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ABSTRACT
OVERHEAD ALLOCATION VIA MATHEMATICAL PROGRAMMING

This manuscrigt builds upon the work of Kaplan and Thompson
[8] by poihting out its restrictions, building updn its strengths
and offering an improved method of overhead allocation. We re-
formulate their example as a Generalized Transportation Problem.
Unique duals which reflect the product-resource form interaction
. are determined and utilized to allocate common and traceable
overhead to individual products. Lastly, sensitivity analysis
is introduced to address the problem of avoidable overhead and

full absorption costing.
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Overhead Allocation Via Mathematical Programming.
1., INTRODUCTIONS

In recent years articles have appeared in the accounting literature
which address the issue of allocating (assigning) overhead cost (i.e.,
cost not directly traceable to individual production centers or products)
to individual production centers or productions of a multi product firm.
This literature can be divided into two groups. The first group which
concentrated on allocation via matrix algebra to address the reciprocity
of service centers in the allocation of overhead cost to production
centers [8,10,11,12,13]. The second group was concerned with finding
a method of allocation which would assign overhead cost basgd upon
their economic contribution to the individual products produced.
Kaplan and Welam [9] and Jensen (6] utilize the duals of non-linear

optimization models to develop allocation alogrithms.

Kaplan and Thompson [81, here after K & T, developed rules to
allocate a firm's overhead within the context of a linear programming
model. Concentrating on the optimum oﬁtput mix decision they developed
an allocation alogrithm which only under specific conditions does not
perturb the optimal product mix decision while assigning overhead to

each product line.

The purpose of this paper is to build upon the work of K & T [7]
by pointing out its restrictions, building upon its strengths and
offering an improved method of overhead allocation. We reformulate
their example as a Generalized TransportationAProblem. Unique duals
which reflect the product-resource from interaction are determined and
‘utilized to allocate common and traceable overhead to individual pro-
ducts. Lastly sensitivity analysis is introduced to address the problem
of avoidable overhead and full absorption costing, the case which

eliminates the restrictions of the K & T model.
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Like K & T [7] we will take as given the present historical account-
ing system and thevproduct and period cost it generates. We will also

adopt the Hadley [4] notation for the linear programming model.

Let
m = the total number of resources: i = 1,2, ...,m
n = the total number of products: j = 1,2, ...,n
During a given period we can therefore let
x.: be the number of units of product j to be produced.
J
b.: be the amount of resource i available
" . th h .th
a..: is the per unit utilization of the 1 resource by the j
1] product
p. = (r; - ¢.,) is the per unit contribution to profit of the
J J J

production and sale of one unit of product j, -i.e., per unit
selling price ry minus per unit variable productlon cost Cj'

The one period decision problem for maximizing profits will be:

(1) MAX px subject to {Ax<b; x>0}
The corresponding dual to the problem is

(2) MIN wb subject to {wA > p; w > 0}

COMMON MANUFACTURING OVERHEAD

Here we are interested in analyzing the assignment of manufacturing
cost which cannot be directly traced to an individual product or resource
but instead is common to the production of two or more products. Well
known examples are depreciating of factory and building and multipurpose
equipment, janitors, utilities, factory supplies, etc., i.e., cost of

items we usually consider to be indirect manufacturing (factory) overhead.

Let the total manufacturing overhead amount be H dollars. Two

situations exist for a given accounting period of concern:
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*
(i) the firm may be operating at some x so that its total variable

contribution margin exceeds its common overhead H i.e., H < px°

' % %
(ii) the firm may be operating at some x so that H > px , Let us

3 >1

Px px . 528 pPx
case (ii).

define kl= ~E; for —L < 1, case (i), and k2= —E; for ,

ol
*~

It can be seen that W%A is an (1 x n) vector whose jth component
assigns the imputed value of the resources used to produce product j.
Utilizing such an imputed value of resources, it is conceivable to make
the following allocation of overhead. "Here we briefly review and set
out by example the Kaplan & Thompson [7] allocation system, which
addresses only case (i). Let k=k1 in this case.

The two product, two resource linear program they used (7] is repro-
duced below.

(3) max 1x, + 1/2 Xg -

1

st. 3%y + 2x, < 12
oXy < 10
Xy5 X, 20

The rule for allocating common overhead to each product unit is given

by kw A, where k = ;S; = —%— < 1. Here H= $2.5 Common overhead to be
. ; wb 4
allocated and px = $3.5 total contribution at optimal feasible solution

~L

x = [2,3] and w = (.25,.05) is the optimal feasible dual solution. Using

the example in [7], the LP formulation (4) and the numerical example (5)

are;
(4) MAX (p - kWi':A)x | (5)  MAX (1 - 5/7)x; + (1/2 . 5/14)x,
s.t. Ax < b s.t. 3% + 2%y < 12
x>0 5x1 < 10
Xy,%Xy 2 0

For allocation of traceable overhead they define B, = C(b)/b; where

B; is the average cost per unit of capacity. C(bi) is total dollars
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traceable to resource i and b; a specific amount of resource capacity.

The assumed B, = $.10/unit and B, = .04 /unit.

(6) MAX (p - B'A)x (7) MAX (L - 1/2)x; + (1/2 - 2/10)x%,
s.t, - Ax <b s.t.. 3%, + . 2%, < 12
| x >0 5%, - <10
. *
Where B' = MIN {Bi,wi_} v _ ‘ Xy,Xy > 0

Taking their exact examples and combining the two types of overhead

to be allocated in the K & T numerical examples, leads to the following

accumulation problems (8) and (9) in which, ko = H 3
i} ' ' (p - B'A)x™
(8) MAX [p-(1-k')B'A - k'w Alx | -
s.t. Ax < b
x>0

(9) MAX (*.30/1.90)x1 + (-.18/1.90)x2

s.t. 3x1 + 2x1 < 12
238 <10
Xy,%X) >0

One can easily see that the objective function of (9) is less than zero
and the optimal production mix will not be maintained. This is so even
though the exact rules and examples of K & T [7] were followed. This

example violates their thesis that they have reconciled the direct and

absorption problem by presenting an allocation procedure which does not

distort the optimal product mix.

Therefore, it is important to have an allocation system which is
operational under circumstances in which a firm will show an_ accounting
loss for the period., Consequently we will also address this issue where

k > 1, a condition assumed not to exist under the Kaplan and Thompson

[7) allocation rules (we called it case (ii) with k = k2).
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2. Allocation of Common Overhead using the Generalized Transportation
Model

Consider that the solution x% = [2,3] to the linear program (3)
was used for planning purposes. The duals wf = (.25, .05) represent the
increase in net contribution that an additional unit of resource could
add. Let us further assume that H = $2.5 is a common overhead pool and
not directly traceable to a corresponding resource or product.

Rule 1: Utilize the optimal duals corresponding to each
resource i, the value wi* the shadow price and the total
quantity bi and obtain an economically meaningful position
of the total overhead pool associated to each resource.
Due to the dimensionality of wi* as dollars per rasource

and bi as the number of resource units (available), wi*bi
provides a common unit of measure, i.e., dollars which is
comparable for all resources. If Wi* = 0 for some i which
implies the corresponding resource ié not fully utilized
then wi*bi = (0, This provides an economic interpretation
of zero value to the allocation system. For each resource
i whose wi* # 0 implies the products produced in the system
collectively utilizes the entire resource bi'

This leads to the case of the resource i having an ability to bear

a share of overhead out of H. %
w. b,
We propose this share to be __ 1L # = Hi -
Dw *b
E ° »
=10t

Thus Hi is that part of the total common overhead H that is assigned

to resource i. Consequently, each resource will be assigned the H = $2.5

as follows: Resource 1: Labor is %2 = H, and
Resource 2: Machines is gﬁi = HZ
m
*% %
= : L= . 1 . 2 =
Further H, 0 if W, 0; Hy > 0 if W, # Q, S0 thati____lHi H.

Next we are concerned with the distribution of Hi the overhead

share corresponding to resource i to every product j. This is repeated
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%
for every resource i that has a positive w; . Then all the quantities

are added which provides the overhead allocation.

Let us now discuss the distribution allocation associated with

a specific resource i such that Wih> 0. We will show that the generalized
transportation problems discussed in Balachandran and Thompson (7] pro-

vides a means for such an allocation.

Realistically each resource 1is availéble in different forms, or
different plants, buildups, types of labor resources; of machines, so
that each resource i, is available in my forms. Also the per unit
utilization aij’ (that is given the LP formulation) which provides the
amount of resource i, that each unit of product j consumes; differs
from form to form slightly around aij such that aij can be viewad as
the average per unit utilization of resource i for product j. Let us
call the standard per unit utilization of resource i, in form £, for
a unit of product j as gy To start with let us formulate the
objective function as a maximization of the contribution margin so that

we can solve the following or GTP for Resource i

3. The linear programmning formulation for the Generalized

Transportation Problem

consider for example, that a specific resource say 1, is avail-

able in m>1 forms. (We have examined the case where m = 1 elsewhere [1]).

We will now present the LP formulation to the GTP. The related example

is for resource i=1 (labor). We assume that two forms of labor exist;

skilled f=1 semi-skilled, f£=2. Consequently the following maximization

problem for the optimal production schedule at the maximum contribution

margin can be formulated as follows:
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(11)

(12)

(8)

mj n
MAX = =z p X
n
s.t Z Ag., Xe. = b, =1, , m,
j=1 £] 7fj £ ’ i
m,
i
lexfj=x' > J=l, » 1
Xes 2 0

Note: The equality is needed if, in the LP, the resource bi is fully
utilized. Otherwise, we will have less than or equal to inequali-

ties

Where:

The optimal feasible solution Xes

in expression (11).

s the per unit contribution margin of the jth

(e, - Ce.) 1
fj fj th

product which is produced using the f form of resource 1

(i is dropped since it is constant throughout the formulation

~is the per unit selling price of product j

is the per unit variable cost of production of product j by

form f.
is the amount of product .j produced by form f.

is the perunit standard utilization of form f in the pro-

duction of product j.

ot
~
.

indicates the optimal use of

the resource forms forcasted for use.

For example let us assume that their are two. forms of labor

available.

Skilled labor is forcasted at $3.41 per hour in the amount

of 60,000 (.6 in hundred thousands) hours. And semi skilled labor is

- forcasted at $3.29 per hour also in the amount of 60,000 (also .6 in

hundred thousands). Let us assume that the selling price for product

1 is $2.00/unit and for product 2 is $1.17/unit. Then a numerical

example of (10) - (12) is
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t
(10 )VMAX | 1.15 x5, +  .575 Xy + .85 Xoy + .35 X0
t
(11'") s.t. 2.5 Xy + 1.75 Xy 9 = ,6
3.5 X5y + .25 Xgy = .6
(12') | X1y + X9y = 2
%12 + X2 = 3
all Xes > 0

When the problem is solved we obtain the optimum primal ij and duals of

K Y.

a g and B g for £=1, ..., m; resource forms and j=1, ..., n products.

We can now construct the dual vector dfj = {afij ag + Bj}. The df-j

provides us with the interaction of the jth product and the fth

resource form. For (10') - (12') X = (1, 2, 1, 1] and ai = -3 a; = -3,
p; = 1.9 and B, = 1.1 and px_ = $3.5.

PRODUCTS
Duals for % % :
roducts Bl =1.9 Bl = 1.1 Slack Capacity
B. ‘
o f 3 _
Form|p s5{ . 1.75 1
* ' 0.6
@, =73 1 1-15 .575 0 y
N .
o = -3 Form 3.3 +25 1
2 2 .85 .35 0 0.6
.* . . l l ’ l
a4 =0 |Fieti- ~100 ~100 0 100
tious *
Number of 2 3 : . —
Products

Now this set of duals can be used to allocate Hi (the overhead
associated with resource i to each product j and form f.
Rule a: Each product j shall bear its share of common overhead
associated with resource i. The per unit overhead vector
T%f kw%G, where G is the matrix of technological coeffi-

cients for the GTP (similar to 11' and 12') and
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w= (af..., Wfseees BFaent, B?)- This charge is uniquely determined
in advance by an alogrithm which uses the unique set of product-resource-

from duals determined by optimizing the GTP. It is easy

at. ate
to see that additivity holds since k& gx" = H; ,fn.%
_ y Gx I w Gx =H The

. i’

. . . . . . PX " . .
allocation is unambigious since a predetermined alogrithm can be applied

"expost'" which takes into account the product-resource form interaction

and economic weights. Lastly it aséigns common overhead using the duals
of the GTP which represent the net marginal revenue of product j and

the resource form f of i. It indicates whether each unit of product
generates positive economic rent on the common overhead. Also when

kl < 1 the alogrithm has the added property of maintaining the optimal

mix (5')- (8'). Therefore within our example

H
k. = 1 _ 15  then the per unit charge vector is h, =

L ToxF T 2445

17.25 8.625 12.75, 5.25\ .1 %
G455 2.5 955> 353) with hyx

When k > 1 the alogrithm will not guarantee non-perturbation of

=J__%_:=Hl'
it optimél production mix decision of the GTP. However if the manager
is interested in an allocation alogrithm which does not peturb the GTP
optimal production mix decision then he may choose to compute an average
pér unit overhead charge for each product j based upon the following rule
Rule b: If k > 1 determin Ei as above; allecate to each product
j a per unit overhead charge 6j determined by
*
h.. X..
ij “ij
_6.
J

Xe s
1]

RVRLEY

It is easily demonstrated that 6, (j3; =1,...,n) will not perturb the

J

optimal product mix decision of the GTP if it is subtracted from each

contribution margin associated with a specified column, say j = k.

Let the new contribution margins be pék = Pgy T ék (for kth col.) so

A
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that p%j = p%. j # k; and for all £

Then = = - s -
E Foemre T F O} gyt P
z Z -6 Z
= £ j .p'fj xfj k £ Xpe
= 2 = _
£ 3 PEi % " Pk %k

Since bkﬁk is constant, the optlmal solution xf3 of problem (10) -
(12) will be optimal if pf is replaced by pr in equation

(10); also the optimal solution found will be same except for the

optimal objective function value decreased by bk &

4, Traceable Overhead: A Generalized Approach

In this section we will present a generalized approach which can
incorporate the identifiable cause and effect relationships between
resources and products inherent in traceable overhead and which is also
based on the principles of economics and duality. First we develop an
allocation alogrithm within the context of the Generalized Transporta-
tion model, and then demonstrate how the Kaplan and Thompson [7]

model is a specialized case of this approach.

In practical situations, there may be different production processes
and different types of machines, shifts, factories, etc. which can
produce the same set of products though the machines, laborers, and
factories may differ in their relative efficiences. ‘Thus, they share
the load of production collectively. Thus we consider a specific
resource i which is available in a quantity bi (though different for
different processes), with the per unit cost of B,, so that the total
cost is C(bi) = Bibi as given earlier. This total resource bi is
generally available in more than one form, say m in number. Let us
th

consider bfi as the total amount available in form f(or from the f

. t . =
labor level etc.) such that b f—l bfl
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Since there are different forms available, the per unit repuire-

h

ment of the jt product for this resource may be form dependent. This

means that aps where £ and g are any two forms of resource 1i.

37 i .
There are several explanations for this phenomenon. One can view the
aij defined in K.T. model as an average value of all afij due to
different forms of f. Similarly due to different efficiencies,
production priorities, labor differénces, shift changes, location of
facilities, there may be variable cost of production cfij that can

be defined as a function of form f and product j. Thus, for this
resource i, one can éscertain variable costs cfij specific to the form
of resource i. Thus the constribution margin pfij changes due to
changes in Cfij' A list of cases for the types of different firms in
different contexts and their impact on a,.

ji
longer version of this paper [l]. Due to existence of different forms

» Dgy» are given in the

of resource raw materials, labor types, the following four categories
arise:
(i) the resource is available only in one form.

(ii) there are many forms with differences due to variable
production costs only (Cfij)‘

(iii) There are many forms with differences due to the per unit
resource requirements (afij)'

(iv) there are many forms with differences in both variable pro-
duction costs and per unit resource requirements.

If the allocation decision warrants case (i), our earlier discussion
on traceable overhead is applicable., We will show that for the remain-
ing three cases a Generalized Transportation Allication model is
applicable thus generalizing the K.T. Model. We will also show that
this model reduces to an ordinary transportation model through an

appropriate transformation when case (ii) is applicable.
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The original production-mix decision provided us with the optimal

. * % X
planned product mix of x,", Xg 5 « o o3 X " > 0 based on the LP

n-

optimization. It is to be noted that certain of these products may

be at zero level. Let us ignore these products since for directly
traceable overhead one cannot assign an overhead to a product that is
not produced. Then the traceable overhead allocation problem can be
solved by a set of generalized transportation problems, GTP, associated

with each resource i that is available in different forms. For

convenience we will eliminate the subscript i, since the GTP is specific

to resource i (for every i available in m; > 2 forms). For our general
discussion let us consider case (iv) and later derive the procedure for
cases (ii) and (iii). Thus, the problem of allocation depends upon the

solution to the following GTP (subscript i is eliminated) for the

resource i, i = 1,2,..

m n
Maximi =
(13 arimhae f=1 jfl pfjxfj where Prj = rj - cfj
: n
(14) Such that jzl afjxfj < bf; f=1, , m
m _
(l5) le ij = Xj.; ji=1l, ..., n
(16) ' xszo; f=1, ..., m; j=1, ..., n

It is to be noted that the original optimal production mix_ is not

altered due to the constraint set (15). Further, if in the original

L. P. the b, was fully utilized, then in (14) theé constraints will be
equalities for each f£. On the contrary, if there was slack in bi’ then

the constraint set (14) is not changed.

Solution procedures for solving such GTP's are available in the

literature (see Balachandran and Thompson [2])
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There must be a feasible solution since each constraint for resource i

* * %

was satisfied for the optimal solution Xy ...xj RS - The optimal

ot

solution to (13) ~ (16) provide us the partitioning of each Xjf allocated
to different forms ij* and also the duals af* associated with each form
f. 1t should be noticed that the Kaplan-Thompson model considers the
average price Bi = C(bi)/bi whereas our allocation decision gives an

economic weight to the overhead allocation due to the optimal duals

* .
ag - This method also produces an optimal dual corresponding to the Jth
product which we will call Bj". Since af“ are related due to the fact
that afjaf +85 = dfjthe form-resource interactions are implicitly

considered.
The overhead for each form Hfi will be allocated by the following
criterion: (note we are putting back the subscript i for resource i)

%

Qe o %
e & S, where . 1s the optimal
H = m. C(bi) CEf b . th
fi Elaf? . dual for form £ of the 1
f=1 1 |
resource,

Thus, the following overhead allocation is made:

th

Rule 2: (i) For the i~ resource, all the units of product j that

were produced (xj%) will collectively bear an overhead of:

B 1
mi <
> dgssXpss ) : .
=y J J Hfi’ .where
I Pey
. th - .
bi: amount of the 1 resource available/used
bfi: amount of the ith resource in the form f available/used
m, the number of forms f for ith resource so that

5
£=1 bey = Py

C(bi): the traceable overhead for resource i
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a...: the per unit ithresource requirement in form £ for the
* product

Xfij : the optimal solution to the GTP

Qps the optimal dual of form £ for resource i

The same rule is also applicable for case (iii) since the rule
is independent of the variable production costs. However, the optimal
solution Xfij* or afi* may differ if all the variable production costs
are the same and equal to a constant value, e.g. unity. Thus cases

(iii) and (iv) are similar and solved utilizing the GTP allocation.

Let us now consider case (ii). In this case we believe that there

are no differences in the per unit resource requirement afij‘ Thus

the original aj 5 are form independent. Thus the earlier problem (13) -

(16) for the ith resource reduces to the following (subscript i is

again dropped).

m n .
(17) Maximize le jfl Pri¥gj where pfj =T - ij
. n
(18) Subject to jza ajxfj < bf ; E=1, ..., m
m %
(19) le fo = xj ; j=1, ..., n
(20) o Xgy >0; £f=1, ..., m;y j=1, ..., n

This GTP can be shown to be equivalent to the following ordinary

transportation problem due to the transformation that:

. Yes
2 _ : R
(21) ij a;¥gy OT X, a

Thus the equivalent transportation problem is

> Pr.y
f=1 j=1 fi7f]

M8

(22) Maximize

n
(23) s.t, p>
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m
%
(24) fE)l ij—_-YjA 3 3 =1, ey N
(25) ij203f=l, seym 3 =1, ..., n
' * %* Pe.
(26) where y; = ajxj_ and p’ - . —=l-
iy a

Rule (2 ii): All units of product j produced (xj*) using the ith

resource will collectively bear an overhead of:

m4 ~x L
= Yfij. fi" . c(b,)
f=1 b m, 1
fi L *
o L
=1

oJa

| where Yf,,A is the optimal solution to the TP (22-26) and ag; is
ij-
the optimal dual for form f of the ith resource and everything

else'the same as defined earlier.

Example 1:

We consider the general problem where differences in both per unit
resource requirements for the various forms (e.g. afij # agij) and
variable production costs cfj'for forms of a resource (e.g. cfij # Ckij)'
This is really a combination of case (ii) and case (iii) or case (iv).

‘(Again in this example rj's are the same so that the problem on Max of

total profit is equivalent to minimization of total variable costs.
Consider the original two resource, two product overhead allocation

example as given by Kaplan and Thompson, given on page 4 of this paper

Let us again assume that resource 1 which is available in 12 units
is available in the form of two machines (two forms), £ = 1 or 2, with
bll= 7 and b21 = 5. The main difference in this example as compared
to the earlier example (2) is that the technological coefficients are

not the same for both forms, and variable production costs also differ.

Thus the problem is: (after dropping the resource # subscript)



Min

11 12

s.t. 2.lel + 2.25x12
%11

Xlz

(17)

+

+ 1x

21 22
3.25x21 + l.75x22 = 5 (form 2)
+ Xy =2 (xl*= 2)
+ %pp = 3 (x, = 3)
all x.. >0
ij =
[2]

Using the algorithm provided by Balachandran and Thompson

the optimal solution is X9 =

ot

~

ot

1, Xy9 =

al.

2, Xy =

1, x22 =1,

The optimal

duals (unique) for the forms (rows) are: ai ~140/423, a; =
s1400 | -14 and the optimal duals for the products (columns) are
5499 55 .
* * _ 71949 159
By 773/423 and B, = 799 30
are calculated in the following tableau.for resource 1.
PRODUCTS
; —
Duals for | . .[ % .
af P‘L‘OduCtS'i . B; = %—;—33- ‘B = —;—Zg—g— f: capacity
Duals Bj! 1 ‘ 2 % slack
for Forms ' _ - :
2.5 1 2.25] 2 11 ,
% 140 11 — .
: . 1 [ 1.75 o1
o ¥ _ -1400), 3'25/“ | : P 0 5
1% 5499 @ .
FORMS 2 > @ |
* 1 | |1 1 100
= : 100
a3f =0 M M | <§3
# of products 2 3
with each cell containing the following information _
X
13 ij
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The traceable overhead is then allocated to individual forms according

to Rule 2: (iii):
Rule 2: (iii) Form fi used to produce product xj
will be assigned its portion (H)fi of the ith

resource's traceable overhead C(bi) as follows:

* .
O -
fi
= ————— C(b.)
(H) fi I;“* ( 1
£=1 7 fi

Thus using the optimal duals Wes as weights which take the product

form interaction into consideration the total traceable overhead of

$1.20 is distributed to the forms as follows:

Form 1 is assigned for its 7 units of utilized capacity

ats
~

“11 - = -
————— C(by) = Z140/433  (41,20) = $0.626
a* o -6199 '

11 "%y

_ Form 2 is assigned for its 5 units of utilized capacity
a -

Ll oy = 218003899 (g o9 = $0.574
Foy gt 6199

11 21

Total traceable cost of Résource #1 to Account For = $1.200

Now_we can allocate the $1.20 of overhead traceable to production

according to the following restated rule:

Rule 2(iv): Each unit of product j produced using form fi (of
) *
resource i), xfj , 1s assigned a per unit overhead
of
a...
_fij (B)
.. fi
fij
where afij is the per unit utilization of form f

of resource i used to produce product i, (H)fi is

the overhead assigned using rule 2 (iii) and beo

T +hAa Anonant txr Af FArm £2
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Product 1 (2 units produced)

il

1 unit with machine 1 [(1)(2.5)/7] [$0.626]
1 unit with machine 2 [(1)(3.25)/5]1($0.574]

$0.2236
0.3731

i

Total Traceable Cost allocated to Product 1's Production 0.5967

Product 2 (3 units produced)

2 units with machine 1 [2(2.25)/71[$0.626]= $0.4024
1 unit with machine 2 [1(1.75)/5][$0.574] = 0.2009

Total Traceable Cost allocated to Product 2's Production _0.6033
Total traceable overhead to Account For $1.2000

5. AVOIDABLE OR ESCAPABLE OVERHEAD:

Situations arise where overhead charges can be escaped entirely if
production of certain products, or utilization of particular facilities
or resources are avoided. For example, setup costs are avoided if |
particular equipment is not used or the product requiring the setup
is not produced.

Kaplan and Thompson have shown that this case can be analyzed through
a two stage process. In the first stage they formulate the given linear
‘programming problem as a ''fixed charge problem'" and use zero one decision

variables for every product or resource that can lead to a possible fixed

charge (Fi if the jth product is produced and Gi if the ith resource is
used). This fixed charge problem is shown to be equivalent to a mixed
integer problem which is solved to yield the optimal x . For every j,

Lo

where x, = 0, the original problem is reduced by dropping the pj and
the associated vector of technological coefficients, éj. Also the
corresponding resource constraint is dropped if the resource is not
utilized. In the second stage they solve this reduced linear programm-

*
ing problem to get the duals w for those resources that are utilized
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together with the same x* of the earlier fixed charge problem. They

then provide the féllowing rule which is quoted assuming the fixed charge

as Fj (for the product j if product ij > 0).

... In order to assign avoidable cost Fs

associated with the positive production
of product j, treat as much as possible of

F as a variable cost,..." ({71 p. 363)
The above condition of "as much as possible of Fj" was operation-

alized as being that much of Fj so that the original optimal solution

% is not distorted when the original objective function "Zp.x.'" is

J ]
x.".
)MJ

—1_

X.
J

Before we proceed to give our allocation rule for avoidable overhead

replaced by "E(pj-

certain comments are in order.
First, Kaplan and Thompson didn't provide a constructive procedure

for finding the maximum extent of Fj that can be allocated to product j

Yo

and still maintain the original product in mix, x . (This maximum
extent is defined as ij). We will provide a procedure to determine
this value which is based upon the sensitivity analysis of the contri-
bution margin vector.

Second, if the entire fixéd charge, Fj’ cannot be absorbed by the
xj* produced, Kaplan and Thompson state that all the extra charges that
are unallocated by their Rule 3 should go to the '"common overhead pool"
which uses Rule 1. Our main concern is when Fj’ an avoidable overhead,

-t

is directly traceable to produce xj‘ it is incorrect from a profit max-

imization standpoint to allocate the remainder (Fj - Fj'),to the other

products x where k # j. Further if the maximum extent that can be

allocated for product j is only Fj:‘(when Fjl.<ﬁEj) then any positive

allocation for the common overhead pool H to product j after Fj’ is

allocated will certainly distort the optimal product mix x ., 1In fact,

the economic decision (assuming away all interdépendencies with other

products xk
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for Y k # j) is not to produce X and avoid the overhead Fj. However,
Kaplan and Thompson ([7], p. 364) state that "if escapable overhead is
too high, it may lower this contribution to the point that it no longer
seems profitable to generate additional sales by producing an unprofit-
able product. To avoid this error, we impose the constraint that
escapable overhead should be directly allocated to a product only up to
the point where it does not distort the optimal solution."

Third, consider the situation of a linear program in the second
stage (after removing all xj* = 0) where we have n’ products all produced
at positive levels. For this to happen the number of resources (after
elimination of all totally unused resources) say m’ > n’, this implies

(m’ - n’) number of resources will have unused capacity thus providing

corresponding duals to be zero. It is not justifiable to pool all the

unassigned avoidable overhead and co-mingle it with the unavoidable

overhead which is assigned under earlier rules (i.e., rules 1 or 2)

utilizing the duals, since overhead due to resources whose duals are

zero are not allocated as per Kaplan and Thompson [7] duals.

As stated earlier, our purpose is to present an allocation system
which provides management information concerning the cost and profit-
ability of products which at the same time would lead management to
choose a production mix which optimizes the profitability of the firm.
Therefore an accounting information system which highlights products
which are not covering their avoidable (escapable) cost and also
indicates a per‘unit deficit helps managers evaluate pricing decisions
as well as directs their attention to products where cost '"shaving"
may be necessary.

Therefore we can make the following observation. If Fj is the fixed

charge that is due to avoidable overhead for product j with ij, the



(22)

optimal solution from stage one (the planning stage), then based upon

the sensitivity of the p vector charges, the optimal basis will change

* .
or x will be perturbed whenever the amount subtracted from P3> for
every j, reduces pj beyond its lower limit that perserves the same basis
obtained from sensitivity analysis.

ot

Since we are subtracting the avoidable overhead of Fj/x; = P from
each pj, let us first find the maximum proportion of g that can be.
absorbed. Let us define ec as this proportion. 1If a ec > 1 is obtained
from parametric pfogramming then we can conclude that the entire avoid-
able overhead can be absorbed. Conversely, if 6. < 1, the total avoid-

%

able overhead cannot be absorbed without perturbing the product mix x ,

This indicates an out of pocket loss will occur unless the contribution

margin is increased either by increasing selling price or decreasing
variable or avoidable production cost. As alluded to earlier the only
possible reason for producing xj when ec < 1 is due to an interdependency
with another product which when sold produces a contributibn to profit
which offset the out of the pocket loss of producing s

The information neéded for the accounting information system can be
obtained by addressing the objective function alone. We know x*={xj*}
is primal feasible. Let p be the original contribution vector and ,
be the vector {pj = Fj/xj*} of the avoidable overhead to be absorbed
(where every P > 0). Let the new p‘ = p - 6p. When 6 varies from O,
the original optimal solution x* = {x*j} asséciated with that basis

matrix B, remains primal feasible but may cease to be optimal (i.e.,

may cease to be dual feasible). The relative contribution vector [see

Hadley [4]].
= ¢ -1 - ¢
(zj - pj) New = pyB aj P;
-1
= - B . - . - 0Op.
(pg epB) ay - (py p3)

where'pB or pBis the subvector corresponding to those variable contri-

*
bution margins or avoidable overhead for jth product where xjA >0 (i.e.,

ha Kant A irvanmt ahTAe)
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Therefore (zj - pj)NeW = (zj - pj)Old - 9(§j - pj)
where gj = pBB~laj.

Since 6 > 0, the quantity (zj - pj)New > 0 for all 6 > 0 for all 8 >0,

if and only if (gj - pj) < 0 for every j. This is obvious since
(zj ~ pj) = 0 for product ij > 0.

When § = 1, then (zj - pj) > 0 implying that the entire avoidable
overhead can be absorbed by product xj. Moreover, if there exists at

least one Ej = pBB_laj where (§j - pj) > 0 then there exists a critical

ote
”~

value of 6 > 0 beyond which B ceases to be an optimal basis (i.e., x
is distorted). We will call this critical value 6. which is defined

below. )

(z: = Ps

For every j such that (g. - p) > 0, define 6. = ~J___J° old
J 3 (& - ps)

. J J

Then QC = Min ej

j . = ps 0
JIey = py) >

Now when 6. 2 1, we can absorb the entire avoidable overhead into each

contribution margin without distorting x . However, if 0 < 6., < 1 the

following cases arise:

(i) For every ej > 1, we can absorb the entire avoidable overhead

ata

Fj/xf can be completely.absorbed.

. (ii) For every product j when 6. < Qj <1

then (eij)/xj* amount of the per unit avoidable overhead

can be absorbed.
‘The unabsorbed quantity of the avoidable overhead may be recouped either
by.increasing selling price, decreasing variable cost of those product(s)

j where ecg ej < 1. The per unit contribution margin for product j must

be raised to ijew from its original valug ij The new value of ijew

bl

=pj+ (1 - ej) Fj/xjx will maintain the original product mix of x .

We.can now formulate allocation Rule 4 under conditions of breakeven

and loss.,
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Rule 5: 1If Fj is the fixed charge that is due to
3 .
avoidable overhead for product j with xj7 the optimal

solution from stage one then the overhead is allocated

as follows:
* .
(a) 1If 6, >1 allocate Fj/xj to product j

.(b) If 0 < éc < 1 allocate the entire per unit avoidable
overhead as below.
(i) For every 6. > 1 allocate the entire per unit

avoidable overhead Fj/xj"

(ii) For every product j where GC < ej < 1 then assign
(eij)/Xj* part of the per unit avoidable overhead

to each unit of j; and if this product j where ej <1

is produced due to compiementary product k whose

6 > 1 then assign the remaining amount (1 - eJ.)Fj

to the product k if (ek - l)Fk > - ej)Fj, Else,

either the contribution margin pj of product j is
increased to absorb the excess avoidable overhead,
or production for product j is not initiated. If‘

6 < 1, then the profit margin for both j and k has
to be increased or their production is not initiated.
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Footnotes

Many defense contracts permit a firm to allocate manufacturing
overhead as well as general administrative expenses to the contract-
ing agency for reimbursement. The revenues of health care institu-
tions to a large extent are dependent upon allocations under Medicare
and Medicaid.

It is to be noted that in any transportation problem, the duals for
the forms (row) agp; and those for the products (columns) Bj form a
one-parameter family [4]. 1In other words for any arbitrary constant
5, Qps + & and Bj - & are all duals. It is customary (4] to
arbitrarily specify ay; = 0 initially and solve for the rest of duals
from the kanown basis utilizing the relatlonshlp Ar; + B. = pfij where
(fl,J) is a cell in the given basis. In our overhead allocation pro-
blem, it is economically meaningful to find the economic weights Hfi

as a .ratio of the dual of form fj to the entire duals sum = Ag; -

If we set any dual, say Ap; = 0, that doesn't make sense. So, in a

relative sense we will choose that form fj which is used to the max-
imum and set its dual ap; = 1. With this convention we obtain the
relative importance of all other forms by evaluating their respective

duals sequentlally. It is to be ‘reiterated that Hf can have differ-

ent values for different §. We set them unique by making that Qs =
where £ is that form of the ith resource that is used to a maximum.
This problem does not arise in the Generalized Transportation Problem

since all the duals are uniquely determined.

1
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