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THE INFORMATIONAL SIZE OF MESSAGE SPACES

ABSTRACT

We study the space of equilibrium messages of a resource allocation
process. A process is characterized by a ''message correspondence'" and a
"choice function.'" The dependence of messages on the structure of direct
knowledge of the environment on the part of each agent is expressed by
requiring the message correspondence to be a coordinate correspondence
(i.e., privacy preserving). A concept of the informational size of a
topological space is given and used to study the informational size of the
message space of a process. Classical pure exchange economies are studied,
and it is shown that for such environments the message space of the competi-
tive process is of minimal informational size among all Pareto-satisfactory
processes whose message correspondence preserves privacy and is upper
semi-continuous. Several corollaries specialize this result to message

spaces having dimension.
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- . . . 3 .
to the information processing required by a system. 3/ Experience

suggests that lack of attention to this aspect of institutional design,

perhaps as a consequence of lack of applicable theory, results in

designs whose performance is often quite different from what was

4 . . . :
intended or anticipated. 2/ Questions relating to informational

Other important classes of properties are, among others, (1) those
relating to the incentives experienced by economic agents, and

(2) those relating to authority relations among them. Both
incentives and authority relations are closely related to and

in a sense dependent upon informational properties. Analytical
convenience is served by separating these problems.

For example, the federal govermment can recover ''excess profits"

on defense contracts under the so-called Renegotiation Act. That
Act provides that several factors be considered in determining a
"proper" level of profit, factors including such things as an
unusual degree of technical expertise, or of efficiency, and value
to the national defense, among others. 1In order to evaluate these
factors, the administering authority (the Renegotiation Board)

would have to investigate the technical details of production and
costs to determine whether or not the firm was operating on a
technical frontier, and where that frontier was in relation to

the technical possibilities of other firms. The Board would also
need to study the characteristics of the product in relation to

its uses, and compare them with alternatives actually or potentially
available. Leaving aside questions of incentives to conceal or
misrepresent data and the investigative burdens imposed by such
activities, it is in itself a substantial burden to receive the
information implied by factors mentioned in the Act and to analyse
it so as to determine an allowable profit. Some administratively
feasible procedure must perforce be used; if the budget of the Board
is not large enough to provide for a staff adequate to the assigned
task. then a feasible task will likely be substituted. The result
is probably that the policy under which profits are actually
recovered is different from that visualized by the Congress when

it wrote the legislation. In an extreme case, informational burdens
of administration could make the policy as administered random with
respect to the factors provided in the Act! Many other examples

to the same point could be given.



THE INFORMATIONAL SIZE OF MESSAGE SPACES

by

Kenneth R. Mount L/ and Stanley Reiter 2/

1 Problems of economic policy may be grouped in two broad classes
which may be loosely described as those involving choice of the value
of a "parameter'" within a given system of economic institutions, and
those involving choice among institutions. Familiar examples of problems
of the first type include choice of tax rates, rates of govermment
expenditures, size of the money supply. Examples of the second type
include design of "new" economic systems such as embodied in the
Yugoslavian economic reform of 1968, or the choice of economic institu-
tions confronting.a developing country, as well as more limited problems,
such as design of regulatory mechanisms, or structuring of the system
of financial institutions, such as is embodied in the Federal Reserve
Act of 1933.

In order to analyze and compare alternative economic systems so as
to permit more enlightened choice among them, we seek to identify those
properties of such systems on which choice should turn and to study their

counterparts in a formal model. Among such properties are those relating

1/ This research was partly supported by The National Science Foundation
Grant (GP 28915).

2/ This research was partly supported by The National Science Foundation
Grant (GS 31346 X) and by a grant from the General Electric Company.



preferences of consumers), and in order to arrive at (optimally) coordinated
actions. this information must somehow be communicated among agents. Hayek
saw the economic system (in part) as a mechanism for communicating and
processing information. Some methods for achieving that optimal coordi-
nation were regarded by him as infeasible; e.g. transfer of all relevant
data to a central planning board, which then solves the resulting opti-
mization problem and transmits instructions to each agent about the actions
he is to take. While several types of information processing may be seen
to be involved, the task of communicating all the necessary information was
regarded by Hayek to be sufficient by itself to render central planning in-
feasible. Hayek also stressed the advantages of the competitive pricing
mechanism as an "efficient'" way of performing the tasks of communication
and information processing necessary to achieve optimal coordination (at
least for a certain class of economic enviromments). [5, p. 211; 7, p. 524]
While his detailed discussion dealt almost exclusively with the competitive
model as against one of a centrally planned economy, Hayek recognized the
possibility of rational design of the institutional framework, and the
possibility of new economic institutions (''mew'" in the broader sense of
"hitherto not conceived" as well as '"other than those historically observed".)
{5, p.22]

More recently, Hurwicz undertook a more formal study of this range of
questions {8} [9]. He saw that progress in the study of this kind of
question would be aided by a more general formulation of information

processing and communication, one which allows explicitly for new
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properties of economic systems have a long history in economic thought,

although it is only recently that formal study of them has been undertaken.

While there is an elaborate body of theory applicable to the first type

of policy problem, at least within the framework of the competitive model,

the growing body of theory applicable to the second type of problem is

relatively new and substantially less elaborated than is the theory of

the competitive model.g/
Without attempting a full historical summary, it may be noted that

Hayek {5, p. 209-212] gave great weight to informational considerations

in the context of the debate over the feasibility of central planning.

[See also 14, p. 15] Hayek [5, p. 209-212] distinguished between the

problem of characterizing optimal resource allocations and the problem

of processing the relevant information by means of some economic mechanism

so as to find (at least a reasonable approximation to) an optimal resource

allocation. As Hayek saw the problem, economic information is naturally

initially dispersed among economic agents (e.g. the manager of a firm knows

his own production set, but not that of any other firm nor does he know the

It is also considerably more abstract. This feature of the theory is

a consequence of its aims and problems. To analyse, compare or choose
among alternative economic systems it is necessary to have a framework
in which those alternative systems can be represented in the language
of theory. This stands in relation to the first type of theory as a
calculus of variations problem does to a calculus problem. In the case
of a problem of calculus, e.g. a minimization problem, the problem is
to find a value of a real variable which minimizes a given function

on some set, while a calculus of variations problem can be one in which
the problem is to find a function which minimizes a given functional

on some class of functions. In each case it is necessary to include
formally the range of alternatives to be considered. In one case that
range is the real continuum, but in the other it is a more abstract
class of functions. The necessity to encompass several alternative
economic institutions, rather than just different 'parameter values'
within one given system of institutions, similarly requires a step up
in the level of generality and hence abstraction of the theory.
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simplified view. as consisting of a communication process in which agents
exchange formal messages in an iterative fashion, followed by a decision
process, and finally a translation of decisions into real actions. Hurwicz
formalized the communication process by means of '"language' and ''response
functions", specifying how each agent arrives at the messages to be emitted
at each stage of the iterative exchange of messages. After the process of
communication terminates, decisions are determined on the basis of the
state of information at the final stage of communication. Such a formalized

economic system he called an adjustment process. Hurwicz distinguished

two classes of processes, one a sub-class of the other, the so-called
abstract adjustment processes, in which the language used for messages
could be arbitrarily specified, and the concrete processes, which are
restricted to using messages consisting of sets of proposed production
and exchange activities, (with decisions determined by consensus). With
reference to the concrete adjustment processes, Hurwicz gave a formal
definition of informational decentralization, a definition which formal-
ized essential elements of the earlier discussion. That definition has
two parts. The first, referring to the initial dispersion of information,
(formalized as a property of response functions) is called '"privacy'", the
second part, also a property of response functions, refers to the messages
used by agents. The effect of the second part of his definition is to
restrict the messages of an informationally decentralized concrete adjust-
ment process to sets of commodity space vectors. Thus, after due provision
for the initial dispersion of information, the concept of informational

decentralization turns on a property of the space of messages, a property
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economic systems, and which consequently does not formally restrict the
possible alternatives so as to permit identification of efficiency with
the competitive market mechanism and infeasibility with central planning.
He approached the problem by giving an explicit, though abstract, formal-
ization for an economic system, a formalization which permits inclusion of
both the competitive mechanism and central planning as particular elements
in a class of systems which includes others as well.

Hurwicz's formulation, though originally published in 1960, may be
sufficiently unfamiliar as to call for a brief summary. Hurwicz used the
term ""environment' to refer to those elements of the economic situation which
are given to the economy, namely, the commodity space, the set of agents,
their admissible consumption sets, preferences, production sets and initial
endowments. A resource allocation mechanism or adjustment process ''computes'
resource allocations, taking environments as its inputs. The resource
allocations arrived at by a mechanism can be evaluated using the usual
notions of efficiency or Pareto-optimality. Hence, one may consider the set
of environments for which a given mechanism is sure to calculate all
optimal allocations and only those. Hurwicz called this the class of
environments for which the mechanism is Pareto-satisfactory. The initial
distribution of knowledge about the environment is characterized by the
assumption that individual agents know those characteristics of the environ-
ment naturally associated with them (in the absence of externalities); i.e.,
each individual is assumed to know his own consumption and production set,
preferences and initial endowment. Knowledge so dispersed is not in general
capable of yielding optimally coordinated action. Hence, communication in

some form is necessary. The economic system is seen, in an admittedly
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proposed mechanisms for finding optimal resource allocations in the
presence of externalities. While no formal concept of information was
given, such notions are implicit in the discussion. One element of the
discussion involved the necessity of transmitting to one of the agents
information about the production function of another, a matter covered
by the concept of privacy; another turned on counting the number of
variables whose values must be transmitted, a matter of ''size' of
messages.

We are interested in analysing the communication processes of a
wide class of mechanisms. Once we admit administrative mechanisms,
messages can become quite abstract, (as observation of the nature and
variety of bureaucratic forms and memoranda suggests) and not directly
related to the commodity space. Hence, it is desirable to have a con-
cept of informational size and a formulation of privacy applicable to
message spaces which are capable of representing the kinds of messages
actually used. Something considerably more abstract than Euclidean space
is clearly necessary. We have chosen to consider general topological
spaces. It is also desirable to have a concept of informational size of
messages and of privacy which provides a basis for classifying processes
into more than the two classes "informationally decentralized" or ''not
informationally decentralized" and hence could serve as the basis for a
notion of the degree of informational decentralization. This is also a
property of the concepts introduced here.

Hayek's insight into the informational virtues of the competitive process
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we may looselv call the '"size" of the messages. In the case of a Euclidean
commodity space, informational decentralization restricts messages to

sets of vectors whose dimension is that of the commodity space. Because
information is initially assumed to be dispersed, and hence all additional
information acquired by an agent must be communicated to him via the formal
message process, restriction of the ''size', or information-carrying capacity
of messages, can serve as an indirect way 'of restricting the kind as well
as the amount of information exchanged. Thus, for example, a production
set not describable by a small number of real parameters cannot in general
be communicated using a commodity space vector as the message.é/ The
concept of informational decentralization, which classifies (concrete)
adjustment processes into two classes, consisting of the informationally
decentralized ones and all the others, permits posing the problem of trade-
off between desirable informational properties of adjustment processes and
other performance characteristics, such as the inclusiveness of the class
of environments for which optimal coordination by the process can be
guaranteed. This trade-off is of the same sort as was encountered in the
renegotiation of contracts mentioned above, namely, a trade-off between
desired performance and informational feasibility. The same kind of com-
parison has been considered, although more implicitly, by others. A

debate between Wellicz [ 16 ] and Davis-Whinston [ 4 ] turned on the

comparison of communication requirements imposed by various alternative

6/ Certain additional restrictions are needed to avoid anomolies arising
from the fact that arbitrary amounts of information can be encoded in a
single real number. This matter is dealt with below. See Example
following Lemma 10.
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I.2 In addition to the informal considerations just discussed, examples
arising in the formal study of resource allocation processes (formalized
economic organizations) suggest the existence of a 'trade-off'" between
environmental coverage (the class of enviromments for which a given

process achieves a desired performance standard) and the informational
requirements of the process. One such example is afforded by the comparison
between the greed process and the quasi-competitive process given by

Hurwicz [ 8 ] which reveals that the extension of Pareto-satisfactory
performance for all convex environments,achieved by the quasi-competitive
process,to the same performance for the class of all decomposable environ-

ments, achieved by the greed process,comes at the ''cost" of requiring

more complex messages. The greed process uses preference sets as messages,
while the quasi-competitive process uses convex cones with vertex at the
origin. A second example, also due to Hurwicz [ 10], shows that in order

to achieve Pareto-satisfactory performance for a case involving an
externality, either messages of higher Euclidean dimension must be used, or an

inadmissable coding process involving a Peano-type curve, must pe used.

In these examples the informational requirements of a process are
discussed in terms of the messages used, as we have already remarked. In
the one case, the dimension of the message space is considered and in the other
a more subtle notion of '"size", related to a comparison of the collection of all
possible preference sets with th2 collection of all convex cones with vertex
at the origin, seems to be involved. Further, Hurwicz [ 10 ] has restated the
concept of informational decentralization originally given in [8] so that it is

given explicitly in terms of the dimension of the space of messages used



is perhaps a natural one for economists to have. It is of interest to

"informationally

establish whether the competitive process is in some sense an
best' process. Hurwicz has posed a problem of this kind and has shown that
there is no other process which preserves privacy and achieves optimal
coordination for the same class of environments as the competitive process
and which uses a Euclidean message space of lower dimension than the
competitive process. We also study a form of this question, asking whether
there is a process using a message space of smaller informational size (with-
out the restriction to Euclidean spaces) which achieves optimal coordination
for the same class of environments as does the competitive process. The

answer is roughly, ‘No."
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there that any resource allocation process capable of achieving
Pareto-satisfactory performance for a class of environments with Cobb-
Douglas utility functions and whose message correspondence is upper semi- -
continuous, must use a message space whose informational size is at least

that of the message space used by the competitive process [Theorem 31, I11}]. ¢

-

S
We show further that this result also holds for any class of environments

which includes the Cobb-Douglas utility function [Corollary 34,III]. This
means that the Cobb-Douglas case is merely a device of analysis and is not

a restriction of the results.If the requirement of upper semi-continuity

of the message correspondence is dropped and only privacy is required,
then as the Example following Corollary 34 shows, the message space
of the competitive process 1is not of minimal informational size. It
remains true, even without upper semi-continuity, that any Pareto-satisfactory
process which preserves privacy and uses a Hausdorff message space

has a message space which is locally at least as large informationally
as that of the competitive process [Theorem 35, III]. Since the message
space of the competitive process 1is Euclidean, it has a dimension.
Two results relate the dimension of the message space of a process to
that of the competitive process. First, 1in the presence of the upper
semi-continuity condition, if a process 1is Pareto-satisfactory for the
class of Cobb-Douglas environments and uses a separable metric message space

then its dimension 1is at least that of the competitive message space
[Corollary 32, III]. Second, without upper semi-continuity, if a process is

Pareto satisfactory for the class of Cobb-Douglas environments, and
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(together with a '"privacy" requirement). Motivated by such interest in the
""'size" of the space of messages used by a resource allocation process, we
introduce a concept of the informational size of a topological space
(Definition 9, II). With this concept, and with the formal representation

of a resource allocation process given below (Definitions 1 and 3,II),

we can approach the study of the trade-off between environmental coverage

and informational size of the message space. We do this somewhat indirectly
by looking for the message space of minimal informational size sufficient
for a process to achieve a specified performance. Put somewhat
figuratively, to find a message space of minimal informational size
sufficient for a specified performance 1is to find a point on the
efficiency frontier in a space in which the axes are 'performance'" and
"informational size." This efficiency frontier is, of course, the set
characterizing the possible trade-offs. Our results in this direction are
only partial. For the case in which the space of environments, the space of
actions and the message space are topological spaces, we find the message
space of minimal informational size for processes which we do not necessarily
preserve privacy [Lemma 10, II}. But for privacy preserving processes,

at this level of generality we find only rather obvious bounds on the

informational size of the message space.

However, specializing somewhat, we study one portion of the efficiency

frontier alluded to above in some detail in 111, where we e Euré

. ¢ THR X
exchange economies with a finite number of agents and commodities. We show

~d



PROCESSES, PRIVACY AND INFORMATIONAL SIZE

II.1 Processes and Privacy: We suppose that the set of agents is {l,...,n}

i
and let X denote the space of possible characteristics of agent i, (e.g. his

admissible consumption set, preferences, technology, etc.). The space X = Xlx...xXn=

o]

i,
X" is the space of the possible economic environments. 1In writing
1

—
—

i

X as a product of the x''s we are considering the class of decomposable

7/
environments s 1. We further suppose that there is a

space Z, whose elements are interpreted as joint actions, and a function
f:X + Z. We interpret f as designating the action f(x) in Z which is
to be taken when the environment is x ¢ X. We shall refer to f as a

performance standard or choice function. To clarify further the inter-

pretation of f, consider the set of all actions z ¢ Z which are Pareto-
optimal for an enviromment x ¢ X. Because this is in general a set consisting
of actions not Pareto-comparable, it does not in itself define a unique

{(up to a Pareto-indifferent set) action to be chosen. Yet a resource alloca-

tion process should be required to determine an essentially unique action. (A
weaker form of such a requirement, called essential single valuedness, is

imposed by Hurwicz in [ 8 ].) Any process which determines a unique action for

each environment thereby defines a choice function. Thus, a choice function
is a specification of the performance of an allocation process. In III
we consider Pareto-satisfactory choice functions on the class of convex,

i
decomposable environments. In this section we shall require only that the X

77

It is possible to interpret X! as the space in which agent i's direct
information about the environment is contained, where the environment

is an element of a different space. Under certain assumptions about the
relationship of the distribution of information among agents to the

true environment, the analysis given below applies without alteration.
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is privacy preserving and its message space is Euclidea;, then its
dimension is at least that of the competitive message space (Corollary
36, 111]. This result has been obtained independently and in a different
way by Hurwicz [11].

Finally, we note that the concept of informational size of a space
applies to finite sets with the discrete topology. In that case, informa-
tional size corresponds to the number of elements in the space., (See the

Remark following Lemma 15.)
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~

if for each x ¢ X, f is constant on y(x) and has value f(x). Thus if

u € v (x), then f(u) = f(x). We shall say that M has sufficient information

~ ~

for the function f if there is a pair (u,f) such that uw: X+ M, f: M- Z, (u,f) is

compatible with f, and p is a locally sectioned correspondence (see Definition 6

~ ~

e

below). We shall say then that (u,f) realizes f£. We call the pair (u,f) a resource

allocation process, (briefly, process) with message space M, and choice function

The assumption that X is a product of spaces Xi already formalizes
the notion that each agent knows directly only his own component of the
environment. As noted above, the communication process must preserve
the privacy of direct knowledge by requiring that all information
acquired by an agent about components of the environment other than hi:
own must come via formal messages. Another way of putting this is that
messages emitted by an agent can depend directly only on his< own component
of the environment, and not on others of which he can have no direct
knowledge. We formalize this by means of a subclass of correspondences

which preserve privacy. (Hurwicz introduced this term in [ ¢ J),

1
Definition 2. Suppose that X ,...,Xn is a set of topological spaces

n
and suppose that M is a topological space. A correspondence p: X x...xX =+ Mis

said to be a coordinate correspondence if and only if there are correspondences

i 1 n 1 n 1 n
Ly X" =+ * such that for each (x ,...,x ) e X x...xX , p(x ;...,x ) =

LA 5 n
pl(x Y DL un(x ).

The performance standard f: X + Z can be regarded as the choice function
of a process (u,f) with M =X and y = the identity on X.

-
v d

~ 4
f.
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(hence X) and Z be topological spaces, and that the choice functions f
satisfy certain regularity conditions.
We consider resource allocation processes in which each agent knows
. . i i . 1 n
directly his own component x ¢ X  of the enviromnment x = (x ,...,x ), and

in which any further information is acquired by communication among agents.

Communication takes place by {tcrative exchange of formal messages until

a stationary message is reached. At that stage a joint action is

determined on the basis of the stationary message only. We are interested
in the "size'" of the message space needed to realize a given choice function.
We shall study the space of stationary messages. Since the space in which
iteration of messages takes place must at least include the stationary
messages, we thereby obtain a lower bound on the '"size' of the message

space.

In what follows, if X and Y are topological spaces, then by a
correspondence from X to Y we shall mean a subset T C X x Y such
that the projection of I' to X covers X. That is, for each x ¢ X
the subset of Y which corresponds to x 1is nonempty. If [ 1is a

correspondence, then for x ¢ X, T'(x) = p:{[(x x Y) N T'). 1In what follows,

unless otherwise stated, when we say function we shall mean continuous function.

Definition 1. Suppose that X, M, and Z are topological spaces, and

suppose that f: X+ Z is a function. A pair which consists of a corres-

pondence u: X * M and a function f: M* Z is said to be compatible with f if and onl
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Let M be the set of message complexes m = (El,...,an) satisfying

i,—1 - i . -
g (m™,...,m ; x) =0, i=1l,...,n. Then the function ¢: M+ Z is the

outcome function and the pair (f,p) is a Hurwicz resource allocation process.

n -
Lemma 4. Let X ='ﬂ1Xl and let M = M(n).
l:
i, 1 n i . sy
a) Let g (m,...,m ; x ) =0 i=1,...,n be the equilibrium equations

of a Hurwicz resource allocation process with equilibrium message

= . i . .
space M. (Note that the functions g are not necessarily continuous.)

— R A i
There is a coordinate correspondence p: X * M, with coordinates ui: X * M

such that ; € M satisfies the equilibrium equation gl(;l,...,;n; xl) = 0
n .
- i
i=l,...,n if and only if me M u . (x).
n _ i=1
b) Let w: Il Xi* M be a coordinate correspondence with coordinates ui.
i=1
i = i
There exist (characteristic) functions g : M x X - {0,1} such that
- i i~ i
me N ui(x ) if and only if g (m; x ) = 0 for i=1l,...,n.
i=1
. s i 1 n —
Proof. Immediate from definition, for p, (x Yy ={(m,...,m) e M|

gl(ml,...,mn; xl) =0}.

We see from Definition 2 that a coordinate correspondence is a

correspondence with a prescribed decomposition. We now give,ﬁ%cessary
. -7 _“-

and sufficient conditions that a correspondence be a coordinate

correspondence.

Notation: If x = (xl,...,xn) and y = (yl...,yn) are elements of

M1 X...X Mn we shall denote by x ®jy the element (yl,...,yj_l,xj,yj+l,...,yn).

¥
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n

Definition 3. Let X =1 Xl, M and Z be topological spaces and let (u,}).

i=1

where u: X » M and f: M+ Z,be a resource allocation process (with message

~ ~

space M and choice function f). We say that (u,f) preserves privacy if

and only if u is a coordinate correspondence.

) i .
We may interprete the correspondences it X" + M, as strategies of
» : i ~
communication. Thus m ¢ ui(f ) means that the joint message (proposal) m
. . . to,
is acceptable to agent i when his environmental component is o x , if the

other agents also agree to m.

The relationship of this model of an allocation process to that of
n

Hurwicz [ 8 ] is made clear in Lemma 4 below. Let X = Tl x* be
i=1

the space of environments. 1In Hurwicz's formulation, the message space

He defines response functions,

n
n i
M is a product. We may write M( ) - mM.

i=1
such that

i, 1 n i _ _
f (mt""’mt’ Xx') = mo i=1,...,n

represents the iteration of messages, and

g (m ...m; x ) = fl(m ,...,mn; xi) - ml =0 i=1,...,n

characterizes the equilibrium message complex when the environment is
1 n i i
%= (x ,...,%x ). That f depends on x only through x~ expresses the

1 s
property of privacy. We may call (g ,...,gn) = (0,...,0) the equilibrium

equations of the process.



where the last equality one derives from an application of (*). Thus

ul(vl) I un(vn) = [k) u (v gl(v ®2x)) N u(X‘gzy) N uwv ®32)] n

X,¥,2

(U, cw e =

w

1

4 [
u (v Ql(V‘gz(v ®3 ))) N ou(x ®3z) N w(x ®2y)] ﬂ(r\.=l[ L/w (v @iw)] =

U

X,¥,2 1
. = [L)g ---LJ o ) Mux R W) N ...] Su(v). On the other hand
ui(vi) 2> vu (v), thus ul(Vl) no...nN pn(Vn) 2> u((V). This completes the
proof,
n .
~ Given a space of environments X =_H1Xl, a space of actions Z and
l:

a choice function f: X+ Z, specifying the desired actions for each possible
environment, there always exists a privacy-preserving allocation process

(u,f) realizing f. Take M = X and ui(xl) = [(yl...yn) e X i yl = xl} i=1,...,n.
n . ~

Then N ui(xl) = {x}. Finally, take f
i=1

whether there is a privacy-preserving process realizing f with a "smaller"

f. The question then arises

message space. And, more ambitiously, what is the 'smallest' message
space M such that there 1s a privacy-preserving process realizing f with
the message space M ?

In order to pose such questions precisely a concept of the informational size
of a space is neceded. Hurwicz [10] and [1l1] has posed similar questions using the
dimension of fuclidean spaces as a ''measure' of size. The intuitive basis of
this concept is the notion that more resources (or difficulties of
communication) are involved in using e.g.,two-dimensional rather than

one-dimensional messages. Whatever the merit of this concept of
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Lemma 5: Suppose that Xl,...,Xn, M are topological spaces and

]

. n .
suppose that - X'x...xX" 4 M is a correspondence. A necessary and
sufficient condition (which we shall call the 'trossing condition) that
v be a coordinate correspondence is that for each pair of points

_ ' e o N | n .
x = (x ,...,xn) and x' = (xl,...,xn) in X" x... xX and each integer

1< 1i<n.

(*) b(x) 0 u (x1) = u'®.x) 0 u® . x").

Proof. First suppose that y is a coordinate correspondence. Then

L(x) N p(x') = pl(xl) m-.-un(xn) N ul(xi) n...n un(xé)

= [ul(xl) n...r ui—l(xi-l) N ui(xi) N ui+1(xi+1) n...n un(xn)] n

[pl(xi) Nn...Nn ui-l(xi-l) N ui(xi) N pi+1(xi+1) n...n un(xé)]

u(x’xix) N (x@ix').

Conversely suppose that ;_L:Xlx...xXn -+ M is a correspondence which

i n
satisfies the condition (*). If ye X and x ¢ X1 X...xX , then set
= eo ce ; thus y, is the
p,i(Y) &%Xlx X .U(xlf 7xi_1}Y}Xi+1} }xn) u U‘l ()

n . .
union of all the values of p at the points of X ¥ ... xX which have ith

coordinate y. Thus if we set v = (Vl"'

nz:l[U1 ox X1 w(v 2wl =

uzX X
[, vl D [Uyu(v 2,71 Pﬂ 221 [Uz“(v .2)] =
3
{ 1 n “‘ (V®1(V®2x)) Now(x ®ZY)] ﬂﬂ2=1 [UZ o (V®iz)]

.,vn), then ul(vl) n...n un(vn) =



, . o ) . 0 -
Proof: Suppose that f is locally sectioned. Then f£ is locally
sliced bv definition. Assume p ¢ Y. Thus there exists an open set U(p)

-1
which contains p, and a function spiU(P) -+ X such that Sp(u) e £ "(u) for

each u ¢ U(p). Thus f°5p(u) = u. The converse is clear.

In order to make these definitions a bit clearer we give
the reader two examples. First let G denote the topological space
which is the graph in R x R of the function f given by f(x) = x for
x < 1land f(x) = x+ 1 for 1< x. Let p denote the function from G
to R x 0O (R the reals) which carries (x,y) to (x,0). The topological
space G 1is mapped continuously and one-to-one onto the x-axis (the
reals). However it is clear that although the point (1,0) 1is in the
image of p, there is no local section to G. Next consider the corres-
pondence from R to G which carries x to (x,x) 1if x < 1 or to
(x,x + 1) if x> 1. This correspondence is clearly not .sliced.

For a more interesting example,let C denote the complex numbers
and let X denote the subset of C x C satisfying the equation y2- X.
Let p denote the projection from X to C x 0 which carries (x,y) to x.
In the neighborhood of (0,0) the map p 1is not locally sectioned. To
see this, note that if such a section exists, then there is a function s
from C to the set of (x,y) such that y2 - x = 0. However it is
classical (see [ 13 ] for example) that there is no continuous square root
in the neighborhood of 0. On the other hand if we consider the space
X - {(0,0)} and the space C - {0} with the same projection p, then
p 1s clearly locally sectioned, indeed at any nonzero point we can construct
an analytic cross section by use of the Taylor series of ./X. We can

build a correspondence which is not locally sliced in this case as we did before.
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informational size, it is not available for spaces which do not have
dimension. Further, it does not seem to be the appropriate concept for
finite sets. In the next section we study the informational size of

topological spaces.

I1.2 Informational Size: We will introduce a concept of the informational

size of a topological space. For this purpose, we need certain concepts of

regularity.

Definition 6. Suppose the X and Y are topological spaces. If

u: X * Y is a correspondence from X to Y, then we shall say that u 1is

locally sliced 1if the following condition is satisfied:

for each p ¢ X, there exists an open set U(p) which
‘contains p and a function s:U(p) * Y such that for

each u ¢ U(p), s(u) ¢ u(u).

The function s will be called a local slice or slice of u.

Definition 7. 1If X and Y are topological spaces, then an onto function

-1
f:X + Y is said to be locally sectioned if the correspondence f from Y to X

is locally sliced.

- e

An onto function
_— il -
pbgfe exists apn -
p:U(p) * X such that fof.
oM

-.’ -.i.

PR 4



than the image of f.

The next lemma characterizes the message space of minimal size when

the message correspondence is not required to preserve privacy.

Lemma 10. If f£f:X » Z is a locally-sectioned onto function and if
M has sufficient information for f, then M as much information as Z.

Proof: Because M has sufficient information for f there exists a pair
(v, E) which realizes f, and such that y:X » M £:M -+ Z. Because f is an
onto function and (., E) realizes f, it follows that E also maps onto Z.
To prove our assertion it will suffice to show that the function E is locally
sectioned. Thus suppose that p ¢ Z. There is an open set U(p) in Z and a
function s :U(p) »* X such that fes = 1Id . Thus there exists an open

P P U(p)

set V in X which contains f(p) and a function T: V + M such that for each v ¢ V,
T(v) € u(v). The set VN Im(sp) is open in Im(sp), where Im(sp) denotes the
image under sp of its domain. Then sgl[v n Im(sp)]is open in U(p), and hence
gt = s;l[v n Im(sp)l is open in Z. Further set g = Tosp: U' + M. Then

fO£ (u) = forosp(u) = f[u(sp(u))] = gOSp(u) = u. This completes the proof.

One may ask whether the condition that the correspondence u be locally
sliced is actually required for the definition of information sufficiency. It
is easy to see that if we drop the condition, then the Peano function arises
as a pathological possibility. Consider the space R x R (R = reals) and the
function I = Identity from R x R to R x R. Let = R » R x R denote the space-
filling Peano curve. Let u: Rx R R denote the correspondence n-l. Then the
function ~: R =+ R x R together with y realizes I, since w o p = I. Thus if we

were to remove the local slice condition in the definition of sufficiency
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Definition 9. Suppose that X and Y are topological spaces. We shall

say that Y has as much information as X if and only if there exists a locally

sectioned function from Y to X. We shall say that Y has strictly more

information than X, if Y has as much information as X, but X does not have

as much information as Y.

With this definition it follows that R x R (R = real numbers) has )
strictly more information than R. To see this, note that the function
which projects R x R onto its first factor is a locally sectioned function.
Therefore R x R has as much information as R. On the other hand, if R were
to have as much information as R x R, then there would have to be a function
p: R+ R x R which is onto and locally sectioned. Suppose that x ¢ R x R. There
would have to be a function s:U + R for an open set U containing x such that
pPoS = IdU. Thus U would be homeomorphic to a subset of R (that is homeomorphic
to the image of s). It follows that one could embed a two-dimensional disc

in a one-dimensional space. However this is impossible.

As we mentioned above, we are interested in the message space of
minimal informational size sufficient for a given function. If we do not
restrict the processes considered to those which preserve privacy, it is
intuitively clear that the minimal message space should be that consisting
of the values of the given function. TI.e., the least information one could
expect to be sufficient to compute the value of a function f is the value of
f itself. 1Indeed a concept of informational size which did not have this as
an implication would be suspect. As we shall see below, (Example following
Lemma 13) if a privacy preserving process is required, then the size of the

minimal message space sufficient for a given function f is generally larger



Definition 12. Suppose that F is a nonempty set of functions from a

topological space X to a topological space Z. We shall say that M has

sufficient information for the family F if M has sufficient information

for each f ¢ F.

We next establish the analogue of Lemma 10 for a class of functions.

Lemma 13. Suppose that F is a nonempty set of functions from a
topological space X to a topological space Z. Suppose further that there
exists a topological space M and a function :M + Z such that for each
f ¢ F there exists a correspondence uf:X + M such that the pair (uf)u)

realizes f. Suppose also that the following condition is satisfied:

If p ¢ Z, there exists a function f ¢ F and an open set
V < X such that f(V) is a neighborhood of p, and f as a

function from V to £(V) is locally sectioned.

Then M has as much information as Z.

Proof: We shall show that the function p: M Z is locally sectioned.

There exists an open set U(p) which contains p and a function f ¢ F such

that f carries an open set in M onto U, (f-1 (Up))) NV, where £(v) is an

open set in X which covers a neighborhood of p. Because f has a local

section. there exists a function St U + X such that fcsf = IdU. The

correspondence has a slice on a neighborhood of sf(p). Suppose that

- f

is such a slice of g Then the function oo Sg is a slice of the

“f
correspondence

From Lemma 10, we see that the informational size of the minimal message

~

space of a process (u,f) realizing f: ¥ +Z, but not necessarily preserving privacy,



of information, the pathological situation that R is sufficient for the
identity function I: R x R+ R x R would result.

We now extend the concept of a space having sufficient information for
a function to that of a space having sufficient information for a class
of functions.

One technique of proof which we shall use involves the consideration of
a restricted class of environments in order to achieve a lower bound for the
information required for a process. In order to justify this procedure
it is necessary to consider only those processes whose relevant properties
are inherited under restriction to subspaces (see for example Corollary 34

where this line of argument is used. )

Definition 1l1.

i
(1) Let Xi i=1,...,n be topological spaces and let f£: Tl X"+ Z be
i=1
a function. We say that a space M has minimal information for £ felatiyg

- » s,

to a class of allocation processes having a property % if and only 1if Ehere' o
C Yo

A

exists a process with property(§>and message space M which realizes f, and such

that if N is a space for which there exists an allocation process wit@

. ) el ‘f‘}’@v’
property G>which has message space N and which realizes £, then'N has 4

as much information as M.

(i) We shall call a process (u,f) with message space M and which

i i
has property G , a Sﬁ-g;ocess 1f for any subspaces Y of X" i=l,...,n,
n

the restriction of (u,f) to T Yi with message space M also has pfoperty & .
i=1
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1
Let u; = X = {a,B,v} =M
be given by ul(l) = {a}; by (2) = {8,v},
and let uz:x2+ M be given by p, (1) = {a,B} u,(2) = {a,p). Thenp, Ny,

is given by Table II.

} — i ey
[ f
2 a l B
|
f* -
f
1 a | Y
{
|
1 | 2
f
I
TABLE 1ITI.

Teking £ such that £ (@) = £ (y) = a and £ (B) = b, we see that

Q;,E) realizes f with message space M = {a,B,y}. Note that M is

informationally larger than Z, and that M 1is not a product inside X1 X X2.

We will find the following simple result useful in Section III,

n
Lemma 14. Suppose I Xi, Z and M are topological spaces, and
i=1
.
sUpnose f:iﬂ X"+ 7 i3 a continuous function.



7=
is the same as the informational size of the image of f in Z. Imposing
thg)furthec.gqndgtggnishat the process preserve privacy, i.e., that u be
| -y Sy
a coordinate correspondence, will in-general require a message space 6?

larger informational size; saﬁéwhg;e "between" the image of f and ipe

informational size of X.

~—w, >
The following example illustrates this increase in informational

.,
size. It also shows that the increase in generality provided by not “g
requiring the message space to be a product space is significant, since

in this example the message space of minimal informational size for a

coordinate correspondence is not a product inside X. i

1 2
Example: Let X~ = X" = {1,2}, and suppose f: ' x x% o {a,b] Z, is

given by Table I.

—~ . . ‘;- v N .
L i I - - .
; . ‘ U o 'f\’ L]
2 a b _qr’
1 a
X2
1
Xl
TABLE I.

given by a table identical to Table I,

identity on Z.

v,

IS

the crossing condition of Lemma §

L
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Equivalently,

houy(x)N.uN ho u,(x) N ho uy(yp) Neenho b (v)
=ho ul(xl) N...N h o uj(yj) N...Nn h o un(xn) N ho ul(yl)

N...nN h o uj(xj) N...0 h o un(yn)

or,
n n n

nl 0w [Neop| =] () wa@,y

i=1
i=1 i=1

Since h is a 1-1 function, this condition is satisfied if and only if

satisfies the crossing condition. Since u is a coordinate correspondence,

so is howu.

Since h is a homeomorphism, h-1 is a function and hence so is Foh™
This function is compatible with hoy, since v,v' ¢ hop.(x,y) 1f and.pnly {}
if h-l(V) e u (x,y) and h-l(V') ¢ u(x,y). Since t is compatible Wiibﬁ .
w, %(h-l(v)) = %(h-l(v')) if h-1(V) ¢ u(x,y) and h~ (v ) € w(x,y). Hence

~ _1 ~ -
v,v' ¢ hop(x,y) implies foh "(v) = foh 1(v').

~ -1 ) )
Finally (hop,fch 7) realizes f, since " i:5§%’1 "-ﬂn§:‘? :
Evh_l hop = %ou, which realizes f£. : a;y“{ﬁg;‘

Remark:

As we have noted at the end of section II. 1, the concept of dimension
is inappropriate for a study of the size of finite sets. However the concept
of informational size of this chapter applies to finite sets. We note first
that the concept of information introduced in II applies to discrete
topological spaces and functions between them. Indeed,if we suppose that X

is a topological space with the discrete topology, then a topological space X has
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Suppose that Y is a subspace of Xi(i =1,...,n) and assume that M has

n
minimal Iinformation for the restriction of f to 1l Yi among GP-processes.
i=1
I1f there exists a 6?-process such that M has sufficient information for
n n
f on II Xi, then M has minimal information for f on 1l Xi.
i=1 i=1

Proof: Note that 1f (v,f) is a pair which realizes f, then the
n

*
correspondence v , which is the restriction of v to the subspace iﬂlYi, is
n - =
a coordinate correspondence from I Y to M which with f realizes f£.
i=1
1 n
Lemma 15. Let X ,...,X , W and V be topological spaces;
n n
let u = ByXee X pot II X+ W be a coordinate correspondence on I Xi and
i=1 i=1
let h: W=+ V be a homeomorphism of W to V.
Then
.
howu=hop,Xx...xhop : OTX" =V
1 n
i=1
where
h o hyXeeoX h o un(xl,...,xn) =
is a coordinate correspondence on V.
n
1 ~
Further if f 1s a function on [l X* to Z and f: W+ Z is such that
~ i=l
(o,f) realizes f, then the function fo h-lz V 4+ Z together with the

coordinate correspondence h oy realizes f. »

Proof: The correspondence h o u 1is a coordinate correspondence if and

oniy 1f it satisfies the crossing condition of Lemma 5. I.e., for all
n
i
X = (xl,...,xn) and y = (yl,...,yn) in I X,
i=1

h o p(xl,...,xn) N h o p(yl,...,yn) =hop (xl,...,xj_l,yj,xj+l,...,xn)

N ho H(yl; '“’yj-l’xj’yj"'l’“"yn)
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MINIMALITY OF THE COMPETITIVE MESSAGE SPACE

o - --«: *“.:'f.“

ITI. The objective of this section is to show that every meésage.space
A >
sufficient for the class of Pareto-satisfactory allocation processes'on '?J

¥ !

convex environments and satisfying certain regularity conditions 1is at
least as large (informationally) as the competitive message space. Pareto-
satisfactoriness of an allocation process involves three properties; namely,

1) non-wastefulness, 2) unbiasedness and 3) essential single-valuedness
- N
“

L) ‘-:“

[Hurwicz 8 ]. Hurwicz describes the performance of an allocation qucesd‘
» ;
. .‘1‘
by a correspondence associating a set of outcomes with each possible enviro
ment and applies the criterion of Pareto-satisfactoriness to that corres-
pondence. We shall strengthen these criteria to state that: 1) the out-
comes associated with an environment are Pareto-optimal for that environment,

2) every allocation that is Pareto-optimal for a given environment is a

possible outcome after some suitable redistribution of the initial endow-

ments and 3) if more than one outcome is associated with an environment,
then all such outcomes are Pareto-indifferent.g

We shall consider a subclass E of the class of all convex environments,
namely, those in which utility functions are "Cobb-Douglas." On this
subclass of environments we consider the correspondence that associates
with each environment the set of all allocations which are Pareto-optimal in

that environment. (We might have considered instead the class of Pareto-

optimal allocations at least as preferred by everyone to his initial endowment.)
-t " W .
Je next consider all functions which are (continuous) selection:}from this

correspondence. There is at least one such selection, since the function

which selects the (unique) competitive equilibrium for each environment is

7

—' This is a strengthening of Hurwicz's condition of essential single valuedness
in that he requires only that all outcomes associated with an equilibrium

message be Pareto-indifferent. We use the stronger requirement in keeping
with our insistence that the process have a unique solution in each

environment.
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as much information as Y if and only if the cardinality of Y is less than
or equal to the cardinality of X, and Y has the discrete topology.

In order to see this note that if Y has the discrete topology and the
cardinality of Y is no larger than the cardinality of X, then it is obvious
that X has as much information as Y. Conversely, assume X has as much infor-
mation as Y. Then there is a continuous function f from X onto Y which is
locally sectioned. Because f is onto, the cardinality of X is at least as

great as that of Y. Next, if p ¢ Y, then there is an open neighborhood U of p

and a continuous function s:U + X such that fos is the identity on U. Thus
U is homeomorphic to a subspace of X. Because X is discrete, U must have
the discrete topology, and in particular p is an open set.

Finally, note that an immediate consequence of the previous discussion
is that if El""’En is a finite collection of sets where each Ea a=l,...,n

has the discrete topology and if f:E x...xEn +Z is a function onto a discrete

1
topological space Z. then there exists a message space X which has minimal

information among all message spaces sufficient for f. Furthermore X has

the discrete topology.
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It seems worthwhile to remark that here one could equally well use

the Hausdorff metric topology on sets.

It i3 well-known that for this class of environments the excess demand

1

i
function §

A
e ¢ EY, el (- ,el) is differentiable.

Definition 16. For e ¢ E, (p,y) ¢ S x

for e, where p 1s a competitive equilibrium

S x E" 2+ R 1s a continuous function on S x Ei, and for each

K}
e

Yo -

Rnl 1s a competitive equilibrium

price for e and y is a competitive

equilibrium trade for e, if

R {
E (p,e) =0
i=1

1)

i:

Cq
2) peElp,e’) = pry =0

i=1,.

\'(
‘? .

Y

A s A

For ¢ ek,a competitive equilibrium exists and is unique; if p 1is the

competitive price for e then P > 0, j=1,...

nl
Let 1: E-+ R

1 n
set of all allocations x (x ,...,xn)e R I

»L {1, p.225 and Theorem 6, p.

be the correspondence that associates with each e ¢ E the

such that x is Pareto-optimal for e.

Let Dui(xl) denote the normalized derivative of ui evaluated at xl,

1

using the normalization
j=1
i I+ s

Du R S.

1t is well-known that necessary and sufficient conditions that x be

Pareto-optimal for e, i.e., X ¢ Q(e) are:

i=l,...,n

N
N
~ 3

i=1 i=1

101,
3) there exists p ¢ S such that Du (x7) = p,

is

-
.
1]
.

-

b2 Du;(xi) = 1. Thus,

Y

i=l, aqs>n,

a redistribution of the initial endowment which is individually

222].

.
ChlS
»

’s’

.

i
X



continuous (using the topology for environments introduced below). .-

A
e

We shall also r;quire that the selections have the property thagtig an
S 4

[ " : “""N* :.-.;,
"{nitial point" is Pareto-optimal, the process stays there:- : f”‘“#ﬁarﬁ?*b,_

- —— —

We shall show that for the set E of Cobb-Douglas environments a lower bound for
- h
the informational size of message spaces can be established, and then, applying
Lemma 13 suitably, it follows that the same lower bound applies to any class
of environments containing E.

We consider a class of exchange economies with ]I commodities and n

consumers. Let the commodity space be RI and let the admissible consumptionm

s
Ly

1
set of each consumer be R1+, the non-negative orthant of RZ. Let
1
S={pe RI \ z p; = 1, Py > 0 1=1...l},and note that S is homeomorphic
1-1 i=;-1 I-1 E

to I ={peR | P, >0, i=L,...,I-1 I p < 1}. A consumer i ¢ { 1,...3n}

i=1 ban
ol |

i
is characterized by a pair (ui, wi) where u ¢ Ui is his utility function and,:

i +
w1 € Rl is his resource endowment. We take

i 1 1 o,
U= { wiR"+ R | u(x) = T x,),a >0 j=1,...,11.
-1 Jd 3
j=1
1
We write EY = Ul x ’F and E = E'x...xE".
b
: * ﬁ
Let €7: S x Ei -+ Rl be the excess demand function of consumer i. Thusy

gi(p,ei) is the excess demand of consumer i when his utility is ui, his

i
endowment is w and the price vector is P.

We shall now introduce a topology on U™ X RF ; for xe R{ o= il = maxggx‘,
| . . 3%
and for u, u' in Ui, let d(u,u') = max la -a", where u(x) =1 x.3 Y
} ] R
a! h| 3 o I4- &.J _
u'(x) =1 x.J.kg/ We give Ei the product topology,and let E have the productgmy.

i
topology of the E .
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Definition 18. By a non-wasteful performance function on E we shall

mean a continuous selection w from 2 satisfying the condition that if
O

e = <(uiﬁf)> is such that w ¢ (0(e), then w(e) = w. An allocation process
that realizes a non-wasteful performance function is also called non-

wasteful on E.

Definition 19. A function p: E + E Is a redistribution 1if

., . n _, n .
p(<(ul,wl)>) = <(u1, wl)> and 3 w-o = 3§ w'.
"oi=1 i=1 ¢
. - . = i i i i i
A redistribution p may be written as product Id ;X P i(u W) = (u,w +20)
u z
n
with parameter z = (zl,...,zn) € an, where ¢ zi = 0.
i=1

n

We shall write pz(e) = (1d { ¥ ; i) X ... x(Id o¥ 5 n)(e]‘,...,e )

U z U z

\’(ui,wi + zi)>, where ei = (ui,wi).

Definition 20. A performance function w is called unbiased (and any

allocation process compatible with that performance function is called unbiased)
if given e ¢ E and any point x ¢ 2(e), there exists a redistribution p
such that w9 (e) = x.

An allocation process that realizes a non-wasteful, unbiased per-

12/
formance function on E is Pareto-satisfactory on E7

Definition 21. We define 0: E + R"F by,

1

- 1 T T, s i
2Ce) ={(y ,...,yn) € R" ] y =x -w, for x ¢ Q(e), e:E-k(ul,w >} .

Let » denote the continucus selection from () corresponding tow ;i.e.,

w (e) = w(e) - w, where e = <(ul,wl)>.

2/

—' A selection from 00 is automatically non-wasteful. A non-wasteful
performance function is (strongly) essentially-single-valued on E,
since strict concavity of utility functions implies that the relevant
Pareto-indifference classes are points.
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admissible and such that there is a "mutual tangency'" of all utility functions

N
.
Vi w

i
at the respective x - Y e :”ﬁ’
. . . AR 1 g
Writing y1 = xl - Wt i=1,...,n, we may state the same condition in R
terms of trades;
i 1
1) y ¢ R i=1l,...,n '
4.
RO . e
2') oyt o= 0 o 'A‘:_;)\;
i=1 44 h,.y,\;:‘,
i 1 i o -§pb-3§
3" there exists p e S such Lhat Du (y + w )= p, i=1,...,n > 4
atln'x PR

nl+ . . .
Lemma 17. The correspondence 2: E + R I is upper semi-continuous

Proof: Let {ej} denote a sequence of environments converging to e

.

and let xj € Rnl, xj € Q(ej), such that xj -+ x. We must show that AREY i

11/

x ¢ (1(e). Note that gj* e 1f and only if, for ej = <(u;,w;)>,

e = <(ui,w1)>,u; - ui, w; - wi for i=1l,...,n. By the definition of convergence

g

-—

of utility functions, u; + u' if and only if Du?(zl) + pul(zh)y

+
for ull zi € Rl i=1l,...,n.

Now, xj e OC(e) if and only 1if

+
1) x§ e ’F i=1,...,n
i, 1 ‘
2) there exists p ¢ S such that Duj(x;) = pj i=},...,n
n . n , x,
3) - x¥ = 7 w% . j}
i=1 J i=1 =)

. i i . i i .
Now, Xj + x implies xj + x~ for i=l,...,n,and,by convergence of Uj 4+ u, ittrouows

that Dui (x;) + Du" (x') for i=l,...,n, i.e., P + Dut(x') = p for i=1,...,n. «3
. . . n .
Further x% - xl, wh 4 w' and z x% = 3 w for j=1,...,n imply
] ] i=1 J  i=1
noo no
y x° = ¢ w . Hence x¢e Q(e).
i=1 i=1

11/ We shall sometimes use the notation

e

' i " " 1 1 2 2 N y [
et wh)s or M w ), ut) e, (e L

e
x‘;v".‘

¥
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e e S g TNty
ai o \ 1 "1".
_ L. . ey
Let ei = 1 x% ; wh and write 2'53 = > i=1, , T,
j:l ] j'—-].
then, 1-1 )
A P ;1
_ i, k=1 kk ar - wh , where p.- 0, j=1,. ,E-1,1i1,...,n
= . (p;e ) = o, Bl j - 1%,
b o8
which,for some ; e 1' " ,satisfies
« - —i-
s . , Z W, a -1
i _ 1, — —-i k k7§ -
y_] = gj(P,e ) = JUa— wj for i=1,...,n-l.7"*¢-%
PJB [T O Lf“:)
&
i -1 ) i —i - Tl
Let y e N (y') and write y~ = y1 + § ,where § ¢ Rl 1 and ‘6I < ¢. Then set B
- =i
; Zp, W
i
Yj = k k k Goj: - ;1 »
; Ei J J
J
and, solving £ L ~ -
s g for aj,
- =1
Pj g
a, = [y, + ;%] - —i =
b J ] z Pr Yy
k=1
i
i 5 -1 i- i i
Hence for e = U Xj W 5 (p,e ) =y, i=1l,...,n=-1, Taking
J
I-1 .
D ;.yl )
N ] for i=1 : n . n,— n nely g
Yy J__%;___ or i=l,...,n-1 and taking e to satisfy € (p,e ) = ZE"(p,e’),
i=1
_ l n_l 3 . .
we see that f(e) = (y ,...,y ). Set sii(yl) = el for i=l,...,n-1 and

y
n, 1 n
set s (y ,...,y ) = e . Then the function
-n-1
y )

n —
X s N(yl)x...x N ( + E

i
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We note that if » is the performance map of a Pareto- satlsfactory ggocess

Az
and if 2z = @(e) - w, where e is a given element of E, and for p:E - E, sﬁch' ﬁy
'(

:i

that p,(e) = <(u ,w1 + 2z )>, then w(p(e)) =

e k ' ‘
Definition 22, Let f: E - R ;, be the function associating with each

e ¢ E, the unique competitive equilibrium trade for e.

Note that we may take k = (n-1)(I - 1), because for each i the

demand function has only I - 1 independent components, since

. e sk e
fi(pe’y =7 4=t I
" p
1
n-1 .
and the equations yn = - gl (p,el) leave only (n-1) independent excess
I-1

demands of consumers.

It is well-known that,

Lemma 23. The function f is a continuous function on E.

:

Proof. The function f is an upper semi-continuous correspondence on E.

For e ¢ E, competitive equilibrium is unique. It follows that f is a function,

<

and hence a continuous function.

Lemma 24. The function f is a locally sectioned function.

13/
- -1y - - -
Proof. Let y € R(n D1 ), y = f(e) for some e ¢ E, and for e > 0 let

(n-1) (I-1)

(;) be an e¢-neighborhood of ; in R Then we may assume

n-1 . .
- - - =1 1-1

N (y) = = N(yl) when N(yl) are ¢-neighborhoods of y~ in R
1=1

“

R b)l*:}
This proof establishes a stronger property than that asserted in Lemma 2‘,
namely, that there is a local inverse for f through any point e such that~

f(e) = o
‘T;J.

.,
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Lemma 26. The corresponlence . 1s a locally sectiomned continuous
' : 01~w1wu
function. BRSNS TS -r‘ﬁap,a

K}
Proof: We have already noted that y is a function. That it is continuous
in <(ui,wi)> follows from the fact that the demand functions are comtinuous
q v

i i . od’”
in the parameters al, w . We show next that y is locally sectioned,. EERC RN PR

- - i
Let (p,y) ¢ § x RV 1), and let e ¢ E, e = <(p,w )> such that

p(e) = {(p,y)} Hence xi = yi + wt > 0. Then there exists ¢ - o such that

for U (p,y) an open set containing (p,y), if p,y € U (p,y) then

= wi + y > 0.

First, define

I-1 _ _
N |
y; = - i:l—:r——— , 1=1,...,n-1, and let 2t = (;1,;;) Then R
Py
- - —n noly Ty
p.2 =0 fori-=1,...,n-1. Further let z" = - 3 z°, so that 5 gz~ = 0.
i=1 i=1

G 3

d1=- 3 3= 1
Now the equations i1 =

al Xj pl i-= 1, .30
can be solved for each i for the I-1 ratios ¢
1
7% ; determining

! e & ]
(27) 4 -2 {2) e e 2
1 pl Xl .
-1 _ = L —i
A normalization (e.g. al = pl; or D) aj = 1) suffices to determine a” uniquely.
3=1
This construction serves to define a function t(p y) (n-i}(?il)_* E.
) e

Note that t(p’y)(g,;) = (z,w) where e = <(ui,w1)>, e = (ux,wi) with u’

determined by the Ei glven in equation (27).
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is clearly continuous, since for each component i, ai is continuou§<%9 £y
for fixed ;, ;i, gi. ' ‘>

It follows from Lemma 10 that Y = f(E) is informationally minimal for
correspondences realizing f£.

We introduce a coordinate correspondence p and a function f such that

(u, £ ) realizes f.

Definition 25. Let

n
ulx.”xixn:E X...Xx E =+ W,

where for k=1,...,n;

k 1 -
Mk(e ) = (pyy :---:yn) € S x Rn(l D \ y? = E?(p,ek)
[ n
k .
-y = Zy% i=1,...,L-1,
LIS S5 1
i#k

n

and /ﬁ\ uk(ek) = (p,yl,...,yn) e S x Rn(l-l)\

k k k
. = . e
1 Y §J(p, )

oy
k=l,...,m; Iy, =0 j=1,...,1-1.
k=1

n
Taking account of the condition 7 yi = 0 and of the budget constraints p‘yi =0
i=1
n

i=1,...,n, we see that the values of u = (\ My are in a subspace of
i=1

S x Y of dimension n(I-1). Since S has Euclidean dimension -1, Y has

-

dimension (a-1)(I-1), equal to that of the image of f£.

For e ¢ E the equations 2 El(p,el) = 0 have a unique solution. Hence
i

v (e) consists of a single point for each e ¢ E, i.e., p is a function.

We define f: S x Y RDI by

£(p,y) = y. <



- ""’“vﬂ-'l’ - =
Lemma 29. Suppose that y ¢ Y and suppose thuﬁha;%vle $§ such that p # p.

1) there exists elements E, Z in E such thafrf(é) = f(E) = § and
L@@ = (p,y) # (yy) = r(e)

and 2% if e and Z are elements of E such that u(é) = (5,;) # (5,;) =y (e)

o= _ 14/
then, 3) f(e®je)7‘}’-_

»

Proot. Lemma 26 shows that we may choose elements e and e in E such that

u(é) = (6}&) and u(Z) = (;’§), In order that (p,y) = u(é) one must have that

= = _ \8
?n§. = 0 and Dﬁi(§i+ 51) = p, 1=1,...,n. Similarly p(e) = (p.y) implies that
it R
n - =i -i =1, _ = - = e MG
Z vy T C and Du (y + w ) = p, 1=1,...,n. Now suppose that f(e ®je))' = s ‘,;)
i=1

;i=ol

1

Then there exists p ¢ S satisfying the conditions 73

n
i=1

pud 3+ wd) = p and DUl +wl) = p for 1 # 4. But DWdGd + @Yy = 5 ana”
P ~ - -, = .
Du (y + wi) = p. Thus it follows that p = p # p = p which is a contradiction.

Hence f(z®j:) ty .

Lemma 30. Suppose that y: E -+ X is a privacy preserving correspondence
and that with the function g:X + Y, the pair (v,g) realizes f on E. If e and e

are elements of E such that p(e) # p(e), then v(e) N v(e) = @.

Proof. Suppose p(e) = (p,y) and u(e) = (p,y). p(e) #u(e) implies " ..
either y #y orp#p. IEy#7, then glu(e)) = £(e) # £(2) = g(v(®), sinar
both Qi,;) and (v,g) realize f on E. Hence y(e) N v(z) =@. So we’agy
suppose y = y and p # p. Note that v(e) N y(e) # @ implies g(v(e)) = g(v(e)). "

Since v 1s a coordinate correspondence (preserves privacy) y satisfies the

crossing condition, i.e., g(v(e(zﬁz)) = g(v(z)). But by Lemma 29, 2) if

14/

The idea in this Lemma is similar to an argument first made by Hurwicz [10]
and later also by Starrett [15], in connection with certain examples.
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+. The function t

(®,y) is continuous_a;ﬁ(;,;)z ~Let (p(k),y(k)) be a (non-

T Y,

constant) sequence converging to (;,;). Then, sinée'ﬁi is constant independently

of (p(k), y(k)), and since u(k) is determined by

{ i 1
@ (%) _ Py , (yj(k) +“’j> §=2,..,0, 1
ali(k) py (k) (yi(k) + Wi)

rtogether with a normalization), it follows that ul(k) 4 U,

p () # 0, (yi(k) +wl ) #0.)

Hence t is a continuous local inverse for u.
D,y

1

Lemma 28. Let w: E -+ R™" be a Pareto-satisfactory performance map.

&

Then w can be written as the composition of a redistribution p;;(%epgpd;ng
cn e and w(e), with the fixed function f. }
Proof. Let e ¢ E and w(e) = x. Since w is Pareto-satisfactory,

X ¢ 1(e) and for p given by z = x - w, pz(g) = <(:i,(;i + z))> for e ¢ E.

Note that w(pz(e)) = x, and G(pz(e)) = 0. But f(pz(e)) = 0 since therg exists p e S
such that Dui(wi + Zi)=p for i=1,...,n and yi =0, fori=1,...,n '

satisfies p.yi = 0 and r; yi=0. Hence, for all e ¢ E,

i=
(e (ed] = £lp_(e)] = 0.

All that this amounts to is the observation that, for environments in

rine class E, every Pareto optimum is a competitive equilibrium for some

cuitable initial endowment. S N g
‘ AR G

— AN
Let e ¢ E and w(e) = x. Then it follows from w(px(e)) = f(px(e))” L

~nat ® = f on a subset G = {e ¢ E \ e ¢ f-l(O)} = {e = <(ui,wi)>‘e E |



It follows from the upper semi-continuity of v that the correspondence

-1

v

is upper semi-continuous. (The graph of v-l is the same af thur
- -

e I" :

and a correspondence is upper semi-continuous if and only 1if its gfaph.i:}%’

53

<

o md

closed.) Regarded as a correspondence,; 1is upper semi-continuous, since te'is
+

!J.

a2 continuous function. The composition of two upper semi-continuous corres-

pondences is upper semi-continuous. Since the composition

-1
w ov 1s a function, it is therefore continuous. [ 2, Theorems in

Chapter VI, pp. 109-111].
The function ¢ 1s onto S x Y, since V-l is onto E and p is onto S x Y.
We now show that ¢ 1is locally sectioned. Let (p,y) ¢ S x Y and let

" be an open neighborhood of (p,y) in S x Y such that t(p y):U -+ E 1s a local

b}

section of u.

Since v 1s a locally sliced correspondence,given e ¢ E there exists
an open set H which contains e, and a continuous function v:H -+ X such that
v(e) ¢ v(e) for & ¢ H.

Given H, by continuity of t(p,y)’ there exists an open subset V C Uvsuch

tmatr

tfp,y) (V) € H. The function ¥ =vet:V + X 1s a local section for ‘Ep',?"ié:_mce

. 15 continous zand satisfies Yo = Idv. The last equality is establisheﬁ :

as follows:

-~ V and let e = t P,Y).
Let (p,y) € n (p’y)(P:Y)

— — —_ -1 _— —_— - - — -
Then v(e) ¢ v(e) or e e v (v(e)). Hence Yoa(p,y) =u(e) = (p,y)-
‘ = Id, . A
Thus, Yo.© I . e gl
an

Corollary 32. Under the hypotheses of Theorem 31 and if X is a separable

\AAéiééiiﬁé;yh

metric space, then the dimension of X is at least that of S x Y.
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e and 2 are elements of E such that f(e) = f(z) = ; and p(e) # u(g) then
for 3 ¢ {1,...,n} f(e(ﬁ%g) # f(g). The hypothesis that (y,g) realizes f on E

implies g(v (e @%E}) = f(e @%g) # f(e) = g(v(e)). Hence 8(v(e(3j;)) # g(v(e)),

which 1s a contradiction. .

We are now in a position to answer the question posed at the end of

Section 2.7. We shall show that any privacy preserving message correspondence
which "computes' the competititve equilibrium has a message space which is

at least as large as that of the competitive process.

Theorem 31. Let v:E + X be a locally sliced upper semi-continuous”'® ,

oo

coordinate correspondence and g:X + Y a function such that (v,g) realizes

f on E. Then X has as much information as S x Y. .
B
Proof. To show that X has as much information as S x Y it suffices to
2~ gieq
find a locally sectioned map of X onto S x Y. We shall show 9%

R T RS
l

- . -1 Sy
that ® = pov X+ S x Y is such a map, where v (x) = {e’e Elx ¢ v(e)}.

. R S T
We show first that ¢ is a function. To this end, we show that, for,x,'g'},r?if
i d i Al i

e and e' belong to v-l(x) then p(e) =nu(e'). To see this, suppose that
2(e) #u(e'). Since e and e' belong to v-l(x), gv(e)) = gv(e")) = g(x).
Since (v,g) realizes f, f(e) = g(v(e)) = g(v(e')) = f(e') = y. By Lemma 30
1f e and e' belong to f-l(y) and p(e) # p(e'), then v(e) N y(e') = @. But
x ¢ v(e) N y(e') which is a contradiction. Hence p(e) # p(e') is false,
L.e.. u(e) =u(e").

Thus, p 1s constant on the sets v-l(x), for x ¢ X.S51ince p 1s a function

so 1sp o v

Yy



LA

homeomorphism of c\(p} to I and carries p to h(p) = 1/2. Using the
- . !‘i_\-.

>
A R

TR ¥ gt T T B
mapping h x‘IdY3C x'Y> I x Y, the cortgaponé?gif -
B s S

-1
v E (h x IdY) ap: E4+ CxY
is a privacy-preserving correspondence from E onto C x Y. Moreover, ., is

locally sectioned because except for the point p. v is the inverse of a

homeomorphism; that is, h x IdY is the required section., The pair consisting of
v and Ty the projection of C x Y onto Y, realizes f on E. However, C xY h§5; ﬂfﬁ
less information than I x Y, since there is no locally-sectioned, continuousv
function from C x Y onto I x Y.
However, without upper semi-continuity of the message correspondence,
local comparison of the informational size of message spaces sufficient for

% is possible.

Theorem 35. Let v:E + X be a locally~sectioned,coordinate correspondence
znd g:X #+ Y a function such that (v,g) realizes f on E. Let X be a Hausdorff

scace. Then a subset of X is locally homeomorphic to S x Y.

Proof. Given a point (p,y) ¢ S x Y we shall construct an open set {

zoataining (p,y) and a function h:U~+ X such that U and h(U) are homeomorphic.

* Q .
Given (p,y) ,sinceu has a local section there exists an open set U - -

|

~ontaining (p,y) and a function t:U * E such that unt = IdU. Hence t 18 1217 .

~ T ts ¢(C). Let e = t{p,y). Since v is a locally-sliced correspondence, ‘é

“s:xioe . 7 there is an open set H containing e and a function v:H + X such

that v(e) ¢ y(e) for all e ¢ H.

Since t is continuous and S x Y Euclidean there 1s a compact neighborhood
E<: U such that t(ﬁ)(: H. We now show that v is 1-1 on t(ﬁ).

If Z and Z are distinct points of t(ﬁ),then p(g) # u(:), since t is 1-1
from E to t(ﬁ) and i 1s the inverse of t on t(a). It f9119ws:fzgm

Lemma 30 that v(;) N v(Z) = @. Since v is a selection from v, it follows

that v(e) # v(e).



e

Definition 33. Let (O denote the property: ''the message correspondence

i1s upper semi-continuous."

An allocation process which has property(? is a throcees in the sensey

N
S 3N
of Definition 11, since upper semi-continuity of a correspondence is preserwed
Wy
under restriction to a subspace.
- ooy
Corollary 34, Let - = 1 ¢ be a class of environments containing E
i=1 * * ~% ’
such that f:E + Y is the restriction of f : E‘* Y. If (v ,£) is a Glprocess
* A
which realizes f on'; with message space M, then M has as much information
I ¢
as S x Y. X

.
3

* “k
Proof. By Lemma l4, the restriction of (v ,f) to E is a 6Lprocess

realizing £ on E with message space M, which has less information than § x Y,

cuntiradicting the conclusion of Theorem 31.

\

.

We note that, as is well-known, the message space S x Y of the competitivet

o

-
i

coss has sufficient information for f on a large class of convex environ-

ments. It can also be shown that the competitive equilibrium correspondence

o
"< upper semi-continuous on that class of convex environments. A

If 1ia Theorem 31 the hypothesis of upper semi-continuity of the messagé

S
s~ respendanca ls removed, then the conclusion of Theorem 31 no longer follows”

The following example shows this:

Example.
In this example I = n = 2, hence S is the simplex in R2 homeomorphic
to the open unit interval I in R. Let C be the unit fizclarin R2,
and  suppose p e C. The set ¢\ {p} is homeomorphic to I. Hence there is .

a function h, not necessarily continuous on all of C, from C to R which is the above
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Now, the functiow b-i,got:a -+ X is 1-1 and continous on U, since it is

- - .
[ P -
-~ ‘."' Legx o

the composition of two 1l-1 and COdttnﬁauq functions. Since‘U)r

. &

e .

Y. L l“ Ly
and S x Y and X are Haysdorff, it follows that h(U) is compact.- Hence,:h'gsia

homeomorphism between U and h(ﬁ)<: X [5, Theorem p.l141}, <o

15/

Corollary 36, Let X satisfy the hypotheses of Theorem 35. 1If, in

addition, X is Euclidean, then the dimension of X is at least that of S x Y.

Proof. By Theorem 35 there is a subset of X homeomorphic to a set with

interior in S x Y. The dimension of X is thus at least that of § x Y. Jc

According to Theorem 35 any privacy preserving process which fc;“
competitive equilibria on the class E (and hence on any class of environ

including E) must use a message space which has locally at least as much

t -

information as § x Y. Corollary 36 states that if the message spéce of such

-

a privacy preserving process is Euclidean, then its dimension 1is at least

that of the message space of the competitive process. If in addition to

et
AL

preserving privacy, the message correspondence is upper semi-continuous, then

according to Theorem 31 the message space has (globally as well as locally)

as much information as § x Y. Finally, as Corollary 32 states, if the megsage
correspondence 1is privacy preserving and upper semi-continuous and {if |
the message space is a separable metric space, then its dimension is at

least that of S x Y. ,.

pace whose dimension is less r???_
is sufficient for a Pareto-satigfactory
nments has also been obtained

15/ The result that no Euclidean message S
that of the competitive message spéce
process on the class of convex enviro
independently by Hurwicz [71. 3

FE
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1v. Suppose that f:Elx...xEn + Z i{s a function from a finite set

Elx"'XEn onto a finite set Z. In this section we will describe a construc-

tion which determines in a finite number of steps a triple consisting of

a set X,a privacy-preserving correspondence u:E;X...xE = X which is onto,

and a function ;:X -+ Z such that the pair (u,}) realizes f, and such that

X has minimal information among message spaces which are sufficient for f.
We note first that the concept of information introduced in Chapter II

applies to discrete topologlcal spaces and functions between them. The

following assertion is almost obvious.

Lemma 37 ., Suppose that X is a topological space with the discrete
topology. A topologlcal space Y has less information than X if and only if
the cardinality of Y is less than or equal to the cardinality of X, and Y

has the discrete topology.

Proof. 1If Y has the discrete topology and the cardinality of Y is no
larger than the cardinality of X, then it is ob;ious that X has more informa-
tion than Y. Conversely, assume Y has less information than X. Then there
is a continuous function f from X onto Y which is locally sectioned. Because
f {s onto, the cardinality of X is at least as great as that of Y. Next, if
p € Y, then there is an open neighborhood U of p and a continuous function
s:U =+ X such that fos is the identity on U. Thus U is homeoﬁorphic to a
subspace of X. Because X is discrete, U must have the discrete topology, and
in particular p is an open set.

The following is an immediate consequence of Lemma 37.
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B[xa;a ¢ A]/I, where I is the ideal generated by the elements xi - X a e A.

a

We shall denote the coset x + I again by X, -

Note that if

contains B, and if R is generated as a B-algebra by elements 8yy...,a

then there exists

B is a Boolean algebra, if R is a Boolean algebra which

n of R,

a unique B-algebra homomorphism £ from B{XI;---;XH} =

Bfx.; ie {1,...,n}} to R such that f(x,) = a,.
ER i i

The constructions described below depend on the following result.

Theorem 40:

is a finite set.

u;Elx...xEn -+ X wh

Suppose the E x...xEn are finite sets and suppose that Z

1

There exists a set X and a privacy preserving correspondence

ich satisfies the following conditions:

1) 1if f:E x...xEn + Z is a function onto Z, then there exists a

subs

1
et X(f) € X and a function f from X(f) to Z such that the

~

~

pair consisting of the restriction of ¢ to X(f) and f,

real

izes f.

2) 1f (v,g) is an allocation process which realizes f, and

if v

carries Elx...xEn onto Y, then there exists a function

¢ from Y onto a subset ¢ (Y) € X(f) such that the restriction

of u

real

Proof: Let B

Boolean algebra B'

to @ (Y), together with the restriction of f to ¢(Y)

izes f. Furthermorey =¢ o4 and g = £ .

B(Z) (the Boolean algebra of the set Z) and form the

*
B{x(e1;---;en);(ely---;en) € Elx"'XEn}‘ We set B = B'/J,

where J is the ideal in B' generated by the elements x(el,...,en) X (ei,...e;) +

X(c(i,ei)(el, e

) x «y(i,ei)(ei,...,e;)) [the notation o (-,:) was

introduced in Lemma 5 of II ] for all 1 < i < n and all pairs
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Theorem 38 . Suppose that El,...,En is a finite collection of sets

where each E, 2=l,...,n has the discrete topology. Assume that f:Elx...xEn-4 Z
is a function onto a discrete topological space Z. There exists a message

space X which has minimal information among all message spaces sufficient

for £. Furthermore X has the discrete topology.

It follows from Theorem 38 that in order to find a message space
which has minimal information for a function f from a finite product of
discrete spaces to a discrete space we need only construct the set with
minimum cardinality which has sufficient information for a privacy-preserving
message process, and then give that set the discrete topology.

To continue our discussion we shall require the algorithms of Boolean
algebras and Boolean rings. We refer the reader to [ 3 ] for this material.

We shall denote by Z the ring of integers, and we let Z/2Z denote the
2-field; that is a field with two elements 0 and 1l,where 1*'1 =1 and 1 + 1 = 0.
A Boolean algebra B is then a Z2/2Z algebra such that r2 = r for all r ¢ B.

We shall assume that B has an identity element.

It is well known (see [ 3 1) that if X is a finite set, then the ring
of 2/2Z -valued functions on X (under pointwise addition and multiplication)
is a Boolean algebra. Denote this algebra by B(X). Conversely if B is a
finite Boolean algebra, then there exist a get X such that B is exactly the

ring of Z/2Z -valued functions on X.

Definition 39: 1If B is a Boolean algebra and A is a finite set, then we

shall denote by B[xa, o ¢ A] the polynomial ring in indeterminates xa(a e A)

with coefficients in B. We shall denote by B{x_ ;2 ¢ A} the Boolean algebra
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the set with characteristic function p(el,...,en). Then cp . p(el,...,en) = cp.
Thus 0 e ole e )(Ldcge ). Thus b £l (e, e ).
Note that the characteristic function of the set u(el,...,en) N X(f) is
exactly the image of p(el,...,en) in B(X(f)). Thus, the pair consisting
of the restriction of y to X(f) (given by the correspondence which carries
(el"°"en) to the set with characteristic function the image of p(el,...,en))
and the function 7E realizes f.

Finally, suppose (y,g) realizes f, where y carries Elx...xEn onto a set Y.
Let B(Y) denote the Boolean algebra of Y. Because g carries Y onto Z, B(Y)
is a B(Z) algebra by a 1-1 map j:B(Z) » B(Y). For each (el,...,en) let
d(el’°°"en) denote the characteristic function of the set v(el,...,en) in Y.
Then d(ey,...,e ) . d(egy...,e)) = d@:(ei,i)(el,...,en))‘dﬁj(ei;i)(ei;---,e;)):
because vy was assumed to be privacy preserving. Furthermore
v(el,...,en) c g-l(f(el,...,en)); thus d(el,...,en)' jcf(el""’en)= d(el,...,en).
It follows that i1f we define a homomorphism h from B(Z){X(el,...,en);
(egs+--se ) ¢ Elx...xEn} to the sub- B(Z)-algebra of B(Y) generated by
B(Z) and the elements d(el,...,en) by setting h(l) = 1, and h(x(el,...,en) =
d(el,...,en),then h carries the ideal J to zero, Thus, h may be extended
to a homomorphism h' from B* = B/J to B(Y). Further h' sends the generators
of K(f) to zero; thus h' determines a B(Z) algebra homomorphism, h', from
B*/K(f) = B(X(f)) to B(Y). Let H denote the kernel of h". Then B(X(f))/H
is a B(X(f)) algebra. Therefore B(X(f))/H is the Boolean algebra of some
subset Y' of X(f). Also B(X(f))/H is a sub-B(Z)- algebra of B(Y). Thus
there is a function ¢ from Y to Y'. Suppose now that p ¢ v(el,...,en).

This means that p is a point at which the function d(el,...,en) takes omn the
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(el,...,en),(ei,...,eé) in Elx"'XEn' Because El""’En and Z are finite
*
sets, the algebra B and the algebra B' are finite. Thus B 1is a finite

B(X).

Boolean algebra,and hence there is a finite set X such that B*
Denote by o(el,...,en) the element in B* which is the coset x(el,...en) + I.
The element p(el,...,en) is the characteristic function of some set
“(el""’en) C X. We shall show that the correspondence which carries
(el,...,én) to u(el,...,en) is privacy preserving. Lemma 5 of II states '
that we need only show that for each

(el""’en) and (ei,...,eé) in Elx...xEn, p(el,...,ei,...,en) N u(ei,...,e;) =

u(el""’ei—l’ei’ei+l""’en) n u(ei,...,ei,ei,ei+l,...,eé) . In terms of

characteristic functions, this is equivalent to

(41) p(el,...,en) . p(ei,...,e;) = p(c(i,ei)(el,...,en) . pGJ(i,ei)(ei,...,e;)

because if S and T are sets,then the characteristic function of the set S nT

*
is the product of the characteristic functions of S and T. Because 1 = -1 in B,

( 41 ) is equivalent to the condition that

(42) x(el""’en) : X(ei"'.’et‘l) + X(O(i)ei)(ely-~-)en)) x(o'(iyei)(ei)--oye;i))

is a member of J.

However ( 42 ) is a generator for J.
Now suppose that f:Elx...xEn + Z is a function onto Z. For each set z C Z,
denote by c, the characteristic function of the set z. Now denote by K(f) the

*
ideal of B which is generated by the elements p (e ..,en)(l + c ).

1’ f(eI,...,en\

The algebra B*/K(f) is a homomorphic image of B*. Thus, there exists a

subset X(f) of X such that B(X(f)) = B*/K(f). The algebra B(X(f)) contains an
isomorphic copy of the Boolean algebra B(Z). If i:B(Z) -+ B(X(f)) is the inclusion
map, then there exists [3;£20] a function F:X(f) » Z such that for each y ¢ B(Z), 1(y)

-1
is the characteristic function of the set f (w),where ¢~ V- Suppose that p is in



Now form the algebra B(Z){xij ; 0< i, j <1}. Thus B(Z){xij} =

(2/22) {x, y} {x50:%55% 5%}

The set S which has this as its Boolean algebra consists of all the 6 - tuples
of O's and 1's. Thus S consists of 26 = 64 points. If p = [;,;,;60,§01,;10,;11}
is a point of S, then the inclusion map B(Z) -+ B(Z){xij } corresponds to the
function which carries p to (;,;). The set which has characteristic function
xij 1s the set of all points {x,y,...} where xij = 1. Now consider the
algebra B(X) = B(Z){xij }/I, where I 1s the ideal generated by X00%11 + Xy 0%01 -
The algebra B(X) has as set X the collection of points in S where the function
X00%11 + X, %01 is zero. Thus the points of X are of the form (x’y’;OO’;OI’;IO’;ll)
where (x,y) 1is arbitrarily chosen, and ;06;11 + ;16;b1 = 0. It is easy to
catalogue these points, They are of the following form: (x,y,0,0,0,0),
(x,y,0,0,1,0), (x,y,0,1,0,0), (x,vy,0,0,0,1), (x,y,0,1,0,1), (x,y,0,0,1,1),
(x,y,1,0,1,0), (x,y,1,1,0,0), X,y,1,1,1,1), (x,vy,1,0,0,0). Thus X consists

of 40 points., Furthermore it is easy to exhibit the correspondence pn. For
example . (00) = {(x,y,1,0,1,0), (x,y,1,1,0,0), (x,y,1,1,1,1)}. Next we

assume that a function f;Elx E2 -+ Z i{s given. We introduce the ideal generated
by the 'xij(cf(ij,)+1) where {j ¢ Elx E2. This expresses the condition that the
inverse image of £(1j ) in X has an empty intersection with the compiement of

the set w(ij). This ideal corresponds to a subset of X, namely the subset

which consists of all points (x’y’aOO’aOI’aIO’all) such that in each u(ij) the
points have the form (f(ij),aoo,aOI,alo,all). I1f, for example, £(0,0) = (0,0),
then the only points of § (0,0) which can lie on X(f) are the points
(0,0,1,0,0,0y, (0,0,1,1,0,0), (0,0,1,1,1,1). Let us suppose the function

f is as follows: £(0,0) = (0,0), £(1,1) = (1,1), £(1,0) = £(0,1) = (0,1).

Thus, the set X(f) must be contained in the set of points
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value 1. Denote by ;(el,...,en) the image of x(el,...,en) in B(Y') =
B(X(f))/H. Then ;(el,-..,en) o(p) = d(el,...,en)(p) = 1. Thus the image
of p lies in the subset of ¥' which has characteristic function ;(el,...,en),
and this is precisely the set which is the intersection of u(el,...,en) with
Y'. Conversely, if q ¢ u(el,...,en) N Y', then ;(el,...,en)(q) = 1. Thus,
ifye @-l(q),then d(el,...,en)(y) = ;(el,...,en)ﬁp(y)) = 1. We have
shown, therefore, that the correspondence v is precisely @-lbu-

Next we note that the function ¢ 1is onto because the homomorphism from
B(Y') to B(Y) is 1-1. (See [ 3 1p.20),

Finally, because the homomorphism from B(Y') to B(Y) carries K(f) to

zero, f°% = q.

The force of this theorem is to reduce the search for a minimal message
space to an examination of the 1deal structure of B(X). We see from
Theorem 40 that given a function f:Elx...xEn -+ Z we can construct a
Boolean algebra B(X(f)),which 1s the Boolean algebra of a subset of X. We
also see that the minimal message space for f is given by a subset of X(f)
with the required correspondence being the restriction of p to this set. Thus,
to find the minimal message space we need only construct a set S of smallest
cardinality with a Boolean algebra which contains B(Z) such that B(S) is an
image of B(X(f)) under a B(Z)-algebra homomorphism.

To illustrate this theorem we shall now work through an example in detail.
Consider the case of two agents each with two possible environments. Thus,
we set E; = {0,1}, E, = {0,1} and E,x E; = {(0,0),(0,1)(1,0)(1,1)}. We
shall assume that the function £:E.x E2 + Z takes values in a set Z with
four elements. We shall represent Z as the collection of pairs (a,b) where

a,b ¢ 2/2Z. Thus we look upon Z as the set of homomorphisms of Z/ZZ{x,y} to Z2/2Z.
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{(,0,1,0,1,0), (0,0,1,1,0,1), (0,0,1,1,1,1)}
{a,1,0,0,0,1), (1,1,0,1,0,1), (1,1,0,0,1,1), (1,1,1,1,1,1)}
{(,o0,0,1,0,1), (1,0,1,1,0,0), (1,0,1,1,1,1)}
{(,0,0,0,1,1), (1,0,1,0,1,0), (1,0,1,1,1,1)}
Now Cle(Ol) # x(01)on 0,0,1,1,1,1), ¢
# on (1,0,1,1,1,1) and ¢

o1 Xeo1y * ¥o1y o0 (L,1,1,1,1,1),

€00) X(00) T *(00) 00) *c00y" *(o0y o (1,0,1,1,1,1).

Thus, X(f) consists of the points of the sets:

k (00) {(0,0,1,0,1,0), (0,0,1,1,0,1)}

w(1) = {(,1,0,0,0,1), (1,1,0,1,0,1), (1,1,0,0,1,1)}

w(10) {1,0,0,1,0,1), (1,0,1,1,0,0)}

w(ll) ={1,0,0,0,1,1), (1,0,1,0,1,0)}.

Now,to find a minimal message space we must choose at least one point
from each p(i}). In this case, since the p's do not intersect, we may choose
4 distinct points.

The general construction for a minimal message space is then precisely
the following process. After the construction of X(f) one need only choose
one point in each of the p(1j). This selection must be carried out so as to
minimize the number of points chosen. This can be done as follows. For
each point in X(f) write down all the p(ij) which contain it, Pick a point
P such that a maximal number of p(ij)'s contains it. Delete all the p(ij)'s

which contain this point P, This determines a new collection of p(ij)'s

containing points other than P. Repeat the process with this new collection.



l.c. letter "ell"
l.c. letter "m"
l.c. letter "m'" super prime

l.c. letter "m" superscript number 1

l.c. letter "m'" super prime subscript l.c. letter "i" minus 1

l.c. letter "m" super prime subscript l.c. letter "i'" plus 1

l.c. letter "m" subscript number 2
l.c. letter "m" subscript number 3

Capital letter '"M"

Capital letter "M" subscript number 1

Capital letter '"M" subscript l.c. letter 'n

l.c. letter '"n'" (subscripts and superscripts)

1"

l.c. letter "p

Script "EP" (handwritten)

l.c. letter "q"

l.c. letter "r
Capital letter "R"
l.c. letter "s"

l.c. letter "s" subscript l.c. letter "p"

l.c. letter "s'" super minus 1, sub l.c. letter 'p

l.c. letter "'t
l.c. letter "u"
Capital letter "U"

l.c. letter "u" prime

l.c. letter '"v"
l.c. letter "v" prime

Capital letter "V"

Capital letter "W"
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List of Symbols

l.c. letter "a"
Capital letter "A"
l.c. letter '"b"
Capital letter "B"
Capital letter ''C"
l.c. letter '"d"
Capital letter '"D"
l.c, letter "e"

l.c. letter "e'" on parentheses

l.c. letter "e" bar

l.c. letter "e'" double bar

l.c. letter "e'" super l.c. letter :i"
l.c. letter '"e' super prime

Capital letter "E"

Capital letter "E" super l.c. letter “i"
Capital letter "E" super prime

Script letter " E” (handwritten)

l.c. letter "£"

l.c. letter "f" tilde

l.c. letter "f'" asterisk

Capital letter "F"

l.c. letter "g"

l.c. letter "g'" super l.c. letter "i"

l.c. letter "h"

l.c. letter "h" superscript minus number 1

Capital letter "I"
l.c. letter "k"

Capital letter "K"



\/

v

%

Greater than

bm

Greater than or equal to

equals

Not equal

identi

minus

times

asteri

Phase

cal

sk

Single parallel

Double parallel

yields

left and right brackets

left and right braces

Diagonal reverse

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

Greek

l.c. letter alpha

l.c. letter Beta

letter

Beta bar superscript l.c. letter "i"

l.c. letter Gamma

capital Gamma

letter

letter

letter

letter

letter

letter

letter

Sigma

Rho

Rho bar superscript l.c. letter "h"
Nu

Xi

Phi

Tau
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l.c. letter "x"

L.c. letter "x" subscript l.c. letter "j" minus 1

l.c. letter "x'" subscript l.c. letter "j" plus 1

l.c. letter "x" superscript l.c. letter "m"
l.c. letter "x'" subscript number 1

l.c. letter "x" subscript l.c. letter "n"
Capital letter "X"

Capital letter "X" superscript l.c. letter "

Capital letter "X" superscript number 1

Capital letter "X'" superscript l.c. letter '"n

l.c. letter "y"

l.c. letter "y" superscript number 1

l.c. letter "y" superscript l.c, letter "n"

l.c. letter "y" superscript l.c. letter "i

l.c. letter "y" subsaipt l.c. letter "j" plus number 1
y 3

"o

l.c. letter "y'" subscript l.c. letter "j'" minus number 1’

Capital letter "Y"
Capital letter "Y" superscript l.c. letter "
Capital letter "Z"
Large intersection
lLarge union

Small intersection
Small union

Is contained
Contained or equals
Containing or equals
product sign

Less than

Less than or equal to

ill

1"

il!



a - Greek letter Omega

5 - Greek letter Omega bar

w - Greek letter l.c. Omega

© - Greek letter l.c. Omega bar

Y - Greek letter Psi

T -  Greek letter l.c. Pi

i - Greek letter Cspital Pi

o - Greek letter Mu

" - Greek letter Mu subscript l.c. letter "i"

by - Greek letter Mu subscipt number one

€ - Greek letter Epsilon

0 - zero

1 - number one

2 - number two

3 - number three

I - Roman numeral one (for tables)

II - Roman numeral two (for tables)

f-s - l.c. letter f times l.c. letter s

fcsp - l.c. letter f times l.c. letter s subscript l.c. letter p
n

I - Creek letter capital Pi super l.c. letter '"n" sub l.c. letter i equals !
i=1

f: X+ 2 l.c. letter f such that cap X yields capital Z

f(x) - l.c. letter f times l.c. letter x in parentheses

; M- Z l.c. letter f tilde such that cap M yields cap Z

;(u) = f(x) l.c. letter f tilde times l.c. letter u equals l.c. letter f times
l.c. letter x

pry - l.c. letter p, l.c. letter r subscript cap "X"

Pry - l.c. letter p, l.c. letter r subscript cap "Y"

w (%) - Mu times l.c. letter "x"

Mu comma l.c. letter "f" tilde

(U- JE)



