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Preliminary

A NOTE ON AGGREGATION AND DISAGGREGATION
By Walter D. Fisher *

This note is motivated by some recent work by Chipman [2,3], Sondermann
[6], and Tintner and Sondermann [7] that has generalized and extended the
approach to clustering and aggregation pursued by Fisher [4,5]. The purpose
of the note is to comment on the relationship between the concepts of simpli-
fication, aggregation, and disaggregation that appear in these various writings.
The context is the multivariate regression model, which is assumed to be used
by an investigator to make predictions of a set of endogenous variables with
small quadratic loss. 1In section 3 a theorem states a correspondence between

the use of a prescribed aggregation matrix and the use of a prescribed disag-~

. . 1 .
gregation matrix. !

1. Model and Cost Function

Let the original or detailed model be
¢9) y=Px+v ,
where y is a vector of G endogenous variables, x a vector of H exogenous vari-
ables, P a known GxH coefficient matrix, and v a vector of random disturbances
with zero expectation. It is assumed that the vector x is also random, but
independent of v, with raw second moment matrix E(xx') = M, a known symmetric
positive-definite matrix. The word '"model" or '"detailed model" will also be
used to refer to the matrix P.

The basic pufpose is assumed to be the prediction of y with small error.
Another purpose is assumed to be to find a simplified model, E, of the same

size as P, the manner of simplification to be described below, such that when

*
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P is used to forecast y by the formula

~

y = Px )‘

the expected loss

(3) r=Ey-NCy -

is minimized, where C is an arbitrary symmetric positive-definite matrix that
weights the relative importance of forecast errors in the various endogenous
variables and their interactions. Such a ﬁ'will be referred to as optimal.

It is shown in Fisher [4, p. 27, Theorem 1] that r = ¢ + constant, where c¢ is .

the simplification cost.

%) c=tr C@® - P)MP® - P)' ,
and hence the simplifiéation problem may be deécribed as choosing a 5 S0
that ¢ is minimized.

Throughout the rest of this note, with the exception of brief comments
to be made in section 5, it will be assumed that the model P has full row rank
(rank G) and that the simplified model is obtained by '"one-way simplification
on the left'" ~- that is by
(5) P=AP ,
where A i§ a square matrix of rank F, F < G, and is called a simplifier. It
will also.be assumed that C and M are identity matrices. The loss of gener-
ality entailed by these assumptions will be only slight, will not beaf on the
points to be made, and hopefully will be more than compensated by the gain in
simplicity of notation and exposition. More general formulations are available
in the literature cited.

In the next three sections various types of constraint on the simpli-

fied model are treated.
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2. Simplification under Rank Restriction

Say that it is desired to choose for the simplified model a P that is
of rank no greater than F, where F < G, and such that the simplification cost

(6) c=tr (P -P)® - P)

is a2 minimum. (Note that this representation of ¢ uses the special assumptions
C=1I, M= 1I.) It has been shown [4, p 167, Lemma C.1] that the desired simpli-

fier and simplified model are, respectively,

A= ! ’ P = ¥
) RF RF R P RF RFP B
where RF is the FxXG matrix whose rows are the normalized characteristic wvectors

associated with the F largest characteristic roots of the matrix PP'. This

solution may be called the characteristic vector solution and is unique if the

characteristic roots of PP' are distinctz, which we shall assume to be the case.
This problem is a mild specialization of that considered by Tintner and Sonder-
mann [7, p 522, Theorem 3], and becomes the same és theirs if, in their nota-

tion, we set C= I, M= I, K= F. Then the solution (7) above becomes identical

to theirs with RF equai to their Qk.

This problem is also closely related to another problem. Define an
aggregato& as a full rank FxG matrix, S, that premultiplies into P, yielding

the FxH aggregated model

(8) P=sp .

Define a disaggregator as a full rank GxF matrix, T', that premultiplies into

some aggregated model E; yielding the simplified model

(9) P=T'P=T'SP ,

the term "simplified model" and the symbol E in (9) being justified by (9)
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being in the form of (5) with A = T'S., When the simplifier A is in this form,

we shall also say that the pair (S, T') is an aggregation-disaggregation

sequence, or more simply, a sequence. Consider now the problem of finding a
sequence (S, T') and an associated aggregated model, 5; such that the result-
ing simplified model 5 in (%) is optimal -~ that is, such that the simplifi-
cation cost in (6) is a minimum. Such a sequence and aggregated model will
also be called optimal,

Since any ; in the form of (9) must have rank no greater than F, an
optimal E in that form -- i.e. subject to the restriction rank (5) <F --
must satisfy the characteristic vector solution (7). That is, a solution to

the present problem is the optimal sequence and aggregated model, respectively,

(10) S, T') = Ry Bp) P=RP .

But note that the solution is not unique. An infinity of solutions may be
generated by, say,
-1 —
(11D s, ') = (ZRF) RI';-Z ) P= ZRFP P)
where Z is an arbitrary FxF nonsingular matrix, and all of these solutions will

yield the same simplifier A = R%RF and same simplified model P.

After presenting their solution to the problem of simplification under
rank restriction on E Tintner and Sondermann state that the solution "provides
only a partial answer to the problem of optimal aggregation with free choice"
of the disaggregator, and

"Since we are interested in the aggregation problem, our
main concern is the aggregated modei P instead of the
simplified model E, which here serves only to measure
the aggregation bias., The problem of simultaneous

optimal determination of 5; T and S is still unsolved."3
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They then advance a conjecture which, in the special case considered in the
present note, is that the optimal aggregated model is P = RFP’ as in (10).
While recognizing the importance of the aggregation problem, omne may
question the appropriateness of the definite article '""the" in the phrase '"the
optimal aggregated model" [ibid] since the conjectured solution is, without
further restrictions, one of an infinite number, as shown above. One may also
perhaps question the "main concern" of finding a unique aggregated model in
these circumstances, unless convincing criteria can be provided for choosing

a preferred one from the infinite number.

3.. Simplification under Prescribed Aggregator or Disaggregator

Sometimes it is expedient to consider sequences where either the aggre-
gator or the disaggregator is specified a priori. Sometimes a particular
structure such as grouping is desired.

DEFINITION. An aggregator-prescribed sequence is a sequence (S, T')

where S is given. A disaggregator-prescribed sequence is a sequence (S, T')

where T' is given.

From Chipman {2, p 692, Theorem 2.2] in an aggregator-prescribed sequence
conditional on the aggregator S, the optimal disaggregator, simplifier, and
simplified model are, respectively, in the present case

+ = +
(12) T'=S; , A=s8 , P =58P ,

where S; = WS'(SWS')-1 and W = PP', which yields the simplification cost

(13) Zl = tr W - tr WS'(sws') lsw.

Chipman calls this result "best approximate disaggregation'. We have applied

his formulas, which deal with a more general case, to our special assumptions,
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and under these assumptions P, is unique.

1
From Fisher [4, p 34, Theorem 2] in a disaggregator-prescribed sequence
conditional on the disaggregator T', the optimal aggregator, simplifier, and

simplified model are, respectively, in the present case

(14) s=17 , A=TT P, = T'TP

where T'+ = (TT')—lT (the Moore-Penrose generalized inverse of T'), which yields

the simplification cost

(15) G = trw - tr wr' Tty i .

The simplified model 52 is found to be unique.

A correspondence between the two approaches is provided by the follow-
ing theoren.

THEOREM. For any optimal aggregator-prescribed sequence there exists
an optimal disaggregator-prescribed sequence that entails the same simplifi-
cation cost, and vice versa.

PROQOF. When S is a prescribed aggregator, the optimal simplifier is,

1/2

from (12), S;S, and the cost is Z from (13). Let T' = W '"S' be the prescribed

1

disaggregator. Then the optimal simplifier conditional on that T' is , from

W1/2 1/2, and the cost is obtained from 22 in (15).

1/2

(14), ot - s'(sws')’lsw

Then it is found, after substituting W ''S' for T' in (15) and using properties

~ ~

of the trace operator, that ¢, = Cye

a prescribed disaggregator, the optimal simplifier is, from (14), T'T*, and
Tw-1/2

When we start with some arbitrary T' as

the cost is c. from (15). Then, letting S = be the corresponding pre-

2

scribed aggregator, the corresponding optimal simplifier and cost in terms of
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T can be found from (11) and (13), and again the two costs are found to be the
same. -
. . . s -+ 1t
In general the corresponding simplifiers SWS and T'T' , as well as the

corresponding simplified models 5 and 5 are themselves different. 1In an

1 2’

important special case they are the same.
COROLLARY. If the prescribed aggregator is RF’ or if the prescribed

disaggregator is R%, then the two simplifiers are the same and equal to R%RF.
The proof is immediate from the fact that RF',RF is the unique optimal
unconditional simplifier of rank F, and that the optimal conditional simpli-
fiers must be consistent with the optimal unconditional one. The corollary
can also be established by direct substitution into (12) and (14), using the

properties of normalized characteristic vectors.

4L, Simplification by Grouping

An important special case of the simplification problem ariées fre-
quently in economics and other fields when it is desired to group the elements
of the model P into disjoint subsets. Continuing with the special case of
simplification on the left only, say that the rows of P are grouped into F dis=-
joint and exhaustive subsets, as are also the rows of 5 correspondingly, and
it is required that any row of P depend only on the subset of P corresponding

to its own subset. That is, it is required that P be of the form

~ —ir—
(16) P= A n\Pl s
o

where A_ is a square matrix of less than full rank and P_ is a submatrix of P

f f

according to some partition of rows. This case is called simplification by

grouping. The partition may be prescribed a priori from economic-theoretical
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considerationi or the problem of simplification may include the finding of

an optimal partition, based on the structure of the detailed model. 1In the
latter case the optimal 5 may be found in two stages: first finding a minimal
cost conditional on a partition, and second, searching over the domain of rele-
vant partitions for the global minimal cost. The search problem (see,Afor

- example, [3] and [4],will not be discussed here.

Consider now the further specialization where each A_ is specified to

f

be of rank 1, which implies that P is to be of rank F. Since the determination

of various optimal P_ are independent of each other, the characteristic vector

f

solution (7) may be applied to each Pf separately, using only the largest root

in each problem. That is, we have

f £
(17) Af = Ri R1 s f=1, ..., F ,
where Ri is the normalized characteristic row vector corresponding to the
largest characteristic root of PfP%. Noting that Af is in the form of a

column vector postmultiplied by a row vector, we have the simplifier

(18) A=T'S = |t

" where t% are column vectors and Sg are Tow vectors. Thus the optimal simpli-

fier is an aggregation~disaggregation sequence where both aggregator and dis-

aggregator are grouping matrices, that is, matrices in the form of T' or S

in (18), where the weights (non-zero elements) have been determined as part
of the soiution.

Next consider the optimal simplifier when the aggregator or disaggre-
gator is prescribed to be a particular grouping matrix, with both the parti-

tion and the weights fixed a priori, perhaps with the weights positive. With



-9-

the aggregator S so prescribed, (12) applies; with the disaggregator T' so
prescribed, (14) can be used. But note that in this case thé simplifier A

in (14) separates into the block diagonal form of A in (18), while such does
not occur with the simplifier A in (12) because of the intervention of the
general positive-definite matrix W in the formula for S;. So, simplification
by grouping can be attained when the disaggregator is'prescribed to be a group-
ing matrix, but not when the aggregator is so prescribed. Too much should not
be made of this result since it depends crucially on our initial assumption
that C (or M in the parallel case of columnwise simplification) is a diagonal
matrix, an untenable assumption in many applications.7 It is, neverfheless,
of some interest.

As Chipman points out [2 p. 710], an.investigator may wish to emphasi;e
the aggregated model rather than the simplified one, and in that case may wish
to prescribe the aggregaﬁor as a grouping matrix so that the aggregated model
will possess a grouping structure, even if the simplified model does not.

While this may certainly be true, it would seem that for those other problems
where disaggregation is also necessary or desirable, there may be still further
aanntages in having the final simplified model also possess a group structure,
When this result is possible (such as when C is a diagonal matrix), it seems
reasonabie to formulate the problem in a way (such as prescribing a grouping

disaggregator T') that will attain it.

5. Two-way simplification

This treatment has been restricted to simplification "row-wise" or
"on the left" of the coefficient matrix P in equation (1), ignoring the possi-

bilities of simplification "column-wise" or '"on the right'". An entirely
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analogous treatment could be made of the columnwise case and is made in [4]
and [5] by interchanging the role of rows and columns of P, E, E, and in anA
aggregation-disaggregation sequence placing the disaggregator to the right of
the aggregator. Then M plays the role of C. Or the simplification by rows
and columns may be considered simultanecusly. In that case, when rank restric-
tions are considered, the simplifier with the lower rank is the effective one.

In commenting on Fisher's formulation in the case of simultaneous row-
wise and column-wise simplification Chipman remarks that it "involves an
asymmetry in the treatment of independent and dependent variables, an aggre-
gation operator being given in the former caée but a disaggregationAoperator
in the latter" [2, p 710]. This characterization of asymmetry results from
looking at the vectors of variables in (1) rather than at the coefficient ‘
matrix P, From the viewpoint of the coefficient matrix Fisher's formulation
involves ‘a given disaggregation operator both over rows and 6ver columns of
P, while it is Chipman's formulation that is assymetric. - One might aléo say
that in (1) the role of the independent and dependent variables are themselves
in a asymmetric relationship to each other, so thaf it is a moot point which
formulation is fundamentally the more symmetric one.

Probably the usefulness of alternative formulations is the most impor-
tant criterion for choice, and it will require time to tell which will be best

chosen for which uses,



Footnotes

The simplification cost as defined in (4) has a close relationship to
what may be called the matrix bias: B = E(y-y)(y-y)' = (P-P)M(P-P)',
which can be minimized in the matrix sense -- meaning that 5 is chosen

so that the resulting B differs by a positive semi-definite matrix from
the B resulting from any other choice of 5. Indeed, it can be shown that
such a minimization of the matrix bias is equivalent to the minimization
of the scalar c for any positive semi-definite C. However, the choice of
a particular C is necessary in the "second stage" of a minimization prob-
lem to be described below where a search is made over discrete alterna-
tives (as is also pointed out by Chipman [2, pp. 677, 706]), so we elect
to use the scalar criterion c¢ throughout the present treatment., It
should also be noted that B has a close relationship to Chipman's "absolute
disaggregation bias' [2, p 690} and in the case of oneway simplification
on the left, which is the case we shall discuss here, the two biases are

precisely equal.

Proof: When the characteristic roots are distinct, all non-normalized
characteristic vectors associated with a particular root are proportional
(see, e.g. Bellman [1, p 42]), and hence the rows of RF are unique eXcept

for possible multiplication by -1. Hence the product Rl'?RF is unique,

[7, p 523] 1In the quoted statement we have changed the original A and A

to P and P in order to correspond to our notation.
See section 4.

results from the uniqueness in this case of Chipman's
+

W 2
to as an '"'oblique'" generalized inverse of § with respect to W, and that

The uniqueness of 51

""generalized quasi-inverse'" of §, which reduces to § sometimes referred
satisfies all four properties of Chipman's conditions (%) [2, p 552] with
V=1and U=W.

Here the weights may possibly be negative (as would be the case, for example
where two rows of P forming a subset by themselves were negatively corre-

lated). The term grouping matrix or partitioning operator is sometimes

used to include only the case of positive weights (Chipman [2, p 650],
Fisher [4, p 28]% often prescribed as in the next paragraph. Note that it

would be easy to generalize the case of Pf

of rank one to allow ranks higher



than one.
See [4 pp. 51-52] for an example of the implausibility of a diagonal M

matrix and [5, pp 759;761] for a discussion of the problem of attaining

optimal P when C or M is nondiagonal.
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