty, compact and convex subsets of R, Then, if x is a

cluster point of {xk}mk with x €6, , then 0ef2(x).

=0 kk’

Proof:

Since {Ok}mk=0 lie in a bounded region, say B, under the hypothe-

sis on £, £(B) is compact, hence 2(B) is bounded (B 1is the closure

1 2 nt+l

= X ... i - - ther
of B). Now, as T (v e Ve , v k) is ¢~ complete, ere
st g(vt ) and A, . 20, £ A, =1 such that T A, ,y% . =0
exis yi’ke Vi) an 1% > 2 Ai,k = such a z i,ky ix - 0
. < < ,
Since 0 = Xi’ k 1, y“i,kel(B) on some common subsequence Xi,k -

1 * % 3 5
Xi for all 1 and y ik MR AN for all i. Thus

b

?Aiy:\i = O
A, =1
i
and A, 2 0.
i
Also, as dia(ok) approaches 0, on some subsequence vlk + x for all 1.
Since y*i 1(eSL(vlk), using the upper semi-continuity of £ we have y*jel(x),

and since 2(x) is convex, we have our result.



3. Convex Case

In this section, we will consider the applications of fixed point
algorithms for solving (1.1-2) when the underlying functions are convex,
not necessarily differentiable. We will make the simplifying assumption

. . n .
that the functions are defined over all of R, and that they are finite.

3.1 Unconstrained Case

We now consider the problem of minimizing go'when the set
{x : go(x) s go(xo)} is bounded for some X and the function gO is
convex.

The subdifferential set Bgo(x) of a convex function 8g at x is
the set of all vectors x* in R" such that

go(y) 2 go(x) + <«*, y-x> for all y in R" (3.1)
and under our assumption this set is nonempty, closed and bounded,
{9, Theorem 23.4].

A trivial consequence of (3.1) is the following theorem.

Theorem 3.1: Under the above conditions on go, X solves (1.1) if and
only if 0 €39 go(i).
We now show that the algorithms of Section 2 implemented with

X - X

r(x)

0
2(x) = 3gy(x)
for an arbitrary starting point X and initial grid size €0 will con-
verge to a solution of (1.1). Let B(x,e) = {y : ||y-x||<e}, and

M(x,e) = sup {go(y) : yeB(x,e)}.



Theorem 3.2:

the fixed point algorithms will

simplexes of diameters €

Proof:

of diameter €<

D= {x:

Since D is bounded, we

+
v l) sufficiently far from X,

and such that Viél)for each i

Starting with the unique r- complete simplex containing x

€

0’

succeed in generating £ ~ complete

<
= €

0

Assume that the algorithm does not compute a &- complete simplex

0" Now, define

By (¥) = M(xy,e,)}
can find a 2ur- complete simplex o = (vl, N
such that for some x & o, <Vi—X0, x—x0> > 0,

Now, as gO is convex, by

=1, . . ., ntl.

(3.1) for every y*ego(vl) and every i

. i
Since v -x + x

0

> i
= go(v ) + <XO—X’ y*>

£ D, we have <x . -x,y*>>0 for all y*sgo(vl) and every i.

Hence, using Farkas lemma we claim that ¢ cannot be fur- complete, and

we have a contradiction.

Now, let o = (vl,

diameter € > 0. Then there exist y*ieago(vl))Ai

zA. = 1 such that Zi.y*,
i i’ i

Theorem 3.3:

that

n+
s v l) be a £- complete simplex of

., ntl,

v

0, 1 =1, . .

= (0. We can then prove that:

Let X be a solution to (3.1). Then there is an x £ o such

n+1
(3.2)

% :Z - 7 i x>
gO(X) gO(X) : >\i<v S

(3.3

and  M(x,e) Zgy(x).

Proof:

A | Let x

Zkivl. From (3.1)

i - i
B <3S - * >
gO(J Y+ <x -V, vy 5



Hence
- s n+l i i
z - %
go(x) iilkigo(v ) Zki v,y i>

v

i
go(x) - Zhi <v ,y*i>
and the first part follows. Also,
. _ s . _
go(vl - x4+ x) = go(vl) + <x - x, y*i>
and so
i - > i >
- x + = = .
Zligo(v X + x) ZAigO(v ) go(x)
But, as vi-x + X e 3(x,e), we have our result.
Note that in Theorem 3.3, (3.2) gives a computable lower bound on
the minimum value of g(x) and can thus be used as a stopping rule. Also,

(3.3) shows that the algorithm is converging to a minimum.

3.2 Constrained Case

We now consider the problem (1.1-2) when the functions g, are
convex functions. Define,

s(x) = max {gi(X)r: 1

and we note the s is also a convex function. We now assume that the

<

set {x : s(x) = s(xO)} is bounded for some x Now, define the mapping

0
ago(x) if s(x) < O

L(x) = ago(x) + 3s(x) if s(x) = (3.4)
3s(x) if s(x) > 0

Theorem 3.4: Let X be such that 0 € 2(x). Then %X solves (1.1-2) or

indicates that (1.2) has no solution.



Proof:

There are three cases.

Case (i). s(x) > 0. In this case O ¢ 35(%), and thus x is a

global minimizer of s, and hence the constraint set (1.2) is empty.

Case (ii). s(x) < 0. TIn this case O ¢ Bgo(i) and hence x is
a global minimizer of 80* Since it also satisfies (1.2), x solves

(1.1-2).

Case (iii). s(x) = 0. 1In this case, there is az* ¢ 8g0(§) and

y* € 3s(x) such that a* + y* = 0. Let I(x) = {i: gi(§)= 0}. Then,

3s(x) = hull { L) agi(E)} and so there are numbers Ai 2 0, icI(x),

ieI(x) _
in = 1, and y*iESgi(x) such that y* =%Li{ y*j. Hence, Z* + Zkiy*i = 0.

Now, let v satisfy (1.2). Then, from (3.1),

v

8o (¥) = go(x) + <z*, y-x)>

1l

g, () gi(é) + <y, y-x> ieI (%)

Hence

v

go(y) go(y) + ingi(y)

go(§) + <z*® + iny*i, y—§ >
= go(i)
and hence % solves (1.1-2).

We now show that the algorithm initiated with

ri(x) = x-x

0

for arbitrary x,. and 2(x) as in (3.4) will find a &~ complete simplex.

0
Theorem 3.5: Let € > 0 be arbitrary, and let the algorithm implement the
mapping r above. Then, for each ¢ > 0, the algorithm will find a 2~

complete simplex of diameter e.



Let

M(xO,E) = max{sup { s(x) : x ¢ B(xo,e)}, 0}
and D = {x : s(x) = M(xo,e)}. By assumption, D is bounded. Now, assume
that the algorithm fails. Hence, it generates a simplex ¢ = (vl, N
vn+l) of diameter € > 0 such that o is Rur- complete, and sufficiently

. i
far from D, i.e., 0 ¢ D and for every x ¢ 0, <v -x_, x-%X,. > % 0. Also

0] 0]
s(vl) > 0 for all i. Now, consider the point vl—x+xoe D. Then
i > i - i
s (v —x+x0) = s(v’) + X=X, y* > for all y*i eds(v7).

Since s(vi) ¢ D, we have X=X, y*i >> 0 fomll y*ieas(vi) and all 1i;
and, from Farkas' lemma, ¢ cannot be fur- complete, a contradiction.

We now assume that there is no solution to (1.2). Hence s(x) > 0
for all x, and thus (3.4) reduces to 2(x) = 3s(x). A consequence of

Theorem 3.3 is the following.

Theorem 3.6: Let s(x) > 0 for all x, and that {x : s(x) = s(xo)}
is bounded for some X Then, the algorithm will detect the infeasibility

of (1.2) in a finite number of iterations.

Proof:

For each ¢ > 0, the algorithms compute a fur- complete simplex in
a finite number of iterations. Also, since s(x) > 0, it will attempt to

e 1 n+l .

minimize s(x). Now, let o = (v, . . ., v ") be an %~ complete simplex
of size € > 0 found by the algorithm. Then, there are y*i € 9 s(vl) such
that Zkiy*i =0, Zx., =1, Xi = 0 has a solution. Also, from Theorem 3.3,
if x minimizes S,

s(x) Zzsx) + Zki< vl,y*i>

i
—x . gk
sx)+ Zki VI-x,yE >
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4. Piecewise Linear Functions and Nonlinear Programming

In this section we establish the notation and prove some basic

results for nonlinear programs with piecewise linear functions.

Cells and Manifolds

A cell is the convex hull of a finite number of points and half

z 0} where a

lines (half lines are sets of the type {x : x = a + tb, t
and b are fixed vectors in Rn).

The dimension of a cell is the maximum number of linearly independ-
ent points in the cell. We will call an n dimensional cell an n-cell.

Let T be a subset of an n-cell g. If x, yeo 0 <Xx<1,
(1-M)x + Ay € 7 implies that x,y in T then T is called a face of a cella
A simple fact is that faces are cells. Also faces that are (n-1)- cells
are called facets of the cell, and that are O-cells are called vertices
of the cell.

. , n
O # M be a collection of n-cells in R . Let M =.Qj<7 .
gem

We call (M,m) a subdivided n- manifold if
(4.1) Any two n~cells of m that meet, do so on a common face.
(4.2) Each (n~-1)- face of a cell lies in at most two n-cells.
(4.3) Each x in M lies in a finite number of n-~cells in M.

If (M,m) is a subdivided n- manifold for some m, we call M a

n—- manifold.

Piecewise Linear Functions

Let M be a n- manifold, then the function
g: M >R
is called piecewise linear on a subdivision m of M if

(4.4) g is continuous
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(4.5) Given a cell o in m, there exists an affine function 8y ¢
R" > R such that g[c(x) = gc(x) (i.e., g restricted to o is

gc)-

Generalized Subdifferentials

Let M be a n-manifold, and M be its subdivision. Let g: M > R
be a piecewise linear function. Then, for each x ¢ M, we define a
generalized subdifferential set 3g (x) as follows:

From(4.3), x lies in a finite number of n-cells, Gl’ Tops o v =s
o, in m say. Let

Ve, =@

i

(where vf is the gradient vector of f). Then, we define

i

3g(x) = hull {al, . e s ar}
and we note that if g, in addition, is convex, then 3g(x) is the sub-
differential of g at x, Rockafellar [9]; and, as g is locally Lipschitz
continuous, 3g(x) is the generalized gradient of Clarke {1]. 1In that
case, the theorem below is known, but we will use the piecewise linearity

of g to establish it.

Theorem 4.1: If x is a local minimum of go, then 0 ¢ ago(x).

Proof:

Assume x is a local minimum but 0O § dgp(x). Now, let X ¢ clnczn.
Q Oy - Then Bgo(i) = hull {al, e e ey ar}. Hence, from Farkas' lemma,
there is a 2z # 0 such that <Z,ai> <0Ofori=1, .. ., r. Let ¢ >0

be sufficiently small so that B(i,e)C:()ci. Then X + 62 ¢ B(x,e) for
sufficiently small 6 > 0. Assume X + 6z ¢ 03 for some iT Hence

g, (x + 0z) = <aj,)_(> +B<ag, 2 -,

]

go(;() + 0 <aj! z >< go(;()
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énd we have a contradiction to the fact that X is a local minimum.

Given a point~to-set mapping I from R to nonempty subsets of Rn,
we say T is weakly monotone at x with respect to y*el'(x) on F if there
is an € > 0 such that for all x e B(X,e)f\ F.

<x-%, y* - y*> 2 0 for all y* in TI'(x).

We can then prove:

Theorem 4.2: X is a local minimum of g, if and only if 0 ¢ BgO(Q) and

. - . n
Bgo is weakly monotone at x with respect to 0 on R .

Proof:

Let x lie in the cells o o . Then ago(i) =

1> Ooo = 0 s
hull {al, .. . ar}. For some sufficiently small e > 0, let B(E,e) C. chi
To see the if part, let 0 ¢ Bgo(i) and let BgO(E) be weakly monotone

with respect to zero at Xx. Hence, for some ¢ > 0, for all x e B(x,¢)

we have

<x-X, a;> 20 where a e Bgo(x)c:ago(g)
Hence,

go(x) - go(g) = <a,x> -y, - <ai,§> + vy 2 0, and so % is
a local minimum of gg- To see the only if part, let 0 ¢ ago(§) and

Bgo(g) not weakly monotone with respect to 0. Then, for a sufficiently

small € > 0 such that B(%,e)(i()oi, there is an % ¢ B(g,e) and a

a; ¢ ago(x) such that <x-x, a;> < 0. Since ago(x) c;ago(ij, we have

gO(X) - 80(2) <ai’X> - Yi - <ai,§> + Y

which is a contradictionm.
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The Constrainted Problem

Let g; * R” + R be piecewise linear functions on subdivided
manifolds (Rn,n%), respectively, for each 1 =0, . . ., m. We now con-

sider the constrained minimization problem (1.1-2).

i i

For a generic point x in R" we define 011 Gp's o+ s O as
. , , .1
the n-cells of 7 in which x lies, and gilojl(y) = <aj1,y> - yjl, for
each i =0, . . ., m. Also note that, by definition,ri is finite.

. i .
Also, there exists ¢ > 0 such that B(x,e)C:()jcj for each i. We are now
ready to establish the necessary conditions for x to be a local minimum

of (1.1-2).

Theorem 4.3: Let x be a local minimum of g, over all x satisfying (1.2).

Then
>
(i) There exists Xi = 0 such that
xigi(i) =0,i=1, .. ., m
- * —
(ii) There exists y* ¢ ago(x), z ;€ l 3 g, (x) such that
m * 1
D=vy*+31 xr.z .
. i
i=1
Proof:

Let x be a local minimum, and 0 i agO(E) + cone (C) where

c= U agi(i), I(x) = {i: gi(i) = 0}and cone (C) = {y + vy =

ieT(x)
r >
I A.x.,, X, eC, X, =0}. (It can be readily confirmed that (i) and (ii)
jo1 11774 i :

hold if and only if 0 ¢ ago(ﬁ) + cone (¢)). Then, from Farkas lemma,
since both Bgo(g) and C are convex combinations of a finite number of
vectors, there exists a 2z such that

<z,y*> < 0 for all y* ¢ Bgo(i)

<Z y*> S 0 for all y* ¢ C.
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Now, consider x = x + 6 z for sufficiently small 6 > 0 such that for

i ¢ I(g), gi(x) <0, and x ¢ B(§,e). Hence, for some ag € Sgo(g),

0 o =y 0 0 0 = 0

a; e Bgo(x). Hence8y(x) -gp(x) = <a; x> -y, - <ag x> oy =

6<aio,z> < 0. Also, for i € I(X), there is a ajls Sgi(ﬁ) such that

i - i i i- i
. - = < b - -

aj € Sgi(x) Hence gi(x) gi(x) aj ,X> Yj <aj ,X> + Yj

0. Since gi(i) = 0, we get a contradiction that X is not

A

=<z,a 1>
J

a local minimum.

We now prove a sufficiency condition.

Theorem 4.4: Let x be a point such that
(i) There exist Ai = 0 for which
Aigi(E) =0 i=1, .. ., m

m
(ii) Define the map T'(x) = ago(x) + I
i

.=1Ai 9 g; (x)

Then 0 € T" (X) -

(iii) T'(x) is weakly monotone at X% with respect to O on the set

F=1{x: gi(x) = 0, i=1, . . ., m}.

Then x is a local minimum of g, on F.
Y

Proof:
Let x ¢ B(§,a) N E, " and ¢ sufficiently small so that B(E,e)(:(% oiJ
for each 1 =0, . . ., m. Then
8o (x) -8g(x) 28(x) + I Mg, () -8p(x) - z A8 (%)
i=1 i=1
- 0 — i
=2 <x~x¥x, a, > + X Ai <xX-X, a, >
Y 1eI(X) 3
= 0
0 i
since aj + ZAiaj € T(x), and T(x) is weakly monotone with respect

i
to 0 at x, and so x is a local minimum.
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5. The Fixed Point Approach to PL Nonlinear Programming

We will consider the application of the fixed point algorithm of
[3] to the case where 8o is piecewise linear on some subdivision of Rn,
and g; are convex functions. In this case, the mapping ¢, (3.4), is
applicable. As is evident from Theorem 3.5, in this case we will prove
that the algorithms will find a "stationary point” x such that
0 € 2(x). In certain special cases, the progression of the algorithm will
indicate if x is a local minimum, Saari and Saigal [10], for the gen-
eral case considered here, x may be a local maximum or a saddle point of the
function gg

That the algorithm will compute a stationary point can be estab-
lished in a manner similar to the proof of Theorem 3.5. Since s is
convex, the part of Theorem 3.4 pertaining to the nonexistence of a
solution to (1.2) also carries through. The convergence of the algorithms
can also be proved under the relaxed hypothesis that s be convex outside

some bounded region; i.e., if D is a bounded set containing x then for

O’
each x ¢ D, and y* ¢ 9s(x),
s(z) = s(x) + <y*, z-x> for all z ¢ D.

Then, starting with r(x) = x-x. and £ as defined in (3.4) we can prove:

0
Theorem 5.1: For any € > 0, starting with the unique r-complete simplex
containing Xq» the fixed point algorithm will generate 2- complete sim-
plexes of size = e(> 0), and thus will compute a stationary point of

(1.1-2).
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Proof:
Let N=max {0, sup {s(x) : x ¢ B(xl,e) U p} for an arbitrary

X, such that B(xl,e)f]l)= @ and let D = DY {x : s(x) = N}. By assumption

1

D is bounded, and s is convex outside D. Now, assume that for some
e > 0 the algorithm fails to compute a &- complete simplex. Then, there
is a fur- complete simplex of diameter < e sufficiently far from D;

i.e., O & D and for every X £ 0, <vl—x0, x-x. > > Q Also, s(vl) > 0 for

1
all i. Now consider the point vi-x + X € D. Also, by assumption,
vl-x+x14? D. Hence s(vl—x + xl) 2 s(vl) + <xi - X, y*i> for all

y*i € 8s(vl) and as vi ¢ D and vi-x + Xleﬁ'we have <x—xl,y*i> > 0 for

i o . . .
all y*i eds(v7); for ali i. Thus o is not Rfur-complete, a contradiction.
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6. Computational Considerations

As is evident from the sections 3 and 5, the convergence of the
fixed point algorithms can be established under some general conditions
on the problem, and differentiability is not necessary. Computational
experience indicates that the computation burden increases when the under-
lying mappings are not smooth. For smooth mappings, under the usual
conditions, the fixed point algorithms can be made to converge quadrati-
cally, Saigal [14]. This can be observed by comparing the solution of three
nondifferentiable nonlinear programming problems implementing the mapping
(3.4) presented in the appendix, Tables A.1-3, with the solution of a
smooth problem of eighty variables in Table A.4.

On such a problem, reported in Netravali and Saigal [8], the
growth of the number of function evaluations with the number of variables
was tested. The results were as anticipated by the works of Saigal [11]
and Todd [16]. It was predicted in these works that the function evalua-

tions grow as O(nz), where n is the number of variables. (See [8, 4.1].)
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APPENDTIX

We now give some computational experience with solving non-~
differentiable optimization problems of fairly large number of variables.
For comparison purposes, we also give the results of -solving an eighty-

variable smooth problem (where the convergence has been accelerated).

Problémvl

This is a 7 variable problem. It is a version of the problem
considered by Natravali and Saigal [8]. The value of entropy on the
entropy constraint is 2.7, and this is the 19th run in the series of

runs done on this problem.

Problem 2
This is a 43 variable problem considered in Elsner, W.B., "A
Descent Algorithm for the Multihour Sizing of Traffic Networks,' Bell

System Technical Journal, 56 (1977), 1405-1430.

This run was made on a piecewise linear version, while the
problem formulated by Elsner was piecewise smooth. The function is

convex.

Problem 3
This is the following 15 variable convex piecewise smooth problem:

min max_ fi(x)
X l:j:s



where
5 2 10
= c..X + + - Z
fj(x) 2 1Z=1 ijk10+i 3djx 10+ eJ A aijxl
i=1, . .y D
and the data a,_., ¢.,, d.., e, are the same as that for problem 10 in
1] 1] 1] J

the appendix of Himmelblau, D.M., Applied Nonlinear Programming, McGraw-

Book Company, 1972.

Problem 4
Is the 80 variable problem considered by Kellogg, Li and Yorke,
"A Constructive Proof of Brouwas Fixed Point Theorem and Computational

Results," SIAM Journal of Numerical Mathematics 13 (1976): 473-483.

The results of the above four problems are summarized in Tables

A.1-4, respectively.



TABLE A.1

Grid of Number of Function Number of Simplexes
Search Evaluations Searched

8.0 34 121

4.0 111 , 160

2.0 28 54

1.0 286 | 690

0.5 539 1,034

0.25 487 918

Constrained minimization problem with piecewise linear objective function

and one piecewise linear constraint in seven variables.



Grid of
Search

6.55

3.27

1.63

0.81

0.41

0.20

0.10

TABLE A.2

Number of Function
Evaluations

951

469

400

526

623

1,081

885

Number of Simplexes
Searched

1,431

469

400

526

623

1,081

885

Unconstrained minimization of a piecewise linear convex function of

43 variables.



TABLE A.3
Grid of Number of Function Number of Simplexes
Search Evaluations Searched
3.87 2,259 3,099%
1.94 381 381
0.97 244 ' 244
0.48 667 667
0.24 347 347
0.12 253 253
0.06 364 364

Unconstrained minimization of a piecewise smooth convex function of

15 variables.



Grid of
Sear.ch

8.74

4,47

2.24

1.18

0.56

0.24

0.14

0.03

0.002

0.000009

TABLE A.4

Number of Function
Evaluations

1,573

149

106

97

88

84

81

84

81

82

Number of Simplexes
Searched

1,750

149

106

97

88

84

81

84

81

82

Zero finding problem for a smooth function of 80 variables. The

accelerated algorithm has been used to solve this problem.



