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ABSTRACT

Many models in operations fesearch can be solved by the transportation

(or gengralized transportation) modél of linear programming together with
parametric programming of the rim conditions (warehouse availabilities énd
m;rket requirements) and/or the unit costs. The authors have developed an
operator theory for simultaneously performing such parametric programming
calcuiations. The present paper surveys, the application of this methodology
- to several classes of problems, e.g., traveling salesman problems, capacity
expansion problems, stochastic t;énsportation problems, transportation
problems with nonlinear costs, multi-modal multi-objective transportation

problems, time transportation problems, cash management problems, production

smoothing problems, constrained transportation problems, etc..



1. INTRODUCTION

A recent survey of the industrial and government applications
of mathematical programming revealed that perhaps ‘as great as 70% of
such applications fell in the category of network floQ problems, in
particular Transportation Problems (TP) and Generalized Transportation
Problems (GTP) [26]. The intuitive appeal of these models, the impres-
sive computational performance of their solution algérithms [25,37]
and the abiiity to reformulate several more complex O.R. problems as
single or sequence of TP (or GTP) are probable rcasons for this
popularity.

Our purpose in this paper is to suggest ways to further increase
the applicability of TP and GTP. The special mathematical structures of
TP and GTP have prevented their applications to a broader class of prob-
lems and have limited the considerations that can be taken into account
in solving practical problems. Specifically, our focus is on a class of
problems which cannot be solved directly as TP or GTP but which can be
solved by the TP or GTP together with parametric programﬁihg procedures
for examining the effects on the optimal solution of continuous changes
in the data of the problem. The present paper surveys our previous work
in this area. For greater.details, proofs and more rigorous discussion
of the idcas presented here, appropriatc references will be provided.

In the remainder of this section, we give a flavor of the algorithms
employed to perform parametric programming calculations using what we

call "operators'" and motivate the value of operator theoretic algorithms



in increasing the applicability of TP and GTP. The remaining sections

discuss the different clasges of applications wherc opcrator theorctic

methdds have proved useful in conjunction with a TP or a GTP formulation.
To fix ideas, let us coﬁsider a TP with a set

I = {i} = {1, 2, ..., m} of warchouses, a set J = {j} = {1, 2, ..., n}

of markets with unit costs {cij}, availabilities {ai} and requirements

{bj} where I a, = I b.. Denoting by xij the amount shipped from

. i .
iel jed
warehouse i to market j, we define the transportation problem P to be:

(1) Min I Cis Xy = Z
(i,jdef1 xJ3 Y

subject to

(2) T Xgs =34 for iel,
jed J

(3) I X..=b., for jeJ, and
ier Y )

4) xij >0 for (i,j)elI x J].

The GTP is the same as the TP except that (2) is replaced by

(5) Z s Xis < a; for iel.

jed ] J
(In the Machinc Loading context [16], €ij (> 0) refers to the per unit
production time of product j on machine i. Also the requirement,

¥ a, = Z Db, does not arise in GTP. Further a, and b, may be indifferent
i€l jes 3 t ]
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hnits). For expositional ease, ourAdiscussion in the rest of this sec-
tion will be the context of the TP. The reader is referred to [33,34]
for the more general capacitated (or upper bounded) transportation prob-
lem (where (4) is replaced by 0 < xij < Uij) and to {7,8,9,10] for the
results in the case of the GTP.

We assume that the reader is familiar with the MODI [15, pp. 308-
313] or steppinglsfone method [13,Chapter 11] for solving the TP (adapta-
tion of the primal simplex.method to the TP) with its terminology such
as transportation tableau, basis B, cycle, basic solution (i.e.,
{xij} satisfying (2)-(3) with Xij = 0 for nonbasic cells), primal

feasibility (i.e., (4)) and dual feasibility, i.e.,

(6). u, + vj f-cij for (1,j)e[I x J] where

(7) us * vj = cij for (i,j)eB.

By a cell we mean an index pair (p,q) with row pel and column qeJ. The
basis B can also bevrepresented as a tree Q in the graph [IV J, (I x J)].
‘When any basic cell (p,q)eB is dropped, the tree splits into two subtrees
with row p in one subtree QR and column gq in the second subtrece QC' The

-set of rows and columns in QR (QC) are denoted by I, and JR(IC and J

R C)

respectively. The subsets IR and IC (JR and JC) partition I(J) [32,
pp. 217-218]. '

An operator 6T(P) determines the sequence of optimum solutions

(i.e., {xij}’ {ui}, {vj} and Z) as the problem P with data {ai}, {bj}

and {cij} is transformed into problems PT(d) with data {a;}, {b;} and
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{czj} which are linear functions (8)—(10) below of a single parameter §

for all 0 < § < o

(8) al = a, + 6a, for iel,
. 1 1 1
(9) bl = b, + 68, for jeJ, and
P75
(10) el o=c.. o+ 6} for  (i,j)e[l x Jj
ij = Cij i »J)ell

where the prespecified values for {ai}, {Bj} and {Yij} are unconstrained

in sign but such that

(11) I a. = L B..
iel * jed I
. . . . T T
Constraint (11) is required so as to satisfy I a; = z bj'

iel jed
By imposing restrictions on the values for {ai}, {Bj} and {Yij}’

we get some important special cases of the operator ST(P):

. (A) Rim operators 6R(P) where Yij = 0 for all (i,j)e[I x J],

i.e., the data changes are only in the rim conditions {ai} and {bj}.

(B) Cost operators S8C(P) where oy = 0 for iel and Bj = 0 for jeJ,

~i.e., the data changes are only in the cost coefficients {cij}.



The Rim operators are further classified into

(A1) (Plus) Cell Rim Operator GR;q(P) where

a; = 0 for iel - {p} with a, = 1 and
Bj = 0 for jeJ - {q} with Bq = 1.
i.e., all data remain the same except a; = ap + 6 and bz = bq + 8.

The name cell operator arises from the fact that (p,q) is a

cell in the transportation tableau.

(A2) (Minus) Cell Rim Operator GR;q(P).
This is the same as (Al) before except ap = -1 and Bq = -1,
i.e., all data remain the same except aT = a_ - 6 and bT =b - &,
. % % q q
(A3) Area Rim Operator GRA(P) which is any rim operator, without any

restrictions on {ai} and {Bj} aside from (11).
The Cost Operators are likewise classified into

(B1) (P1us) Cell Cost Operator dc;q(P) where
.. =0 for (i,j)elI x J] except that =1,
Y5 (1,3) [ ] P Ypq
i.e., only data change is c;q = ¢+ 0.

pPq
(B2) (Minus) Cell Cost Operator dc;q(p)
Same as (Bl) above except that qu = -1, i.e., all data remain

the same except that cT =c__ - 6.
Pq Pq



(B3) Area Cost Operator GCA(P) which 1s any cost operator without

any restrictions on {Yij}.

The cell rim operators consider a simultaneous increase (or
decrease) in warehouse p and market q. This concept is generalized
to that of binary rim operators inA[18] where the.possibility of in-
creasing ap to ap + § and decreasing aq to aq - 6 with all other data
remaining the same are considered. (Likewise bp can be changed to
bp + & and bq changed to bq - 6 with all other data remaining the same).
In the case of capacitated transportation problems with upper bounds
{Uij}, we have bound operators as well which can be reduced to rim
operators [32,,pp. 221-223]. For the GTP, we also have weight operators
which examine the effects on the optimal solution of changes in the
{eij} [9].

Algorithms for implementing rim and cost cell and area operators
are discussed in {33 ,34] for the TP and in {7,8,9,10] for the GIP. (The
references {8,33 ] also discuss the application of the more general oper-

ator 8T(P).) These algofithms can roughly be described as follows:

Algorithm 1 (for applying SI(P))
(1) Determine tﬁe basic optimum solution to the problem P.
Let By be the optimal basis. Let k = 1 and 61 = 0.
(ii) Determine the maximum extent Hy such that for

8§, <& j_Gk * yy the basis B, continucs to be optimal for the problem

P"(8). For this range of &8, the optimal primal and dual solutions can



be easily determined since the optimal basis is known. If uk = o,
stop. Otherwise go to (iii).

(iii) Determine an alternate optimal basis B for the problem

k+1

| PT(G) for § = §, + If no such basis can be found, the problem PT(G)

k T ¥k
is infeasible for & > Gk * M stop. If such a basis can be found, set
6k+l = dk * My k = k + 1 and go to (ii).

In step (ii1) of the above algorithm, we‘determine the optimal

solution as a function of § with the optimal basis remaining the same.

Such operators are referred to as basis preserving operators and are de-

noted by light face letters such as 8T(P), SR(P), GC;q(p)’ etc. In the
case of cell rim operators with (p,q)¢Bk, GR;q(P) amounts to shifting

the amounts {xij} around the cycle created by adding (p,q) to B (If

K

(p,q)eBk only qu gets altered.) The objective function Z increases

by (§ - ék) (up + vq). In the case of area rim operators, the trans-

formed solution is obtained as

(12) X.: = xo. + (6§ -8) vy
ij ij k7 7ij

where {yij} satisfy (2)-(3) with a; and bj replaced by oy and Bj and such

“that Yij is zero for nonbasic cells. The {xgj} correspond to values of

The objective function Z increases by

T
{xij} for P (§,).
(§ - Gk)[ L a.,u, + L B.v.]. Since thc optimal basis remains the same
. il . iJ
1el jeJ

and the costs {cij} are not changing, the optimal dual variables do not
change for basis preserving rim operators. The value for My is deter-

mined as the maximum value for (§ - 5k) so that the transformed {xij}



satisfy the nonnegativity constraints (4). Thus for the problem

PT(Gk + uk) at least one basic cell, say, (r,s) reaches a value X.o = 0
and any further application of the basis preserving operator with basis
Bk would drive X.s negative. The alternate basis Bk+1 is determined

~from B, by finding a cell (e,f) such that B,,; = B - {(x,;s)} + {(e, D)
is also an optimal basis for PT(Gk.+ uk). The cell (e,f) is determined

so that

(13) ' C ~-u_ -V,.= Min (c.. = u., -v.)
ef e f [IC X JR] ij j

where the sets IC and JR areldetermined by dropping (r,s) from Bk (see
earlier discussion). If the set [IC X JR] is empty, it can be shown
that the problem PT(G) has no feasible solution for & > 6k + uk.
For cell cost operators 6C£q, step (ii) of the above élgorithm
amounts determining the sets IR’ JR’ IC’ JC obtained by dropping (p,q)
from Bk' The optimal dual values for the basis preserving operator are
obtained by merely increasing the {ui} to {ui + (8 - Gk)} for iel, and
decreasing {Vj} to {vj - (5 - Gk)} for jeJ, and leaving the remaining
duals unchanged. It can also be shown that the objective function in-
creases by (§ - Gg)qu. (Similar remarks apply to 6C;q. A much simpler

result holds for the case (p,q)¢B.) For the area cost operator GCA, we

define

0 * .
(14) u; = ug o+ (¢ - Gk)ui for iel and



' 0 * .
15 v, =v, + (8§ - §)v, for eJ
(15) PRGN j

. " satisf ith laced {u?} and
where uy and vj satisfy (7) wit cij replaced by Yij' The u.t an
{v?} correspond to the duals for PT(Gk). The objective function Z
increases by (§ - 5k) z Y:: X... For the basis preserving

.. ij i
(i,3)elI x J]

cost operators, since the basis and the rim conditions do not change,

the primal solution {Xij} does not change for 5k <6 <46 + The

% e
value Hy is determined as the méximum value for (§ - dk) so that the
transformed {ui} and {vj} satisfy the dual feasibility conditions (6)
for the problem PT(é). Thus for the problem PT(Gk + uk), at least
one of the nonbasic cells (e,f) satisfies Cog = Ug * Vg and any
further application of the basis preserving cost operator with basis
B, would make c

K of > u, * v thus violating the dual fecasibility con-

dition (6). The alternate optimal basis B is determined by adding

k+1
(e,f) to Bk and eliminating the minimum "giver" cell (r,s). {In the
cycle created by adding (e,f) to Bk we mark alternate cells of the
cycle as ''getters'" and "giversf starting with (e,f) as a '"'getter.")
The operators are computationally easy to appl}. In particu-
lar the computational steps involved in applying cell operators are
even easier and this is the reason we have provided specialized
algorithms for the cell operators rather than treating them as special
cases of arca operators. As will bc secen in the rest of this paper,
cell operators tend to arise quite frequently in many applications.

Parametric programming is much more valuable for transporta-

tion problems compared to general linear programs. To sec this,
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consider the linear program
(16) _ ‘Min C'X subject to AX = b and X >0

where C and X are (N x 1), b is (M x 1) and A is (M x N). Now assume
that the requirements vector b can be changed to b + 8d where d is an
Mx 1) vector and § > 0 is a scalar, but at a cost g (g is a scalar).

The problem of determining the optimal 6§ can be formulated as

-(17) Min C'X + g6 subject to AX - &d = b; X, § > 0.

We note tﬁat (17) is also a linear program in the variables X, so
that it can be solved directly as such and no special parametric pro-
gramming is necessary. However, sﬁch is not the case if (16) is a
transportation problem. In that case,.the.constraint matrix A has a
special "echelon-diagonal" pattern [31, pp. 227-228] with N = mn and
M =m+ n and the primal transportation algorithm effectively uses
this structure. However, the presence of the vector d iﬂ (17) makes
the coefficient matrix [A -d] not posse;s the special structure any
longer. Thus (17) is not a transportétion problem. Of course, (17)
can be solved directly as 5 linear program but it will-be computation-
ally more efficient to solve (17) by applying aﬁ area rim operator
(the oy and 8j<wi11 be directly determined from d) to the optimum
solution of the transportation problem (16). As remarked earlier,

the objective function increases with a marginal cost of
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Z a,u. + L B.,v.=fF (séy). Conseéuently, the overall marginal
ier 1 jed J )
cost is (f + g) and we apply the area rim operator until (f + g)
becomes honnegative. The above éxample illustrates as to why para-
.metric programming is likely to prove more valuable for transporta-
tion problems compared to general linear programs.

In addition to providing practical benefits in solving prob-
lems which do not directly fit as TP or GTP, the operator theoretic
algorithms also provide theoretical insights. For instance:

(i) In certain linear cost capacity expansion problems
[17,35] where market demands are monotone nondecreasing over time.
it can be shown that there exists an optimal solution in which the
waréhouse capacities are nondecreasing even though such constraints
are not explicitly imposed. Although some of these insights may be
obtained by alternate means such as lattice theory [43], our operator
theoretic algorithms have the advantage of obtaining such a solution
(in addition to proving existence).

(ii) By defining aﬁ additional warehouse (m+l) and an

additional market (n+1) (with c = 0 for jeJ VU {(n+1)},

+1,]
Ci,nfl = 0 for iel, am+1 = 0 and bn+1 = 0), the cell rim operator
+ . P ‘ ;
6Rm+l n+1 provides a means for determining the downward marginal cost
~ )
(= Uyt Vn+1) of the transportation system as.a wholg (i.e., the mar-

ginal rate at which the total optimal cost will go down if the volume
handled in the system is reduced) [34, p. 250].

(iii) The cell cost operators can be used in an algorithm for
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solving the trﬁnsportation problem itself with costs translated if
necessary so that cij > 0 for-all (i,j). ansider any primal basic
feasible_solution to this problem. By temporarily defining cij =0
for (i,j)eB, the feasible solution is optimal to the transformed
problem, We can now restore the costs for (i,j)eB one by one using
the (plus) cell cost operator. It.can be shown that this algorithm
converges to an optimum wiFhin 2'21 a. iterationg (assuming a. to be
integer and the primal problem tgebe nondegenerate) [32]. This is
the first primal basic algorithm that we know of with a polynomial
bound in the number of iterations. Another interesting property of
this cell cost operator algorithm is that, even if the problem is
primal degenerate it will converge to an optimum without
perturbation.

The operators also have the theoretical propefties of
commutativity; associativity, distributivity, etc., just as most other
operators in mathematics.

Although parametric programming has been well investigated in
the context of linear programming 20 21 ] mu;h less reéuits were avail-
able in the context of TP and GTP before our papers [7,8,9,10,33,34). For
instance [1,41] concern themselves with an analysis of the "stability"
of an optimal basis with réspect to data variations. To examine the
maximum value § for which the current basis is feasible when Cpq is
changed to cpq + § these approaches would involve the determination of
(m-1) x (n-1) cycles and solving a set of (m-1) x (n-1) inequalities

in 6. The cell cost operator algorithm, on the contrary, docs not



involve any defermination of cycles at all and evaluates only (m x n)/4
inequalities, on the average. Consequently, the proécdurcs in [1;&].

for continuous data variations are not computationally efficient for

the parametric programming of transportation problems, although

" admittedly therc is some overlap in the underlying theory. The deter-
mination of Bk+1 from Bk in step (iii) of the Algorithm for rim opera-
tors is the same as finding an adjacent dual feasible basis in the

dual simplex method for the transportation problem [11,14,271. it should

be emphasized that these last referenced papers are concerned with

discrete changes in rim conditions whereas the operator theoretic

algorithms deal with continuous variations in all the data (rims,

costs, upper bounds, weights) of the TP and GTP.

2. Managevial and Economic Significance of Operators

One of the most surprising results of the operator theory approach
to parametric programming for the TP and GTP was the discovery of the
existence of shadow prices for each of the rim operators. These permit
much richer interpretations and managerial uses than would be expected from
- standard linecar p;ogramming theory. 'Among other things they permit the
identification and complete explanation of the "transportation paradox'" for
the TP case and the related "production paradox" for the GTP case.

Before discussing these rim operator resglts we note that the dual
variables for the cell costs cij are just the corresponding primal varigblcs
Xij’ as would be expected from ordinary parametric linear programming.
Hence we do not discuss these further.

In [33,34] tor the TP and | 7, 8, 9,10} for the GTP, given an mxn

problem the first step was to add an additional row, m+l, and column, n+l,

before solving the problem, All costs in these new rows and columns are zero,
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=M for all j=1,...,n

“ml, j

gxcept cm+1,n+1 = M for the TP case. 1In the GIP,

and the rim data a and b
n+

] are chosen to make the sum of supplies equal

1

the sum of demands in the TP case. In the GTP case ar. =M and bn+1 is not
needed and hence not defined. We define I' = I U {m+l} and J' = J U {n+1}.
These extra rows and columns serve somewhat different purposes in the two

" cases, and so will be discussed separately. However, in either case, once

the enlarged problem is solved, we can define the optimal dual matrix D with

entries
| = ¥ 4 -
(18) (pq qu“p + vq’ for pel and  qel
where epq =1 for all o and q in the TP case, and :u and v ' are

q
the optimal solutions to tie dual problem.

" We will now indicate how each of the (m+l) x (n+tl) entries d
. Pq

in (18) has at least one (and sometimes more than one) shadow price inter-
pretation. This could not be predicted {rom ordinary parametric lincur

programming theory, because a TP or CTP problem has at most mtn+2

cqnstraints, and that theory predicts the existence of only the same number

of shadow prices.

We concentrate now on the TP case. The optimal dual matrix defined

in equation (18) can be partitioned into the four areas as shown in

Figure 1, In addition there are special row and column indices, k and {
1 ' ’

such thgt cells (k,n+l) and (m+l1,£) are in the 6ptimal basis. (Every basis

must have such cells in the last rov and column,)
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L
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_______________ o ]
m+1 ?SD dm+1,j ; C?D 5
: m+l,n+l
Figure 1
The following facts can be shown concerning matrix D, shown in
Figure' 1

(a) Except in the case of dual degeneracy, the entries dpq (defined
in (18) are unique (even though up and vq are never unique in

the TP case.)

(b)Y The dpq in Al’ for pel and qeJ, 'can be either positive or
negative.
-~ .. - 7
(c) ;n areas A2’ A3, and A4 we have dp,n+1 < 0, dm+% < 0 for pel
and qu'
d I A h = -
(d) n A, we have dm+1,n+l dk&'

The most importgnt interpretations of these quantities is given in
Figure 1 which applies only when “the sum of the.supplies initially cquals
.the sum of the demands. (A more complete table is.given on page 250 of [34))
" The interprcta?ions in Table 1 hold only over a finite range of &, say

0< &< . The extent, yu, can be calculated by methods given in [33]).
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Table 1
f f
Area Operator Shadow Price Operator i Shadow Price
|
+ | \
Ay: pel,qed 5R ' d &R I -d
1 Pq - Pq Pq | Pq
A + )
t pel,q=n+ 5 A : -
A2 pel,q=n+l Rp,n+1 ‘ dp,n+1 6Rp,n+l : dp&
Ay p o= m+l, qeJ SR g 5R” ' d
3¢ P > 42 mt+l,q | m+l,q mt+l,q { kq
A p=mHl, q=ntl | SR d I
(- P T, 9 =n o+l okl | “mtl, el Tt \ Tt
) 1
Assumption: L a, = ¢ bj before operator is applied.

iel jeJ
Indices k and % are chosen so that (k,n+l) and (m+l,4) are in the cur-

rent basis.

When dpq <0 in Al’ i.e., pel, qeJ, aﬁd the extent of.the
operator 5R;q is positive (u > 0) then we observe that "transportation
paradox'" by applying 6R:q with &6 > 0. That is, we can '"ship more (total
tonnage) for less (total cost).”

When the extent of an operator ( = 0, we have the degenerate case.
By a finite number of basis changes it was shown in [34] how to obtain a
shadow price‘ dpq .and'correspondiqg operator 6R+q having positive extent
for a given p and q. In [18] Fong and Srinivasan show how to simultaneously
calculate nondegencrate shadow price for all p and q.

The interpretations of the entries of the dual matrix for the GTP
‘case are similar and simpler to state. The following facts can be proved,
(71; (a) u, and vy e unique (except in the dual degenerate case);
(b) up < 0 for pel; and (c) Vq >0 fgr qeq. There is no downward marginal

cost cvaluator.
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+
Again when dpq < 0 and 6qu has positive extent we have the

Mproduction paradox,'" that is, it is possible to "produce more (total products)

for less (total cost)." .

In the GTP case we have.a new kind of operator, the weight operator,
which acts (see {9 ]) to change a cell weight epq' This operator is, in
égneral, non lincar, which is not surprising since it acts to change the

'efficiency_of a single machine.

A final remark is that cach kind of operator, rim, cost, or weight gives

risé to new algorithms for solving TP and GTP problems. One of them, the

cost operator algorithm for the TP case has been extensively described and

tested by Srinivasan and Thompson [38].

3. Workload Smoothing and Cash Management Models

(A) A New Approach to Workload Smoothing
The well-known HMMS [28 ] model of productivtion planning takes into account
the following costs: hiring, firing, inventory, and stockout. It gives a way

of smoothing production over time while minimizing the total of all these costs.

Although those authors noted that these costs are actually piecewise linear,

they approximated these cost functions by quadratic functions., 1In so doing they

were able to get analytic expressions and to derive the "linear decision rule."

Here we shall derive a similar smcothing model that takés account of all
of the same costs, but in their original piecewise lincar form. We use the
generalized transportation model in its "goal programming' version [13,28] and
show how the smoothing model can be put directly into this form. We also sketch
how the model can be extended to convex, piecewige linear, Eost functions; and
we show how opcrator theory can be used to impose other kinds of managerial con-

straints on total hiring, total firing, total inventories, and total stockouts.
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We need the following quantities to state the model:

I = [1,2,...,m} = the set of machines

J = {1,2,...,n} = the set of goods to be produced

a; = number of men already available for machine i

bj = number of units of good j to be produced

pij = nct.prof}t on good j if produced by machine i
xij = number of units of gopd j produced by maching i
eij = number of machige i man-days needed ‘to produce one unit of good j
Hi = number of workérs hired to run machine i

hi = cost per worker hired to run machine i

H = total number of workers hired for all machines

Fi = number of workers for machiné i to be fired

fi = cost per worker for machine i to be fired

F = total number of workers fired for'all machines

Gj = inyontory-of good j to be carried over

gj = inventory holding cost for good j

G = total inventory of all goods to be carried over

Uj = amount of stockout of good j

uj = stockout cost for good j

U = total stockout of all goods

We use a maximizing version of the machine loading model.
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imi 2= T L - -3 . .G,
(19) Maximize -2 T pijxij z (fiFi + hiHi) T (ujUJ + gJGJ)
1J I J

(20) Subject to: YT e, ,x.,6 =a, - F, +H,

j iii] i i i
(21) : Tx,,=b, -U, +G,
(22) _ TU, =U

g 3
(23) £G,. =G

J 3
(24) z F, = F

1
(25) % Hi = H

_ : . 4>

(26) xij’ Fi) “i) Uj’ Gj) Ei) Il) U) G — 0

‘We shall convert this linear programming prodﬁction smoofhing model into a
bounded variables goal programming machine loading model by adding suitable
.multiples of N, where N 1is a number definitely larger than any éubscripted
variable. Specifically, we add N to bogh sides of equations (200 and @D, we
add nN to both sides of (29, and we add mN to both sides of (25). Wc also
multiply by -1 the nonnegativity ;onstraintS'for “i and Uj by -1 and

add N to both sides of these inequalities. After transposing suitable terms

and rcarranging we have the following modcl:

imize: = v v - 3 ol N - \P
(27) Maximize: 7 =S5 pijxij T [fibi hi(h Hi)]
1 J 1
- T luU, - g, (N-G,)] - N(Th, +Zg.)
g 33 J J T
Subject to:
(28) ? e %y T T (N-H,) = a, + N
(29) T ox, + U, + (N-G,) = b, + N
1 1 I j



(30)
(31)
(32)
(33)

(34)
(35)

(36)

T U,
] ]
L (N-G,) =nN -G
J J :
= i = F
1
L (N-H;) =mN - H
1
N -G, <N
;S
N - H, <N
1
,F, U>0

If we drop the constant term in (27) this is clearly the machine loading,

.upper bounded, goal programming model whose tableau is shown in Figure 2.

changing the rim quantities

i

X, .
1]

::‘c
i D}~Ili
a, + N
. -h, i
1 i
U
’ nN - G

*

Figure 2

U’ C’ F’

and H.

F my - o

Denotes variable upper bounded at N

By applying rim operators we can find the managerial consequences of
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Further variants of the model can be made as follows:
(1) By adding another row and column we can put the variables
F, H, U, G into the tableau and determine them as in [5,35]
(2) By repeating the rows for Ui, N-Gj and the columns for Fi
and N-Hi and imposing suitable upperbounds and changing cost
coefficients, we can impose convex piecewise linear cost functions.
(3) By imposing structure in the Qpper lefthand corner we can take into

account multistage production over time.

(B) Cash Management Models

Recently, a model for making the cash management decisions for a firm,
" was reformulated as an ordinary tfansshipmeﬁt model by Srinivasan in [32].
In that paper he also noted that the generalized transportation model would be
even better to take account of the varying yields on different kinds of
accounts and securities.

There is not space here‘to go into all the ramifications of the model as
described in [32, so we Qill content oursclves with illustrating the model with
the example shown in Figure 3, which was taken from [13. That figure gives a
simple two-period model in which we have cash coming in cach period, and
securities we own coming due each period. Also we have cash requirements each
period and accounts payable each period. It is assumed that there is a 27
discount for cash, and a 27 penalty for late payment. Cash invested for onc
period receives a 17 intcrest payment. Securities duc at a given time period

receive a 167 intecrest
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Figure 3: Cash Management Example

Cash due Accounts Payable
—— ———
1 2 1 2 " slack
1 6.37911.01 1.02] 2311.03] .156__1_J
1 @ -.01 e -.03 0
Cash
in i :
1| 1] 11.66] . 98] [.02] 20.84/ 1] 7.08
2 9999 @ .02 -.02 @
i H
1.16 | 8.62 [1.17] 1.18 | 1.19] 1]
1 @ .17 -.18 -.19 0
Securities
1.12 1.16] 10.31 1.10[ 1.18 1]
Owned i i
2 -.12 -.10 -.18 0
15 23 23 21
Optimal Value = -3.916
0 ',0098 —,02 : -:03 -.0097
.0097 0 -.01 -.02 0
-.16 -.171 -.182 -.194 -.146
{
-.145 -.16 ~.168 -.183 -.138
-.0097 0 -.08 -.02 0

Figure 4. Optimal Dual Matrix

30

35

10

12
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payment, but if cashed in one period eariy, get only 127 interest. Thus a

bill (accouﬁts recéivable)'is due in period 1 is paid with cash from period 1

it has an e factor of 1.02 because of the 2% discount for cash, But if it

is paid (late) with cash received in period 2, its e factor is ,98 because
of a pcnalty-[or'latc payment; Note that s is the negative of the interest
rate received. The rest of the entries in Figure 2 can be deduced from the
above rules, with eij in the northwest,'cij in the hiddle.and Xij in the northeasL
for a cell (i,j).

Note that the optimal obsective value is -3.916, so that the rate of return
on all cash and sccuritics to be received in‘the two periods is 3.918/87 = ,045%.
The optimum dual matrix is shown invFigure‘Aw From the last column

we see that more cash in period 2 is of.no value in affecting the objective
function, but more cash in period 1 is worth $.146 per $ and more cash in
period 2 is worth $.138 per $. Notc also that if we can simultaneously
increase cash inflow in period 1 from 30 to 31.01 and cash payments in

period 2 from 22 to 23 we will increasec profits by .0098. However if we can
increase cash income in period 2 from 35 to 36 and increasc cash payments in
period 1 from 15 to 16 we will decrecasc profits by .0097. Many other inter-

pretations of these dual evaluators are evident from Figure 4.

4., Multiple Objective Models

1f we look at the cost coefficients, the cij's of equation (1),

we can easily sce that different interpretations for them will lead to data
giving quite different solutions. Consider thesc two interpretations:
(1) €3 is the cost of shipping a unit from warchouse i to
market J.
(ii) cij = tij is the time to ship a unit from warchouse 1 to

market j.
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With intérpretation (i) the solution to the TP or GTP .problem achieves a
minimum total cogt, whilc with interpretation (ii) the solution minimizes the
total shipping time. (lLater we will discuss still other objectives.)
Sincg ve cannot simultaneously optimize both objectives (except for a
rare numerical accident) we instead follow a suggestion of Geoffrion [24] and

optimize the following composite objective:

(37) Minimize (1-8)C(X) + 8T(X)
wherc C(X) is the total cost and T(X) the total time of shipping plan X
and the parameter & is a given number in the unit interval (0 < § < 1).

As we let § wvary in this interval we can - trace out an efficient or pareto

optimal surface (to be defined in the next paragraph) in the cost-time space.

A manager interested in applying the result can then choose one of the points

on thfs surface and implement the corresponding solution. 1In so doing he must
choose, directly of indirecctly, a trade-off betwcen the two competing objectives
-of cost and time.

F.,.0.,F be k different

In order to define efficiency, let Fl’ 5 K

minimizing objective functions, i.e.,, lower values of Fi represent more

desirable outcomes. A solution X is said to be efficient (pareto-optimal

or non-dominated) if and only if there does not exist any other solution X’

which dominates X, i.e.,

(38) Fi(x ) < Fi(x)- for 1 =1,2,...,k

"and with strict inequality holding in (38) for at lcast one i.- wé will refer
to the above property by the condenscd notdtion, "the solution k;tuplc
(Fl(X),FZ(X),...,Fk(K)) is efficient." .

We now discuss two applicﬁtions involving multiple objectives for which

operator paramectric programming of the TP provides a solution technique.
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(A) Dctermining Cost vs. Time parcto-optimal frontiers in multi-modal

transportation problems,

In [40] Srinivasan and Thompson discussed the pfoblem of choosing modes
of transportétion (railroad, highway, air) while-taking into account the
conflicting objectives of minimizing total transportation costs and average

-shipment times. To.pnévide a mathematicai formulation of the problem, we first

define the index scts

(39 I = {1,2,...,m] the set of warehouses (rows),
(40) _ J=11,2,...,n} the set of markets (columns),
(41). ) K = {1,2,...,p} the set of transportation modes.

For ~icl, jeJ, keK we define

= amount shipped from warehouse i to market j wvia mode k

X, .
ijk

C'jk = shipping cost per unit from warchousc i to market j wvia mode k
i

tijk = time of shipping from warchouse 1 to market j via mode k.

a; = supply at warehouse i (ai > 0)

bj = demand at market j (bj > 0)

We assume supplies cqual demands, i.e. T a, = T bj’ and now state

. 1 .
iel jed
the constraints of the problem.

= for iel
(42) T rox,. a,
' jeJ kekK Lk *
(43) z T X,,, =b, for jeJ
el kek I% 3
(44) x,,, >0 for iel, jeJ, and keK.

ijk
We say a solution X = {x,,k} is feasible if it satisfies (42)-(44).

ij —
Corresponding to any feasible solution the total cost ¢ and the (weighted)

total shipment time T are:
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X s ¥ ¥ ¢, x., and
(45) (X) iol 3ol keK ijk "ijk

b 3

(46) (X) = T X Lot ¥
iel jed kek I° M
In computing the average shipment times each of the tijk is weighted by
the corresponding shipments x It is easy to show, see [40], that if in-

ijk’
stead of using total shipment times we used average shipment times as an
objective, the same optimal solutions, would be obtained.

If we substitute (45) and (46) - into (47) it is clear that in each

cell we will choose a mode k so that the quantity

(47) (1-8)ey g + 5ty

is minimized. Define new cell costs

(48) d,.(8) = Min[(1-8)c. ., + 6&..kl
ij KeK ijk 14

and let Kij(é) be the set of indices in K where this minimum occurs.
Given rcasonable assumptions on the original costs the set Ki.(é) changes
only a finite number of times in the interval 0< 6§ < 1. Thus the objective
function in (48) is

(49) dj§(8) = (1=8)ey 5+ 8Ly 4

1 1

for a specific index kl € Kij(é) as § varies in é certain interval (51,52) of

positive length 0 < & 65 < 6 1.

IA

1= 2
In [40] it was shown that the objective functions dij(é) in (49)
can be used as the objective for an ordinary trhnuportntion problem, and its

solution for cvery & c¢an be used to trace out the effiency frontier. ‘lore-

over an area cost operator can be used to explore the optimal solutions as 3§
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changes. In this way a finite algorithm is developed that changes the .objective
function, with (49) changing as & changes, and also as the index set K. . (§)
1]

changes to maintain a solution to the problem (48).

A simple example is worked in detail in [40].

(B) Algorithms for Minimizing Total Cost, Bottleneck Time and Bottleneck

Shipment in Transportation Problems.

Consider a TP that has unit cost cij and time t,, when a good is
i
transpbrtcd from warehouse i to market j. We can define the following

‘objectives for every f(casible solution satisfying (2)-(4):

. (50) Total Cost ™ = T

PRI
iel jeJ t)ord
(51) : Bottleneck Time BT = Maximum t'j
T 3 ae \» l
{(I,J)lnij > 0}
(52) Shipm2nt on Bottleneck Routes SB = X

z L
{(i,j)]tij=BT] =
Thus BT measures the maximum time tak;n by any shipping route actually used
(xij > 0) 1in the solution, while SB gives. the total shipping amount over
all routes having this maximum time.

As before we denote by TP the problem with the TC objective function.
We also call the problem with the BT objective the Bottleneck Transportation
Problem (BTP). |

In [39] Srinivasan and Thompgon gives algorithms to solve cach of the
following problems:

(i) Trace the pareto-optimal or cfficient solution pairs (TC,BT). The

solution-procedure involves the application of a series of cell cost operators.
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(ii}.Solve'ﬁho BTP. Here we havé a single objective ﬁroblém. The
solution procedurec involves the application of a scries of cell cost operators.
This algofithm has been programmed and thoroughly tested. 1t is very efficient,
being able to solve BTP's in about half the time as ordinary TP's of the
same size and choices of data.

(iii) Solve the SB problem, -Oncé the bottlencck time, BT, has been
'detérmincd it was shown in [39] that the SB problem can subsequently be
solved by a further applicatiqn of an area cost opératori

Although the objective functions considered here have not been very
widely applied so far, it is to be hoped that the existence of the algorithms
discussed here for solving these problems will make applicntions to areas such
as assembly line balaécing and pefsonnél selection [39] more widespread. 1In
fact, it scems to us that.for many applications the BT or SB objectives

are much more appropriate than the more usual TC objective.

5. CAPACITY EXPANSION PROBLEMS

In this section we outline the application of area rim
operators in solving a multi-period capacity expansion énd shipment
planning problem for a single product under a linear cost structure
[17]. The product can be manufactured in the set I = {1, 2, ..., m}

of producing regions and is required by the set J = {1, 2, ... n}

of markets for each of the time periods (e.g., years) K = {1, 2, ces T}.

Let K' = K - {1}. Let {r?} be the initial demand in market j and let

rg > 0 be the known increment in market j's demand in time period t.
t
Thus I r§ represents the demand in market j at time t. Let {qg} be
=0 .
the initial production capacity in region i and let {qz} be the

cumulative capacity added in region i from periods 1 to t. Thus the
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total production capacity in region i at time t is qg + qz. The demand
in a market can be satisfied by production and shipment from any of the
regions, but must be met exactly during each time period (i.e., no back-
logging or inventorying). Let Cij be the unit cost of "shipping" froﬁ
region i to market j. (This includes transportation costs, variable
costs of production including costs of maintaining a unit of capacity.)
Let ki be the unit cost of capacity expansion in region i. Proportional
capacity expansion costs may be realistic when the production capacity
is rented or subcontracted or when the fixed costs are relatively small.
Moreover, the optimum'solution to the problem with linear costs can be
used to provide a lower bound to the objective function of the problem
with concave expansion costs. _ Let hy be the unit cost of maintaining

S5 units of idle capacity in region i. We havg assumed that all the
costs are stationary but the model can be easily extended to tqke into
account inflationary effects. Let 8 be the terminal (or resale) value
of a unit of capacity in region i at time T. Let a be the discount
facfor per period. Then the problem of determining a schedule of
capacity expans{ons for the regions and a schedule of shipments from

the regions to the markets so as to minimize the discounted capacity

expansion and shipment costs can be formulated as the problem P below:

t-1 t t-1 t

(53) Min X z Q c.. Xx.. + ¥ I o h. s.
tek (i,j)ell x J] 1) tek el 11

1 t-1 t t-1 T T

+ I k. q.+ L I a ki(qi - a; ) - L oo 8,94

iel 1t teK' iel iel

subject to



(54) S xF. + sF - qF = q9 for iel and teKk,
jeg 1] i i i
t t T
(55) % X;s = L r, for jeJ ang tek,
iel Y 1=0
(56) qi - qz—l > 0 for iel and teK' and
37) xzj, SE, q; >0 for iel, jeJ and tek.

The objective function (57) gives the minimum tbtal time
discounted shipment, idle capacity maintenance aﬁd capacity expansion
costs less the salvage value for the capacity. After making suitable
assumptions on the salvage values g5 and rearranging terms, (53)

reduces to

(58) Min z R S S T
teK (i,j)el[l x J] 3o
s+ zo1 otk qt
1 1

teK iel

where k! = (1-0)k..
A i i
The constraints (54) state that the amount shipped out of
region i at time t (= I x;j) plus whatever is left as idle capacity
. jed }
(= SE) should be equal to the net capacity qg +_q§. Equation (54) can

be rewritten as

(59) Ioxt. o+ stoa (N - qF) = qp + N for iel
. ij i i i
jed
where N is a iarge positive number. Thus if we define x§ el = si and
t t i
xi,n+2 = (N - qi), Equation (59) - becomes
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(60) .Z;" xgj = qg + N for iel
je

where J'" = J U {(n+1)}u {(n+2)}. We note that

(61) 0 < x§ ey <N for iel

since N Z_qz > 0. The constraints (56) become

=1 50 for iel, tek'.

t
(62) X i,n+2 =

- + X
i,n+2

Constraints (56) (and equivalently (62) ) are the coupling constraiﬁts
in P linking the time periods in K. Consequently, if we drop the con-
gtfaints (62) , the problem P splits intp a sequence of probiems Pt (teK)
Below (the set 1 is augmented by a 'dummy'' region (m+1) to pick up any
extra amounts in the (n+1) and (n+2) columns; let I' = T U {m+1}):

This sequence of problems can be solved by effective and repeated use of

‘area rim operators sequentially from the solution of problem Py to get

Py Pr
(63) Min P ci: X5
@, x v Y
.subject to
(64) 5 oxt.=q%+ N for iel',
jegr 131
¢ t
(65) I £ r, for jed",
iel! J =0 J
(66) x§ Lhp SN for del' and
(67) xt. >0 for (i,j)e[I' x J"]
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where the valucs for Cij’ qg and r§ for i = m+l; j = (n+l), (n+2) are
to be appropriately defined.

The interesting thing to note is ghat Pt is a transportation
problem and, what is more, problem Pt differs from Pt_1 only in the
right hand side of constraints (65). "The requirement of market j

. Thus the optimal solution

increases by r§ is going from Pt-l to Pt

to Pt caﬁ be cbtained from that of Pt-l by-tﬁe application of the‘area
rim operator GBA(Pt-l) with 6 = 1, a, = 0 for iel' and Bj = rg for jed.
(The definition of ri+2 is such that 'Z Bj = .Z a, = 0.) It can
jed" iel!
be proved that the solutions so obtained satisfy the constraints (62)
(equivalently (56)) thus providing the optimal solution to the original
problem P. Consequently, a 10 period, 10 region, 200 market problem is
reduced from a linear program P with 2190 constraints aﬁd 20,200 vari-
ables to a transportation problem with 11 regions and 202 markets to-
gether with the application of the areﬁ rim operator to obtain the
transportation solutions for the next 10 periods. Illustrations of this
approach are given in [17]. -
Rim operators prove useful in other capacity expansion problems
also. In [19], Fong and Srinivasan extend the formulation discussed
above to the case where the costs may be nonstationary, demands not
necessarily increasing and capacity expansion costs having fixed com-
ponents as well. The heuristic algorithms uscd.in [19] start with a
feasible solution and improve it by swapping capacities betwcen two
regions over the planning horizon if that would reduce the total cost.
The binary rim operators discussed earlier [18] prove useful in this
context. The heuristic solutions so obtained are only about .8% away
from the optimum and considerably faster (often by factor of mofcvthan

10) compared to mixed integer exact procedures.
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Other applications of rim operators in the context of capacity expansion
include determinatién of growth paths in logistics operations [35], growth
models in machine loading problems [ 2] and the continuous time plant loca-

tion procedures of Rao and Rutenberg [30].

6. Post Optimization in TP and GTP

In this section we will consider the application of operator theory on cer-
tain well-known problemsiwhich ao not have a direct sélution procedure. It will
be shown that each problem considered can be solved by solving an initial trans-
portation=type problem possessing a direct algorithm, on which solution opera-
tor theory will be sequentially applied to generaté a sequence of solutions
converging to the required optimal solution. In each problem the crucial step
where the operator theory is épplied will be emphasized. Appropriate refer-

ences where a detailed discussion is made will be given.

a. Transportation type problems with quantity discounts
The transportation type problem with quantity discounts may be formulated

as follows:

*
(68) Minimize Z = X bN CL Xy
ier jeg Y

(69) Subject to: E ox.y=ay for i €1

jer
(70) £ x,,=b, for j € J

ier 44

r . .
(71) 0 < X; 5 < Xij for i € T and j €J
where: 1={1,2,...,i,...,m} set of sources
J = [1,2,...,j,...,n} set of sinks.



For each (i,j):

1 0 1
= <
cij if 0 xij < xij < Xij
2 . 1 2
< <
| ¢iy if My S %< A
(72) * {... eoe ¢ e
c,, =
SRR T Aole <k,
ij ij — 7ij ij
by , r-1 r
if Ae, <x,, < ), <®
L1 ij — 7ij ij =
and ck. > cgfl for k =1,2,...,r-1.
ij = "ij _
' 1

Let us refer the problem (68)-(71) as P.

The problem is solved by an algorithm [ 6 ], where initially one solves a

* . *
problem with cij = Czj for V (i,j). Obviously if the optimal solution X = {Xij}

satisfies (72), then the solution is dp;imal. Else, a heuristic is provided to
find a cell (s,t) from among the "interval infeasible' cells from which the branch

and bound procedure can be applied. Let us say that the current optimal x

ot should

e
w

k- *
be such that X§t¥§ x < th, due to the cost c. =ck used, but in fact, it is in-

st t st
. . . * k- , -
terval infeasible in that Xst<:xst} This condition leads to two branches (or subproblems)
(i) 1In branch 1, a lower bound restriction of the form Xt > k:;l

+

3 3 . * 3
is imposed while the current ¢,y remains unchanged.

. %*
(ii) 1In branch 2, the current c is replaced by the '"interval

st
feasible" c* i.e the cz corresponding to the ¢ t *
cp? L-ees St p g e current x .
c s . k-1 .
and an upper bound restriction in the form of Xt < Kst is

imposed.

It is shown in [ 6 ] that the branch 1 problems are solved via cell rim

operator [ 33], éR;t where § = k:;l while the branch 2 problems are solved by
cell cost operator [ 33], 6C:t where & = Cﬁt - C:t' Computational efficiencies

in the branch selection are given in the paper with suitable illustrations.
It is also shown that the "fixed change Transportation Problem" is a special

case of this model, so that operator theory is applicable for that problem as well.
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b. Optimal facility location under random demand with general cost structure

Operator theory has also been the primary method in [5] to solve the
Facility Location problem to decide the location of plants, their respective
capacities or production levels and also the distribution plan to different de-
mand centers. In their paper [5 ], Balachandran and Jain consider the following

problem.

A firm manufactures a product which is required at n different demand cen-

ters. The demand bj (j 1,2,...,n), at each center, is assumed to be a random
variable with known marginal density f(bj). The firm has the option of set-
ting up facilities at m different sites, i, (i = 1,2,...,m). The possible
capacities of the facility at site i could be any one element from the ordered
set Ai’ where Ai = {airlr = 1,2,...,mi}. The first element a1 of each of the
sets Ai is assumed to be 0 and corresponds to the decision of not locating a
facility at site i and the last element aimi corresponds to the maximum pos-

sible production level at site i. The cost of building ¢ capacity of i units

at site 1 is fi(yi) where

0 if y. =a,, =0

= + *
(73) £,7) =K, + v,y if a

. <y. < a, for r=1,2,...,m
ir ir'i ir i = i, rtl 2T ?

i-1
o if 'y, 2 a:
yl 1mi
Kir may be considered as the fixed component of the cost associated with setting

up a plant of maximum capacity a; and vir is the per unit variable cost.

,rtl’
Thus the cost structure at any particular site is a piece-wise linear function of
the capacity of the plant. The cost of distributing Xij units from a facility
at site i to demand center j 1is tijxij where {tij} are given. These costs

may be considered as the discounted costs if a multi-period planning horizon is

considered. With the above notation the problem can be formulated as follows:



' L. m + m n
(74) Minimize Z = i§1 fi(yi) 121 jEl tijxij
(75) subject to m
T xij = BJ for j € J,
i=1
n .
(76) ¥ %53 =¥ < ajy, for i €1,
51
(77) xij Z 03 Yi Z.os

where J = {1,2,...,n}, 1= {1,2,...,m} and Bj represents the realiza-
tion of the random variable bj' In order to ensure a feasible solution

we assume

~n
L ajy. > X B, .

Welwill present here the application of operator theory [ 33,34] for the deter-
ministic demand problem [Bj's are known], solved by a branch and bound procedure
where in each branch one requires a solution of the transportation problem. In
each node of the branch and bound tree the solution is generated from that qf
the parent node by cost operators [33].

First, for each production function f{(yi) for site 'i', substitute
£10 + diyi the best linear underestimate (see Definitions 1, 2 of [ 5]) of
. fi(yi) for a;y < Yy < aimi. This substitution in equation (74) leads to an

initial transportation problem that is solved to yield an optimal solution

1

X = {xij} and a current lower bound Zl(Xl) the objective function value of
the transportation problem and Z(Xl) as the current upper bound where Xl is
substituted in equation (74). |
At a typical step of the algorithm, choose the open node with the smallest
-lower bound. If lower and upper bounds are equal, then the solution at this node

is optimal. If not, partition this node on the basis of an index k identifying
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the location with the greatest difference between the actual and the best linear
underestimate, so that two constraints of the form Vi < ak,t and Yy > ak,t are
imposed yielding two branches. Substitution of best linear underestimates re-
vised to results in changes correspond to the new ranges of Yie in the objective
function coefficients. Further, the éonstraint Yy > ak,t implies that the slack
variaﬁle for the kth plant xk,n+l < akmi - ak,t thus making that slack variable
upper-bounded. The changes in the costs as well as the changes in upperbounds
can be effectively implemented by the '"operator theory" for the transportation
problem [33,34]. The new solutions for branch nodes can be generated by the
operators and tﬁus two new open nodes are created with the parent open node
now being closed. If any of the branch problems has no feasible solution also
one closes that node. Determine the current lower and upper bounds for the

two newly opened nodes and continue the algorithm.

c. The stochastic transportation and generalized transgprtatidn problem

Garstka [22] has presented . an algorithm for soiving the Stochastiec Trans-
portation Problem utilizing the concepts of '"Stochastic Programming with Simple
Recourse'. He allows the deman&s bj's to have a known marginal dis-
tribution and utilizing the permit penalties of under and over production and
introducing an equivaleqt convex function as the objective he solves the "simple
recourse" problem. Later Balachandran [ 4] has provided similar results for the
generalized transportation problem and applied operator theory to provide the
solution procedure. We will consider the stochastic generalized transportation
énd the use of operator theory here. A similar discussion is applicable in

the case of transportation problem.
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Consider the following problem:

(78) Min PN Z c,.x,,.

ier jey I H

s.t.
v
(79) | jiJ eijxij < a; ie1l
T = b, =1,...,n

(80) cer %45 i j
(81) X,. >0  Vi€eIandjelJd

Following the usual assumptions of "Stochastic Programming" with recourse [22],
with bj having a marginal density f(bj), let us introduce a per unit penalty
for pj > 0 and dj'z 0, for under and over production. Then the equivalent

stochastic generalized transportation problem will be (see [ 4] for, details).

(82) Minimize Z1 + 22
sub ject to
(83) T e,.x..<a,Viel
i€ i3] i
x,, >0
ij =
- 1
(84) where z, = z L 5(2c.,., - b, +d,)x,.
Lya e e
b.
' ) IR R R P T e
d Z, = 3 .+ d, . - X., . .
(85) an 2= 7yt SRS S M I
jed v x iex
ier

where b, 1is the median of b,.
Jm : J-
The following properties can be shown to be true [5 ]:
1. The objective function is convex.
. . (3 > ' =
2. For any i € I and j € J, if cij pj, then xij 0.

3. For any j J and all i I, if c,, > -d.,)/2, then £ x,, < b,
any j € J a €I, i3 = (pJ 37725 21 *13 = Pjm

in the optimal solution. Note that if pj < dj the above inequality

trivially holds since cij > 0.

4. For any i € I and all j € J if cij

a

+d, <0, then ¥ e¢,.x,. = a,.
J ijij i

jed
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With these properties, it is shown, [ 5], that the optimal solution to
the stochastic generalized transportation problem can be obtained by solving an
"initial" generalized transportation problem where the rim conditions for the

demands (columns).can be first set equal to bjm (the median of the random
variable bj) for every j and the objective function coefficient for xij as

%(ZCij - pj + dj)' The future rim conditions for bj's are successively obtained
by solving from the following relationéhib
Koo+ 4 bjm
v, = . . - f£(b.)db,
(86) GRS I (b;)db,
e
J

where v? is the "known' optimal duals corresponding to iteration 'k' and b?fl

h

is the unknown rim condition for the jt column to be evaluated from the above

+ .
relationship. The newly evaluated b? 1 are used to obtain the next set of

. k+l . kil k+1 k+1
optimal solutions X = {xij } and the duals ui and Vj . However, it is

easily seen that the next set of optimal primal and dual solutions for iteration

(k+1) can be obtained utilizing ''area rim operators" [ 8, 10] instead of re-

i +
solving. The algorithm terminates when vg*l = vg (or bF 1

A convergence proof is also indicated [5 ]. Similar results are equally appli-

= bg) for every j.

cable for the stochastic transportation problem by utilizing the '"area rim
operators" [33,34] of the ordinary transportation problem.

Applications of operator theory are also seen in '"One Machine Job Shop
Scheduling Decision' [23] where branch solutions of transportation problems can
be obtained by operator theory, in "Lock Box' decision models [29] and also in
solving transportation problems with convex costs [12]. Zero-one decision.
problems are used in optimal assignment of sources to uses [36] and in alloca-
tion of jobs to be processed by computers in a computer network [ 3 ]. These
problems use extensively rim.and cost operators in eﬁsuring either the zero-one
requirement [36] or the unique source requirement [ 3]. Interested readers can

get more details from these references.
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7. Algorithms for Transportation and Generalized Transportation Problems

(1) Cost Operator Algorithm for the Transportation Problem

Operator theory can also be used to devise algorithms for the transpor-
tation problemvand the Generalized Transportation Problem. Srinivasan and Thomp-
son have developed such an algorithm [38] using cost operators. Their procedure
starts with the determination of a primal basic feasible solution. The unit
costs corresponding to the basic cells in the initial solution are then altered
so that the solution is dual feasible as well and hence optimal to the problem
with modified costs. The altered costs are then successively restored to their
true values with appropriate changes in the primal and dual solutions using
cell cost operators. When all the altered costs (at most, mtn-1 of them corres-
ponding to the basis cells) are restored tb their true values, one obtains an

optimum solution for the original problem.

The cell cost operator algorithm has many interesting theoretical
features. First, it converges in a finite number of steps to an optimum
even without perturbétion of the rim c0nditioné as against other primal
basic methods. Second, it converges to an optimum in (2T—l) iterations
for primal nondegenerate transportation problems where T denotes the sum
of the (integer) warehouse availabilities (also the sum of the (integer)
market requiréments). This bound on the number of steps is much smaller

than the bound for the Ford-Fulkerson algorithm for the transportation

problem [38 ] by a factor of approximately min (m,n)/2 where m and n are the

number of warehouses and markets respéctively. For primal degenerate
transportation problems, however, the cell cost operator bound is slightly
~weaker than the Ford-Fulkerson bound by a factor of approximately two. As
against most primal basic algorithms which have exponential bounds, the
cell cost operator algorithm has the more desirable polynomial bound. How-

ever, in terms of average computation times, the primal MODI algorithm
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is faster then the cell cost operator algorithm. Details of the cell cost
operator algorithm as well as the related area cost operator algorithm
are given in [ 38 ].

In a similar manner, one can devise an algorithm for the trans-
portation problem using rim operators. For instance, any dual basic
feasible solution can be used to start the algorithm. The rim conditions
can be altered so that the solution is primal feasible and hence optimal
to the altered problem. The rim conditions can then be restored to their
true values using rim operators with appropriate changes in the primal
and dual sblution. When all the rim conditions are restored to their true
.values, an optimum solution to the original problem would have been de-

termined.

-(1ii) Weight Operator Algorithm for the Generalized Transportation Problem

Similar to the cost operator algorithm for the Transportation Prob-
lem [38 ], one could start with a primal basic feasible solution to a Gen-
eralized Transportation problem by inspection. From this initial solution
tb GIP, the per unit cost coefficients corresponding to basic solution are
then altered so that dual feasibility and hence optimality is attained.
From this stage the altered costs are successively restored to the original
problem values with appropriate changes in the primal and dual solutions
using cell cost opérators which lead to the optimal solution to the original
problem. The same procedural steps could be done by using rim operators
as well as starting with any dual basic feasible solution.

An interesting approach is in the cell weight operator application.
Since a transportation problem is easier in basis structure, we can solve
the GTP with the given unit costs and rim values but keeping all the weight

coefficients as identically equal to unity. This converts the GIP as an
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ordinary transportation problem so that the solution is obtained. Since the
cell weight operator application affects both primal and dual feésibility con-
currently, we need not worry about the starting sélution to be either primal
or dual feasible. Thus from the optimal basis of the reduced GIP we had, one
restores successively the original Qeights of the GTP from the current unit
'Veights. At this time, the authors havg not any computational results and
feel that this approach is promising, |

Recently Cacetta [12] has .provided an algorithm to solve the Transporta-
tion problem having costs which are convex. He is able to show that, by
appropriate values of cost changés and the application of cost operators
sequentially with these cost changes,.the optimal solution for the conveﬁ
transportation problem is attained. A similar algorithm for the GIP 1is

straightforward.
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