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THE STABILITY OF EQUILIBRIUM

By Michael J. P, Magill!

1. INTRODUCTION

This paper presents an analysis of the stability of equilibrium for a broad
class of models of intertemporal maximising behaviour that arise in dynamic eco-
nomics. This class of models is capable of ‘handling not only traditional prob-

lems in capital theory such as the adjustment-cost theory of the firm and many

variants of the Ramsey problem, but also simple instances of intertemporal ra-

tional expectations equilibrium [19, 22, 32].

The analysis of the stability of equilibrium for this class of models has
been the subject of extensive recent research,? much of which has been surveyed

by Brock [4]. Until the work of Magill-Scheinkman [21], attention was focused

exclusively on sufficient conditions for the stability of equilibrium. This

paper 1s an attempt to extend the necessary and sufficient conditions derived

by Magill-Scheinkman.

After introducing the basic class of intertemporal maximum problems (sec-

tion 2), I reduce the problem in the neighborhood of an equilibrium point to a

simple canonical form in which the forces that determine the stability of equi-

librium stand out with especial clarity {section 4). T show that a concept

vhich is basic to an understanding of the stability of equilibrium is the

1This research was supported by a grant from the National Science Founda-
tion, 50C-76-16838. I am grateful to Edwin Burmeister, Glenn Loury, Dale Mor-
tensen, Harl Ryder and Paul Samuelson for helpful discussions.

2See References [3]-[11]1, [151-[23], [26]-[31].



distinction between a symmetric and an asymmetric equilibrium point (section 3).
It follows from the work of Magill-Scheinkman {[21] that in the neighborhood of
a symmétric equilibrium point the local topological structure of the trajector-

ies arising from the intertemporal maximum problem can be inferred from consid-

erations based on a static maximum problem, namely the problem of maximising

steady state profit. In the neighborhood of an asymmetric equilibrium point

dynamic forces come into play which prevent the local topological structure of
the trajectories from being inferred from purely static considerations. These

dynamic forces are skew-symmetric (rotational) and when present with sufficient

magnitude lead to cyclical motion about the equilibrium point.3 Under simplify-
ing assumptions on the way in which these skew-symmetric forces are present 1
" show that in certain instances their presence induces a stabilising effect and

in other instances a destabilising effect (section 4). These stability condi-

tions are interpreted in section 5, where I also indicate a number of results
that are likely to hold under more general assumptionms.
The class of symmetric variational problems introduced by Magill-Scheink-

man [21] have a number of remarkable properties, which arise in essence from the

fact that a single function, the steady state profit function, characterises the
equilibria and their stability properties. One of these properties concerns the

results that may be obtained by an application of the Correspondence Principle,

a method of far-reaching importance first explored by Samuelson in [30]. This

Principle provides a natural way of generalising the method of comparative stat-

ics to the simplest class of dynamical systems namely those for which equilibria

3For an analysis of the way in which these skew-symmetric terms can give

rise to cycling in a rational expectations equilibrium for a competitive indus-

try see [19].



represent the important type of limiting behaviour {the w-limit sets). The

Principle rests on two ideas. First, only stable equilibria or motion in the
neighborhood of such equilibria can expect to be cbserved for any reasonable
length of time, motion in the neighborhood of an unstable equilibrium being a

transient phenomenon. Second, the necessary conditions for the local stability

of an equilibrium point can be used to obtain a qualitative restriction on the

way in which the equilibrium point varies when certain underlying parameters in

the model vary. Until the work of Magill-Scheinkman [21], the applicability of
the Correspondence Principle for dynamical systems arising from maximising be-
haviour was limited by a failure to have a complete set of necessary conditions.
It was shown in [21], using the necessary conditions for stability, that the

" term which appears in applying the Correspondence Principle to determine the
way in which an equilibrium point varies with a given parameter consists of two

components of which one is precisely the inverse of the Hessian matrix of the

steady state profit function.
| Using the necessary conditions derived in section 4, I show in secticn 6
the qualitative restrictions that can be obtained from the Correspondence Prin-
ciple when the stable equilibria are allowed to be asymmetric. It is shcown that
the dynamic skew-symmetric forces which come into play in the neighborhood of
an asymmeﬁric equilibrium point ﬁo longer make it necessary for a certain local
steady state profit function to attain a maximum at a stable equilibrium point
but only 2 maximin, a condition that carries with it a correspondingly weaker

condition on the inverse of the Hessian matrix of the local steady state profit

function. T apply these results to the dynamic theory of the firm in a station-

ary envircorment and show that the basic result of the static theory, namely that

the Jacobian matrix of the igput demand function is negative definite, no longer

holds in the dynamical case. Inputs in fact can exist for which an increase in



the rental price leads to an increase in the steady state demand.
Mention should be made of the interesting work of Burmeister-Hammond [8] on
the stability of equilibrium when the maximisation of an integral of discounted

utility (profit) is replaced by an intertemporal version of Rawl's Maximin Cri-

terion of Justice. It appears that the skew-symmetric terms which complicate

the analysis under the conventional criterion may well be absent under Rawl's
Maximin Criterion théreby leading to a potentially simplier theory of the sta-
bility of equilibrium.

A historical remark may be of interest. The analysis of the local stability

of equilibrium for a conservative dynamical system was first given by Lagrange

in the Mécanique Analytique [14, Part II, Section VI]. Routh [27; 28, Chapters

ITI-VI] and Lord Kelvin and Tait [33, Section 345] were the first to analyse the

stability of steady motion for a conservative dynamical system.L+ The equilibria

of the first are symmetric in my terminology, the equilibria of the second are

asymmetric when the standard Routhian function® is introduced. Lord Kelvin and

Tait showed, in simple cases, that the skew-symmetric (centrifugal) forces aris-

ing from the steady motion can stabilise the unstable equilibrium of a conserva-

tive dynamical system. The spinning top provides the simplest classic example
of this quite general phenomenon. With no spin, the verticle position, in which
the potential energy is a maximum, is unstable, but with sufficiently rapid ro-

tation the vertical position becomes stable.

4YSee also [2, Ch. VIII] and [24, Chs. IX, X].

SSee [24, p. 159].



2. THE INTERTEMPORAL MAXIMUM PROBLEM

Let I=][0,o) denote the non-negative time-interval and let & denote the

. . n
state space, where X is a convex set in R, n3z1.

DEFINITION. For fixed ko e £, the class of absolutely continuous paths

t
(1) _ k(D) =k 4 fk(tydt : 1 — X
0
t [
for which lee) || < HkOH + [{lk(0)|[dt < = for all tel
0
where & denotes the interior of & and H {| denotes the standard Euclidean norm,

" is called the class of feasible paths and is denoted by ®. 1t is convenient to

let {k,fc} denote the path (1).

: s
Let A < R, s21 denote the parameter space. We consider a-vector of ex-

ogenous parameters o = (B,8) e A = & X 'A(S and real valued instantaneous utility

B

(profit) functions

t

(2) A L(k,k; 8)e °F ¢ &xR%x & — R

which satisfy the following®

5The dependence of L(k,l.c; B) on the parameter B is sometimes omitted to sim—

plify the notation.



ASSUMPTION 1 (Concavity, differentiability). L(-;8)1is a Cr concave function

in (kjfc) for all (k,fc) € J(XRn, for all 8¢ AB where r 2 2.
We consider feasible paths (1) induced by (2) through the following

VARIATIONAL PROBLEM. Find a feasible path {k,k} ¢ ® such that

a'n) lim I[L(E(T), ﬁ('r)) - L(k(T)',IE(T))A]e—(STdT >0

T 0

for all {k,f{} e ®. The path {E,E} e ® is said to be optimal.

DEFINITION. Let ®* denote the class of absolutely continous price paths

' t
(3) p(t) = p, + [p(dt : 1 — ®°
0
t
for which Ipe) || = Hpo I+ fllp¢o)fldr < = for all tel
0 ,

It is convenient to let {p~-8p, p} denote the path (3).

DEFINITION. A feasible path {k,k} ¢ ® is competitive if there exists an abso-~

lutely continuous path of prices {ﬁ— 8P, i)'} e @* such that

(&) LE,K) +5'k + (B-6p) "k > L(k,k) + 'k + (B- ) 'k

v

for all (k,1.<) e xR for almost all tel.

Remark. Since (1,p) is the vector of (imputed) output prices and —(1‘;-—6'}5) is

the vector of (imputed) rental costs

L+ 7k + (p- 8Pk

is the (imputed) profit which is maximised zat almost every-instant by a




competitive path.

The following result is an immediate consequence of (4).

LEMMA 1. If Assumption 1 holds then {kjfcke @ is competitive if and only if

(5 (p-6p,p) = —(Lk, L}-c) for almost all tel

Remark. (5) is equivalent to the Euler~Lagrange eguation

(2) Lk+<5LR—EdE(L£)=Lk+5L12-LHCi<'—LRkIE=O

Remark. Under a standard transversality condition a competitive path {k,l&} e @

is optimal {20, p. 177]. The converse is established by Benveniste-Scheinkman
[3] under certain additional conditioms. For our purpcses it is sufficient to

know that an optimal path is a solution of (&£).

DEFINITION. A path {k,k} e ® which satisfies (%) with k(t) =k(t) =0 for all

tel is called an equilibrium point (stationary state).

E = [(*,a) e X x 4 | L, (k¥,05 8) + oL, (k%,03 8) = 0}

is called the equilibrium set for the variational problem (V).

DEFINITION. Let (k¥*,a) ez . The local coordinates around the equilibrium point

k* =k*(a) .are given by

x =k - k*

Let ®' denote the class of absolutely continuous paths {x,fc} for which {k,fc} e @.

The second variation problem about k*

8

(Q'4D) inf . --—;'fLo (x,%)e_ﬁtdt
{x,%x}e @ 0
where '
' x * * 1 x
A L' (x,%) = . Ll:k L:l:} .
l_X 'k Lf(.-_l X



and where the asterisk signifies that the Hessians are evaluated at (k*,O), has

associated with it the Euler~Lagrange equations

S e O~ R - (g = 0

which are the linearised equations for (&) about k*.

DEFINITION. An equilibrium point k*=k*(a) is said to be regular (hyperbolic)

if Ai#O (Re (ki) #0), i=1,...,2n where A € € is a root of the characteristic

polynomial
ook 42 : _
) DO = ILggri + () - L = SLfpdA; — (g +oLf)]| =0

A parameter value oe A is regular (hyperbolic) if all the associated equilibria

. k*(a) are regular (hyperbolic). We let &F (Eh) denote the set of regular

(hyperbolic) equilibria inE . Similarily we let at ('Ah) denote the set of

regular (hyperbolic) parameter values in 4.

Remark. Let (k*,a) eE, then k*sEr if and only if

A = lka(k*,O; B) + (SLl-ck(k*,O; BY| # 0

Remark. Hyperbolic equilibria are of basic importance in the analysis that fol-

lows since it is only for these equilibria that the linearised equations (B ")

reveal the topological structure of the trajectories that are solutions of (£)

in a neighborhood of an equilibrium point. Hyperbolic equilibria are an impor-

tant subset of the set of regular equilibria.

ASSUMPTION 2 (Profitability). There exist k., Tc'i, i=1,...,n such that

X = {keRnI—oo<_‘§i<ki<Tc_i<°°, i=1,...,n} < &

and for all j=1,...,n




L (kl,...,gc_j,...,kn,o,...,o; B) + 6L (kl,...,g_j,...,kn,o,...,o;s) >0
k| k|
ij(kl,...,kj,...,kn,O,...,0; g) + aLﬁj(kl,...,kj,...,kn,o,...,o; g) <0

for all k. > (k-,E—.)s i#j’
1- =11

Remark. The classical theorem of Kronecker-Poincaré {25, ch. XVIII] leads to

the following result. If ace A’ and if Assumption 2 holds then there exists

at least one regular equilibrium point k*e X.

Assumption 2 is a natural economic condition to postulate: for each cap-

ital good j, the marginal revenue (I, ) from an additional unit of j must be
n,
3
greater (less) than its rental cost (-8L. ) when the endowment of this capital
h
good is sufficiently small (large), independent of the endowments of the other

capital goods (i #3).

3. SYMMETRIC AND ASYMMETRIC EQUILIBRIA

DEFINITION. Let (k*,a) ¢ E. k* will be called a symmetric (asymmetric) equi-

librium point if

ka((k*,o; B) - Lﬁk(k*,o; B) =0 (#0)

DEFINITION. The variational problem (V) will be called symmetric (asymmetric)

if

Lkl-‘(k,o; g) - Lﬁk(k,o; B) =0 (£ 0) for all ke &, for all Be ﬁB

Remark. Symmetric variational problems generate symmetric equilibria but the

equilibria of an asymmetric variational problem need not be asymmetric.

DEFINITION. Let k* eEh. The solution of (V) will be called locally cyclical
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(monotone) in a neighborhood of k* if the characteristic polynomial D()) has at

least one (no) pair of complex conjugate roots.

Remark. Let k* e?ih. If k* is a symmetric equilibrium point and if L’(x,%) is

negative definite, then the solution of (V) is monotone in a neighborhood of k*.7

Magill-Scheinkman [21] have given a complete characterisation »f the local

stability of regular symmetric equilibria. Their analysis is motivated by the

following simple idea. Under Assumption 2 there are certain states in the region
&K, namely the steady states or equilibria, which have the property that if the

system starts in such a state it remains there permanently. Do these steady

states have an economically interesting extremal property which might serve to

characterise their stability properties? Is it possible that a certain function

which depends only on the state of the system attains an extremum at such steady

states, the extremum being a local maximum at locally stable regular equilibria

and a local minimum at locally unstable regular equilibria. The analysis in
[21] shows that this is indeed the case.
That the steady states of symmetric variational problems have an extramal

property is a consequence of the following

LEMMA 2. If L(tiB)EICZ then there exists a real valued function

k*
$Ci*s ) = [ (L, (k,058) + 8L;(x,058))'dk : L x4 — R
k

where k is an arbitrary fized point in &, such that

¢k*‘(k*; @) = L, (k*,0; 8) + 6Ly (k*,0;8)  for all (k*,0) e & x #

if and only if (V) is a symmetric variational problem.

7See Magill-Scheinkman [21, Lemma 3].



11

Proof. The symmétry of ka(k,O; B) for all ke X, B¢ AB and the standard the-
orem for the existence of a potential function [1, pp. 293-297] yield the result.

.In view of (4) we are led to the following

DEFINITION. The function ¢(k*:a) is called the steady state profit function.

This function characterises the steady states and their stability properties in

the following way.

PROPOSITION 1 (Magill-Scheinkman). If ('V') is a symmetric variational problem,

then k* ¢ K is a steady state if and only if the steady state profit function

attains a local extremum at k*. If k*¢ Er, then k* is locally asymptotically

stable (completely unstable) if and only if the steady state profit function at-

tains a local maximum (minimum) at k*.

For a more complete statement of the results the reader is referred to [21].

The proof of the above result hinges on a relation which may be established be-
tween the eigenvalues of the linearised Euler-Lagrange equations (') at k* and
the eigenvalues of the Hessian matrix cbk*k*(k*; a) of the steady state profit

function.

The results of Magill-Scheinkman lead us to ask the following question. 1Is

it possible to obtain a complete characterisation of the local stability proper-

ties of hyperbolic asymmetric equilibria? The section that follows provides an

answer to this question under certain simplifying assumptions.
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4, STABILITY OF ASYMMETRIC EQUILIBRIA

To analyse the stability of hyperbolic asymmetric equilibria for (V) and
(L) in terms of (V') and (£'), I will reduce the problem (V') with associ-

ated Euler-Lagrange equation (£') to a simple canonical form. Assumption 1

. 0, oy . . . . . .
implies L (x,%) is non-negative definite. It is convenient to strengthen this

property to

ASSUMPTION 1' (Strong concavity). Lo(x,i) is negative definite.

I will introduce the notation

(10) A= —L{:k ’ B = -L*, N = —L*-

and consider the transformation

St
(11) x(t) = e y(t)
which reduces (V') to
" | inf 2 /M(y,$)de

r{y,fr}e@" 0

where ®" is defined in terms of ®' through (1l) and where

on- [ 1]
N' B
(12) A=A+ -§—(N+N') + (%)ZB, N=N+ (%)B

Remark. In view of Assumption 1', Mo(y,ﬁ) is positive definite. Thus the
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matrices A and B are both positive definite.

Under the transformation (11), (£ ') reduces to

(2™ By ~Cy-Ay=0, C=N-N

DEFINITION. &j e € will be called an eigenvalue of A in the metric of B and

@ t-:(['n, = #0 is an associated eigenvector if B is positive definite and

(A-3,B)7 =0
J

Remark. Since A is positive definite, symmetric, A has n real positive eigen—~

— - . . -1 =, . .
values (al,...,an) and n real associated eigenvectors (w ,...,w ) in the metric

. . = - i !
of B. Furthermore the n xn matrix of eigenvectors W = [w1 ... W ) may be chosen

" in such a way that [12, pp. 310-319]

1 0 B 0]
WBW =1 = : , WA= A =
0 * 1 0 * '&n

Under the nonsingular transformation

(13) y =Wz
(V") reduces to
vy inf 1% (z,2)dt
N m 2
{z,2}e® 0

where @' is defined in terms of ®" through (13) and where

oo TR ®[] oo
Q(Z,Z)= 5 &'I PR N =W NW

Remark. Since M° (y,¥) is positive definite, Q%(z,%2) is positive definite. Thus

the matrix 4 - W'« is positive definite.

Under the transformation (13), (L") reduces to
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2™ - 2-T2- A4z=0

where _
[0 Y, ** Yin

(14) AR =T = _Y:lz 0 Y?n
:ﬁn *én.. O_

LEMMA 3. . If (ﬂl,...,ﬂn) are the eigenvalues of A +-%(N-+N') in the metric of B
then

(15) m,o=3, - (2)%, j=1,...m

Proof. From the definitions of G., 7., j=1,...,n

0= (A-5B)§ = [(A+-§—(N+N')+ [%)ZB) - ajB]xTrj

[A+—62-(N+N') - E,j- (%)iIB]‘-,J’

6 -I
(A+ S(N+N") - wJ_B}wJ A
DEFINITION. Let (k*,0) ¢ &. The quadratic form
) . _ -8 ' _ * S, % * . on
T(x; k*,0) = x' (A+ FW+N"))x = -x' (ka +E(Lk1.c+L1-(k))x R x &K x4 — R

will be called the local steady state profit fumction and the eigenvalues

(ﬂl,...,ﬂn) will be called the steady state profit rates.

Remark. If we assume, without loss of generality, that the steady state profit

rates are placed in order of decreasing magnitude

then they satisfy the well-known maximum property [12, pp. 317-320]
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T, = max m(x;k*,a) = 7(wl; k*,a), j=1,...,n
I xem,
J

@B, = {xerR" | x"'Bx = 1, x'But = 0, i=1,...,3-1}

I will give two precise characterisations of the local stability of hyper-

bolic asymmetric equilibria for (V') using the canonical form (£""). 1In the

first I impose a simplifying assumption on T, in the second I impose a simpli-

fying assumption on A. To prove the first I use the following

LEMMA 4. Under Assumption 1' if there exists a reordering of the components of

2z such that

(16) r=1| . , T, = I, i=1,0..,03)
T
)

n

n ntl
5 )

when n is even, (3 = - when n is odd and where Fn+
2

) are monotone (cyclical) if and only if

whére (%) = =[0] when

m

n is odd, then the solutions of (&

(17) l’%;_'ajv! (:) lel; j=1,...,(%)

where ('&j ,_'_&j,) are the components of A associated with Yy

Proof. (fo'“) splits up into (%) pairs of second order differential equations
when n is even {@-) -1 when n is odd]. For each such pair the characteristic

polynomial is



L -l - - 2 - -
D(A.) = A, + ,—0,~ad,,)A, +a.,a., =0 ji=1,...
(J) i (YJ 3 J'>J JJ' ) J ’

the roots of which are®

(18) A

-;—(i/_-Hj 2] 5L, )

Jas)
n

where

- O )

=~2 - (& - 2

8(18) is derived as follows. Let Ej = a:j +ib, = k:zj , then

i =
1 2 1

a, = 5 (a, +a., - ¥° b, = 5v(-H,)J,
2(3 j' YJ)’ j 2 i'73

J

The relation (aj +ibj) = (uj+:'L\)j)2 implies

D
]

b 0.

1 (3 3 / 2 7

.= = e v, = —= ) -a, + /a% +b*
3 /E[e]’ i 2 j h} i 3

n

s (’2—)

16



Assumption 1’ implies vaj >0, vaj, >0 from which it follows that the roots

are complex if and only if Jj > 0.

Remark. Let N = {vij} then Assumption 1' implies

|+

(19) '/a—j+/a:.>[v | 2|

. . V.. . V.. . TV, . .
23-1,2] 2]s23"1 2]"1,2] 23,2]°1

so that pure imaginary eigenvalues cannot arise in (18).

l=1v.1,

]

3

1,...

17

n

s (_2_)

PROPOSITION 2. Let k*s:Eih. If T satisfies (16), then k* is locally asymptot-

ically stable if and only if

J J

L — 2 ]
(20 /(/E-Tjwﬁ;) - 12 - /(v’a_.—»/%._.)z-vj% S8, =l ®

~when (Zjlgj') are monotone, if and only if

(21) /53' + vﬁj— > 1751 i=1,e0, @

when (sz;jL) are cyclical, where ?; = Y§-+62 .

Proof. In view of (18) the eigenvalues of (£") are given by

(s % »/ZI-I_J + /1J_j), i=lee, @

Two of these eigenvalues are negative, for each j, if and only if (20) holds
when (zj,zj,) are monotene. The real parts of a complex conjugate pair are

negative, for each j, if and only if (21) holds when (zj,zj,) are cyclical.

Remark. ‘nglgj,) are completely unstable if and only if

(22) ﬂ/a—j+@;)2 -3+ /(/%TJ,- /z—j',)?_ V2 < s

.) are monotcne, if and only if

when (gjlg

|
(23) , /E; + fg;; < lvjl

A
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when (zj ,_:_zj ) are cyclical.

Remark. If k* is symmetric vy, =0 and by (17), (zj,zj,) are monotone j=l,...,(—f;_1-).

. k|
In view of (15), (20) is equivalent to the condition

_ 2 -
i - (50 =m0 .- (8) =m0, gL LB

which is the result of Proposition 1. Equilibria are always symmetric when n=1

so in this case z is monotone and the stability condition reduces to

M= -(L FSLE) > 0

Remark. Let k* eEh. If k* is an asymmetric equilibrium point then a sufficient

condition for T to have the form (16) is that the matrices in (10) have the

" block~diagonal form

A 0 F 7] B .
A ] B, 0 N, 0
A = ) ) B = . s N = ".
0 ‘An 0 " B.n 0 "' N.n
) ) &)
- 2 L Z_J L 2_
~a.1 a'2— ' r_b.l b'2— —njl n.z— n
il DR FEEE M R PR ML ’ j=1se.05 ()
| %3t 32 i Pyral | "3'2 "3tz ]
the last of each of the block-diagonal elements A(_rl), B(I_l_), and N(B) reducing tc
. : 2 2 2

scalars when n is odd.

Remark. In this case the stability conditions (20) and (21), stated in terms of

the derived parameters (aj,aj,; Yj), are readily transformed into conditions on

the original matrices (Aj,BJ,; Nj), by noting that the matrix of eigenvectors W

%) 0
- 1 :
is block-diagonal, W = ’ , so that |W.,B.W. | = [W.IZIB.I =1 dimplies
0 ¢ w.n 131] J J
&)
w.| = ——-L-:-‘and vy, = |w.leg. = -——gJ—— where =(,_ =-n_,.) Furthermore
3" T Ve 3750 T e 57 52T ’
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recalling (12),

D.

a a"=——1——[‘—])—j—t/(—1]2-13‘[|3]] D, =3a,b +3,,b, -23,b
A lBj 2 2 R A i h I D A -2 2 j2 32

PROPOSITION 3. Let k* eE‘h, k* an asymmetric equilibrium point. If

then the solution of (V) in a neighborhood of k* is lo-

=3, =...=3 =3

a
—‘1 A P4 183

cally cyclical. Let®

iy 5 ee.y, iy
@

2
denote the eigenvalues of T, where Yn+1==0 if n is odd and let 7* = a* - (gJ_J
2
. then k* is locally asymptotically stable if and only if
Y312
(24) . m* > [—51} j=1,...,(%)
Proof. In view of the assumption El =ELZ= =En=&*, ;c =3*I so that the eigen-

value problem for (£"")

(25) (A% - T - A)v

I
o

reduces to an eigenvalue problem for T

- o553 -

A2 - g* Yj 2 Yj
Let A = p+iv then -——X—_—=1Yj implies p = + fG*~|—=~ , v=|-=. Thus

the eigenvalues of (25) are given by
Y.\2 <
i 11 . _d R 1.
T Jja [2} il[YZ) J —s'-os(z)

SRecall that the eigenvalues of a skew-symmetric matrix are pure imaginary

[12, p. 285].
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and the eigenvaiues of (') are given by

2 Y12 1
S ﬂ%] + 7% - {73] tiFZiJ =1, 3

from which the result follows at once. A

5. INTERPRETATION OF STABILITY CONDITIONS

The stability conditions (20)-(24) may be given a simple geometric inter-
pretation which brings to light more clearly the underlying economic conditions
under which a hyperbolic equilibrium point is stable. To this end let

LY
e

" (26) v(t) = z(t) so that x(t) = Wv(t)

Thus the degree of stability of v(t) at an equilibrium point is the same as the

degree of stability of x(t). Let v= (vl,vl, ye o ,v(n),v(n).). We may construct
2 z

a stability diagram (Figure 1) for the components (vj(t), vj,(t)] of v(t) in the
non~negative orthant of the space (/a_.;l’ /6_;]

Consider Figure 1. VW and V'W' represent the lines »/'&_j - \/%.;; =7 lel- In
the region between these lines (Vj (t), vj, (t)) are cyclical (equation (17)).

W' represents the line /&—j+»/%§; = [Yj], the boundary of the feasible

[E;, /%L_J_,] values implied by the strict concavity Assumption 1 (equation (19)).

QQ' represents the line /5; +tva,, = ]?j] which partitions the region in which
]
[vj v, vj, (t)) are cyclical into a stable and an unstable region (equations

(21) and (23)). QS and QS', which represent equation (20) with an equality

sign, partition the region in which (v (t), v ,(t)) are monotone into a stable

k| |
and an unstable region. QT and Q'T', which represent equation (22) with an
equality sign, lead to the regions VQT and V'Q'T’" in which [vj (v), vj,(t)) are

completely unstable.
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Figure 1. Stability diagram for (vj(t) , vj ,(t)) .

Two interesting limiting cases are shown in Figure 2 (a) and (b): the symmetric

case Yj =0 and the undiscounted case § =0.

As we know from the theorem of Magill-Scheinkman, stable symmetric equilib-

ria are characterised by the fact that steady state profit rates ('Irj ,_'grj,),

j=1,...,(5) are positive: unstable symmetric equilibria are characterised by

the fact that at least one steady state profit rate is negative. As we see
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{
Vo,
]
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. . . vl
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8
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(a) Yj=0 (b) 6=0

Figure 2. The symmetric and undiscounted cases.

from the stability conditions (20)-(24) and in particular from Figure 1, asym-

metric equilibria can be unstable even though the steady state profit rates are

positive, when the solution of (V) is locally cyélical (region 0'PP'). Asym

metric equilibria can be stable even though some steady state profit rate is

negative (regions SQPR and s'Q'p'rR").
hegative A

Consider a symmetric equilibrium point. Suppose we introduce skew-symmetry,

how does this affect the stability of equilibrium? Figure 3 provides an answer

in the case where the skew—symmefry has the form (16). Let (Jgg, vag,] denote

the parameter values for a symmetric equilibrium (Yj==0). In view of (19) we

may consider the impact of increasing lyjl, provided ijl is restricted to the

interval

0 < vyl < Iv3l = /& + /&3,

In Figure 3 (a) the curve FO'F' represents the locus of the points Q and Q' in
Figure 1, as ‘le is increased. (v (v), vj,(t)) are completely unstable, un-

|

stable of degree 1 and stable according as [Vﬁg, /§§:) lies in the regions
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00'Y', R'0'Y', 20'R', where without loss of generality we restrict the analysis

to the region below 00'Z.

(a) (b)

Figure 3. Analysis of effect of increase in skew-symmetry
on stability of symmetric equilibrium.

Suppose the parameter value of the symmetric equilibrium lies in the region
00'Y'. Then it starts in the region B' in Figure 3 (b) and passes into C' as
the skew—;ymmetry [yjl is increaéed. A parameter value which lies in F'0'Y’
starts in A, passes into B' and then into C'. If the parameter lies in F'0'R’,
then it starts in A, passes into B, then into C and then into C'. Finally a
parameter value which lies in ZO'R' starts in B, passes into C and ends in C'.

Thus if the parameter value of a symmetric equilibrium lies in F'0'R' then

an increase in skew*symme;;zuly,l can lead to stability. However for every sym-
]

metric equilibrium a sufficient increase in skew-symmetry leads to instability

(increasing ly,[ ultimately leads the parameter value into the region c').
J
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Two further results follow from our analysis in terms of Figures 1 and 3.

If the steady state profit rates are negative then an increase in skew-symmetry

does not affect the complete instability of the symmetric equilibrium point.

If the trajectory v(t) is monotone and if the steady state profit rates are pos-

itive then the equilibrium point is locally asymptotically stable. These re-

sults are 1likely to hold under quite general conditions.
It is clear from the equation (£ '") that there are two forces at work in
determining the stability of equilibrium. The first is summarised in A and

the second in I'. In view of (15) the information contained in A is summarised

in the steady state profit rates (ﬂl,...,ﬂnzi When L* . #Ii ; so that the

i7j ji
effect of investment in one capital good (j) on the marginal product of a second

" capital good (i) is asymmetric, a skew-symmetric matrix

* _ 1%, _ *
O - L) = O T L
(since L (ka ) is induced leading to the matfix C in (£") and T in (£ "™).

T thus summarises the asymmetries present in the capital-investment matrix L

nk
) are symmetric.

The forces induced by A in the equations of motion (£"

The forces induced by f are rotational. It seems that the rotational forces
ultimately affect the stability of equilibrium as follows. When the eigenvalues
of T are increased cyclical motion arises about the equilibrium point. This
cyclical motion in turn slows down the rate at which z(t) converges to equilib-
rium. A sufficient increase in the magnitude of the eigenvalues of T slows down
the rate at which z(t) converges to such an extent that v(t) and hence x(t) be-

come unstable.
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6. SAMUELSON'S CORRESPONDENCE PRINCIPLE

The basic idea that underlies Samuelson's Correspondence Principle [30] is

that only stable equilibria can be observed. If we impose a similar condition

on the parameter value then we are led to the following

DEFINITION. Let (k*,a) s:?c— , then (k¥*,a) will be called an observable equilibrium

if'ae A? and k* is locally asymptotically stable.

To simplify the analysis that follows I assume that there exists a set 9_5\_ < A
such that ae A and (k*,a) € =S implies k¥ ¢ K. Consider a parameter value

aeda N AT, By the implicit function theorem there exist a neighborhood Na

of o and m ot functions, m<®
i .
Y (a) s -N’a% X, i=1,...,m

such that

E_C_l_= Eﬂgx\u‘g_-—.{(u}i(a),a), aelN’a, i=1,...,m}

- where Ea # 4 in view of Assumption 2 Let Ll)l be ordered so that

o+1

W), ooy () and  @7T(@, ..., UR(®))

denote the observable and the unobservable squilibria, respectively., If we let

g{k*,a) = L (k*,0; 8) + gLi(k*,O;g)

and let _15_*1=Ll)1(g), then if o #0, Samuelson's Correspondence Principle leads us

to consider, by a second application of the implicit function theorem
5 i %1 -1 o1 ,
(o) wa(g') == gk*(k 39_') ga(k ,_9), i=1,...,0

. -1 . . -1
where —[gk*(l_(*l’g)] L= —|]_ka(l_s*1’0; E) + iSLf(k(lf*l’o; §)] s i= 1,..- Ne)
. ) ‘_
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Remark. The number of positive (negative) eigenvalues of —[gk*(g*l,gz)]_1 is the

same as the number of positive (negative) steady state profit rates

1 1
mE*,0), e, T (K*,0)

of the local steady state profit function 7(x; k*,a) at (k* ,a).10

' et i . .
Remark. If an observable equilibrium {(k* ,u) is known tc be symmetric, them by

- i
the theorem of Magill-Scheinkman it is necessary for -m(x; k* ,0) to attain a

. i . . i -1 - .
maximum at k*7: this forces the matrix —[gk*(g*l,g)] to be positive definite.

If an observable equilibrium (k*'.g) is asymmetric, as we must allow it to be in

general, then Samuelson's Correspondence Principle ceases to yield such a pre-

cise qualitative result: the dynamic skew-symmetric forces no longer make it

i . . i .
necessary for -m(x; k* ,a0) to attain a maximum at k* ', but rather only a maximin,

a condition that carries with it a correspondingly weaker condition on the basic

i -1
qualitative matrix —[gk*(k*l,g)] .

In particular the results of sections 4 and 5 lead to the following

PROPOSITION 4. 1If (k*l,g) EEE, i=1l,...,0 are observable equilibria then for

each i=1,....0

(i) there exist matrices T for which at least-% (Eél-if n is odd) of the

eigenvalues of -[gk*(g*l;g)]_l are negative

(1i) 4if T satisfies (16), then at least (%) of the eigenvalues of

‘[gk*(k*l,g)]_l are positive.

I will consider but one application and refer the reader to Magill-Scheinkman

[21] for further applications.

Example. In the dynamic theory of the firm in a stationary environment [16, 23],

the firm is viewed as maximising the present value of the future stream of profit

(in real terms)

10gee Proposition 2 in Magili-Scheinkman [21].
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JE@D, £(D) - wk(1) - qk(n)e *Tax
0

where w = (%], q = (%), k(0) = k0 e R™

1+ . . .
The output price Pe R , the rental and purchase prices of capital equipment
n+ _ _n+ 1+ ) :
(W,Q) eR xR and the interest rate 8§ e R are taken as parameters determined
on competitive markets independent of the actions of the firm, and the produc-
tion function

£(k,k) : R% x’® — R

is taken to satisfy Assumption 1. Let the parameter space be

A = {weRn+ | w = w+8q} then
E = {(x*,0) e ™" xR | £, (%,0) + 8£; (k*,0) - w = 0}

defines the firm's steady state demand correspondence for capital inputs. If

. . n+ . +
we make Assumption 2 with X « R* , assume the existence of a subset 4 < R"

-]
such that we A and (k*,w) ¢ £ implies k* ¢ & and consider we &4 N A", then

. . : -1 . .
there exist a neighborhood \N"w and m Cc* steady state input demand functions

11)1 (w) such that

i 3 .
Em={[1p (u)),w),_we»N'm, ]_=1,...,m,1
If 0 #0 then we may consider (8) which becomes
i %1 %1 -1 .
Yo = £, &,0) + 85, &FL00| , i=1,...,0

where l_c*1=1pi(_g) are observable equilibria.

Remark. If (l_c*l,g) is known a priori to be symmetric Lfkl-c(l_c*l,O) = f.f(k(l_g*l,O)) s

then the Jacobian matrix wz(g) is negative definite.

This is the well-known result of Mortensen [23] which_extends the familiar

result in the static case. However (k* ,w) is not in general symmetric, as

N
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Mortensen recognised. Our stability analysis in conjunction with Samuelson's
Correspondence Principle thus leads to the following conclusion. In the dynamic
theory of the firm in a stationary environment the classical result of the stat-

ic theory ceases to hold: the possible presence of asymmetric dynamic capital-

investment interaction terms fkR(K*{)O) no longer makes it necessary for the

Jacobian matrix Wi(Q) of the steady state input demand function wl(w) to be neg-

ative quasi-definite. TUnder quite general conditions inputs k; can exist for

which an increase in the rental price wj leads to an increase in the steady

state demand. !l

Northwestern University, U.S.A.

11This was first observed by Mortensen [23] by means of a particular example.
My object however has been to explain more generally the reason why the qualita-

tive result in the symmetric case fails to carry over to the asymmetric case.
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