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‘THE ORIGIN OF CYCLING IN DYNAMIC ECONOMIC

MODELS ARISING FROM MAXIMISING BEHAVIOUR

I. INTRODUCTION

Recent research! on the behaviour of the dynamical processes that arise
from the maximising behaviour of economic agents, has centered around the prob-

lem of cﬁaracterising the stability or instability of equilibria. No attempt

has been made to characterise more precisely the qualitative behaviour of the

2 This paper takes

trajectories in a neighborhood of a stable equilibrium point,
a step in this direction by presenting conditions under which the trajectories

in a neighborhood of a stable equilibrium point exhibit cyeclical behaviour.

These results may be viewed as part of a broader attempt to understand the
forces that lead to eyclical behaviour in dynamic economic models. In a recent

paper [14] I showed how the introduction of uncertainty leads to cycling, when

cycling is absent in a purely deterministic model. But we can also seek to
understand the sources of cyclical behaviour in a purely deterministic environ-
ment. Instead of the system as a whole interacting with an uncertain environ-

ment, the separate sectors or commodities that form the components of the sys-

tem, interact with one another to cause cycling. In short, interaction between

sectors or commodities can cause cycling.

In the classical investigations of Lotka [8] and Volterra [24] on the evo-
lution of intefacting, predator-prey biological species, it is the presence of

a fundamental skew-symmetric matrix arising from the predator-prey interactions,

that gives rise to the cyclical behaviour in the number of individuals of each

spécies.3 I will show that a similar skew-symmetric matrix is present in a




large class of dynamic economic models arising from maximising behaviour and

that it is to the presence of this skew-symmetric matrix that the origin of cy-

cling may be traced. This skew-symmetric matrix arises from certain asymmetric

interactions induced by the process of investment.

The basic class of maximum problems considered is outlined in section II.

The problem is then transformed into a normal form in which the forces that
give rise to cycling stand out with especial clarity (section III). This nor-

mal form is used to present a precise characterisation of cyeling in the two-

dimensional case, as well as a sufficient condition for cycling in the n-dimen-

sional case (section IV). These results are useéd to throw light on the forces

that lead to cycling in a rational expectations equilibrium for a competitive
industry (section V). These latter results may be viewed as part of a prelimi-
nary attempt to develop a theory of the business cycle based on the theory of
resource allocation, that meets the two important tenets proposed by Lucas [9,

11]: first, that the sequence of prices and quantities be determined through a

process of competitive equilibrium and second, that the expectations of agents

be rational, in the sense that the anticipated sequence of prices formed on the
basis of their expectations, coincides with the actual sequence of prices gener-

ated on the markets by their maximising behaviour.

ITI. THE BASIC MAXIMUM PROBLEM

In order to present the problem in its simplest form I shall consider the
following class of undiscounted extremum problems. The objective is to find a

. n . o . .
continuous path k(t) e R which maximises the undiscounted stream of future prof-

its (welfare)

JL(k(t), k(t))dt - (®)
0



where L(k,é)s Cr, r>2 is a real-valued strictly concave function in (k,ﬁ).

The Euler-Lagrange equations for (P ) are given by

gk + Ly k=L, =0 : ¢))

. ASSUMPTION I (Existence of Equilibrium Point). There exists k*e:ﬁnfliwhere

°n+ . . . . .
R denotes the interior of the non-negative orthant satisfying

Lk(k*,O) =0 2)

k* is an equilibrium point (E*==R*==O) for the Euler-Lagrange equations (1).

In view of the strict concavity of L(k,ﬁ), k* is unique. We introduce local

coordinates around the equilibrium point k*

x = k - k¥

and consider the following quadratic form

'rex i
(ﬁ Lo Dk x1
x| |L¥ X, x_‘i
[_ kk 'k

where the asterisk denotes evaluation at k* so that L§k==ka(k*,0), for which

L°(x,%) =

we make the following assumption

ASSUMPTION II (Strong Concavity at Equilibrium Point). The quadratic form

L°(x,%) is negative definite.

In a neighbdrhoqd of k* paths which are solutions of (@) minimise

[~}

-1 (x(t), %(¢))dt ()
0

The Euler-Lagrange equations for () are just the linearised Euler-Lagrange

equations for (1) around the equilibrium point k* and are given by'



% e * * ye o_ o1k o _
Leg® * Qg mhedx ~ Iy x = 0 3)
It is well~known that under Assumptions I and II for each initial condi-

tion in a neighborhood of k* a unique solution of (@) exists which is locally

asymptotically stable. This paper extends our understanding of the qualitative

behaviour of the solutions of (®) in a neighborhood of k* beyond the property.
of stability, by a more precise analysis of the qualitative behaviour of the
solutions of (&). This in turn is undertaken by an analysis of the linearised

equations (3).

DEFINITION. (%) is called a symmetric (nonsymmetric) variational problem if

Ly " L4 =0 ¢ O

Remark. For a nonsymmetric variational problem since Ll::k:L;l:c we have

Vo R 1%k ~
T~ ) = O~ B @

so that the matrix (L]tk_thll) in (3) is a skew—-symmetric matrix.

DEFINITION. The variational problem (L) is said to exhibit cycling if the

characteristic polynomial

_ % 42 * _ 1% _ * _
DO = |Lgph? + (LG ~Ldh = L[ =0 )

has at least one pair of complex conjugate roots.

Remark. If (&) is a symmetric.variational problem then there is no cycling."

The main object of this paper is to find conditions under which cycling arises

in the variational problem (Z2).



III. TRANSFORMATION TO NORMAL FORM

To simplify the notation in the analysis that follows we let

so that (3) reduces to

BX - Cx - Ax = O (6

where A and B are positive definite in view of Assumption II and C is skew-sym-—

metric.

DEFINITION. We say that a; is an eigenvalue of A in the metric of B and W eRn,

i . . . . i i
w #0 is an associated eigenvector if Aw =0LiBw .

1 n X . .
Let ESERERELN and w,...,w denote the eigenvalues and associated eigen-
vectors .of A in the metric of B. Apyeees0 may also be called the curvature

coefficients of A since they provide measures of the curvature of A in the direc-

. n ., . .
tions wl,...,w ,» in the metric induced by B.

Remark. If (£) is a symmetric variational problem then (5) implies that the
eigenvalues of A in the metric of B are related to the eigenvalues of the lin-

earised equations (6) in the following way

v’a.i=>\i, i=1,...,n

n
Remark. Qyseeeslos wl,...,w may be characterised as the solutions of the fol-
iE

lowing sequence of extremum problems [7, pp. 317-320]

' iv i
_ X'Ax _ w_ Aw .
@, = maX HpT T g i=1l,...,n
xely w Bw
L, = {xer?, x#0 | x'Bv’ =0, j=1,...,i-1}



We recall from the theory of pencils of quadratic forms [7, pp. 310-312]
that the n xn matrix of eigenvectors W==[w1 cee wn], where wl,...,wn denote n

column vectors, may be chosen in such a way that

WBW =1I, WAW =4 (7)

The nonsingular transformation to principal coordinates y==(y1,...,ynl

x =Wy

reduces the linearised edpations (6) to the normal form

WBWY - WCWy - WAWy =¥ - Ty - Ay =0 (8)
R EPSIEE I PP
’ _Y 0 ceo o :Y
where wew=r=| 12 2n (9)
™Yin Yon ¢ 04

Remark. If (B) is a symmetric variational problem then the linearised equa-

tions in principal coordinates (8) separate into n independent one-sector sys-

tems.

Remark. If (&)_is a nonsymmetric variational problem then the linearised equa-
tions in principal coordinates no longer separate into independent one-sector

systems. There is in fact a skew-symmetric interaction between the n sectors.

The term I'y imposes velocity dependent rotational forces on the system which,

under conditions to be examined in the next section, lead to cycling. In the

symmetric case no rotational forces act on the system so that no cycling can



- an eigenvalus problem—for-T

arise.

Remark. No artificial introduction of rotational forces is involved here: the

skew-symmetric forces I'y arise naturally from the structure of the extremum
problem and are present in extremum problems of a quite general form. These
skew-symmetric forces may be viewed as the cause of cycling for the class of

maximising problems considered in this paper.

IV. CHARACTERISATION OF CYCLING

The principal result of this section is a complete characterisation of cy-
cling for the two~dimensional case. There is however one n-dimensional case

where sufficient conditions for cycling are readily established.

PROPOSITION 1. If the variational problem (&) is nonsymmetric and if

=q =.,..=0a =0* then there is cycling.

-1 2 ir

Proof. Consider the eigenvalue problem induced by the dynamical equations (8)

(A21-Ta-A)v =0 (10)

The assumption @ =0, T...=a = o% implies that A =o*I so that (10) reduces to

i

Since I is a real skew-symmetric matrix its eigenvalues are pure imaginary

1y, ...,tiYk,'o,...,o (12)

where 2k are pure imaginary with non-zero frequencies Yl""’Yk and n—- 2k are

zero [7, p. 285]. Let X = p+iv then (11) implies that for eaéh eigenvalue in



(12) dinduced by v

h|
AZ-a*
RN
S o [4)° '
' = * _ = |-
so that M i o« F;] R v [2}
The eigenvalues of (10) are thus given by
Y.y 2 2 Y
+ a*—[Tl] i,i[jél—],...,t a*-[—%i] ti[-%—‘-],t/a_f,...,t/ﬁ A

Cansider the two-dimensional case. In this case the linearised Euler-

Lagrange equations (8) reduce ta

¥ 0 v{ly a0}y
1) _ 11 _ 1 1] _ 0 (13)
ae - . 0
y2 vy O y2 0!.2 y2
for which the characteristic polynomial is
=A% + (y2-q_ - 2 =
D(\) A (y o) az)x + a, 0 (14)

The four eigenvalues of the dynamical system (13) are thus®

A= (15)

where H=y2- (/5_4-/5_)2

(15) leads at once to the following

PROPOSITION 2 (Characterisation of cycling for n=2). Under Assumption II, if



n =2 the variational problem (L) exhibits cycling if and only if

MESICRERTR (16)

Proof. Assumption II implies v’al >0, VOLZ >0 so that (15) leads to three dis-

. tinct regions in the parameter space (v’al, /a_z} as shown in Figure 1

A = {(/a), /o) e R [H<o, 1<0}
ﬂ2={(a1, q2]€ﬁ2+|H<0, J>0}
A3={(a1, /(;;)€§2+|H>0, J>0}

The eigenvalues are real in Al and complex in 9\2 and A3. A

Remark. Assumption II precludes purely imaginary eigenvalues. Thus, under As-

sumption 11, only parameter values in Al and Az are feasible.

{vl

Figure 1. The regions of real and com- Figure 2. Effect of reduction of skew-
plex eigenvalues in the parameter space symmetry from Iyl to Iﬂ on the region
(/a—l’ ,/&;). of complex eigenvalues.
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Remark. Since the trajectory which minimises (L) is asymptotically stable the

cyclical motion is damped and the two of the four eigenvalues (15) which char-~

acterise the trajectory have negative real parts. It is of some interest to

know how a change in the magnitude of the skew-symmetry lyl affects the real
parts and hence the magnitude of the damping. In a similar way we may ask how
a change in skew-symmetry affects the imaginary parts and hence the period of

the cycles.

PROPOSITION 3. Along the trajectory which minimises (2£), an increase in the

maghitude of the skew-symmetry |y| leads to (i) a reduction in the exponential

- damping and (ii) a reduction in the period of the cycles.

Proof. If the eigenvalues are complex then the two eigenvalues which charac-

terise the trajectory which minimises (X&) are given by A = pu*iv where

R VORI LR ¥ e Sk

from which (i) is immediate and (ii) follows by recalling that if v is the fre-

quency of cycling then the period of each cycle is G%%. A

Remark. To complete the solution of the problem for the two-dimensional case

we need to relate the deri@éﬂ‘ﬁarameters~£aT,a2Lx) to the original matrices

(A,B; C). To this end we write

T % E3
211 21g L xS b1 Py, s I —}
a a * * b b * %
12 22_} % Lkzkz 12 22 Lkzl'cl Lﬁzfcz
0 g
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By (7), | [w'sw| = [w'[[B[w] = I_WIZIBI =1
so that IWI = — ==
'|8]
= R
Thus by (?), Y = lng /qi;r

The eigenvalues of A in the metric of B are given by

a = , -

La J(8)7 - Jalln
sl

a b +a b a b
11 22 22 11 12 12

so that the basic cycling condition (16) becomes

gl > |a - 2/]al[B]] (17)

which reduces to the following especially simple condition when a12==b =0

el > l/%llbzz - /%22b11‘

or in terms of the quadratic form L°(x,x)

ST P oe Y (a8

Ty % *
L ] - L )
Lkal k1k2

>

V. CYCLING IN RATIONAL EXPECTATIONS EQUILIBRIUM

In several recent contributions [9, 11] Lucas has emphasised the importance

»

of developing a theory of the business cycle in which prices and quantities are

determined at each instant of time through competitive equilibrium and in which

the expectations of agents are rational in the sense of Muth [18]. Lucas has

also emphasised the role of uncertainty in generating the observed pattern of
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business cycles.
In this section I will use the results of the previous sections to examine

a rational expectations equilibrium for a competitive industry with a fixed

finite number of firms in which each firm behaves according to the standard

. Lucas-Mortensen adjustment cost theory of the firm [10, 19]. The analysis of

rational expectations for the industry is made possible by the introduction of

an extended integrand similar to that employed by Brock [1], Brock-Magill [2]

and Scheinkman [23] and originally introduced by Lucas and Prescott [12].

While the presence of uncertainty is of undisputed importance in generat-
ihg the.observed pattern of business c&cles, it may well be of interest to seek
causes of cycling which are independent of the presence of uncertainty but which
are consistent with the postulates of competitive equilibrium and rational ex-
pectations. Thus while the analysis of this section in no way pretends to form
a theory of the businesé cycle, it seeks to explore the ways in which techno-
logical forces arising from the recursive nature of the production process may
act on representative firms within an industry so as to cause cycling in the
process of competitive equilibrium over time.

Consider therefore an industry composed of N representative firms, each

producing the same industry good with the aid of n capital goods. I assume that

——each firm-forms—identical expectations-about the industry product's price path
which is a measurable function

r(t) : [0,9) — R* (19)

2.

The instantaneous flow of. profit of the representative firm is given by
r(t)f[k(t), i(t)), where f(k,ﬁ) € C2, incorporates both adjustment costs and the
cost of purchasing new capital equipment and is a strictly concave function in

(k,ﬁ), where k==(k1,...,kn) denotes the vector of capital goodé. To simplify
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the analysis and to make possible the application of the results of the previous
sections I assume that the representative firm faces a zero interest rate and

that it seeks to find a capital expansion path which is a continuous function

k(t) : [0,) — R* ‘ (20)

which maximises its future stream of profit

Je(e)£(k(e), k(t))at (R)
o .

given the fixed initial capital endowment k(0)==k0 e R%Y,

The total market supply forthcoming at each instant on the product market

Qg(t) = NE(k(t), k(8)), tel[0,)

has a complex functional dependence on the price path (19), since it arises as
a by-product of the solution of the basic maximum problem (R) by each firm.
On the demand side of the market I make the simplifying assumption that the to-

tal market demand depends only on the current market price

Q8 = ¥ (x(®), tel0,®)

where e ¢' and Y(Q) >0, ¥'(Q) <0, Q2 0.

DEFINITION. A rational expectations equilibrium for the product market of the

industry is a measurable price path (19) such that

QD(t) = Qs(t) for almost all ts:[O,w): (E)

DEFINITION. The function ¥(Nf(k,k)) where

Q
¥(Q = [y(xdy, Q20
0

denotes the integral of the demand function, so that
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Yec?, ¥@ =v@, Y@ =9'(Q <0, Qz0

is called the extended integrand. The problem of finding a continuocus function

(20) which maximises

J¥(NE(k(t), k(E)))at (e)
0

is called the extended integrand problem.

. Our analysis of the cyclical properties of rational expectations equilib-
rium will be based on the following proposition which is a straightforward
adaptation of the result of Brock-Magill [2, Th. 5] and Scheinkman [23, Sect. 4]
to the undiscounted case. This proposition transforms the analysis of rational
expectations equilibrium from a direct analysis of:the representative firms
prob'lem (R) and the market equilibrium condition (E) to an indirect analysis '

of the extended integrand problem (E).

PROPOSITION 4. If k(t) is the solution of the Euler-Lagrange equation for (&)

. o . d |y . . _
¥ [Nf(k,k))fk(k,k) e [\y [Nf(k,k)_)fl-((k,k)] =0 (21)

which satisfies the initial condition k(0) =k and the transversality condition
J

lim [—‘{J'(Nf (k(o), l.c(t)]}fl-((k(t), I.c(t)]]k(t) <3 | (22)

treo

and if for any alternative continuous path k(t) with k(0) =kﬂ

: ( .y .
1im Ew' le(k(t), k(t)]}fﬁ[k(t),k(t))—]fc(t) > a (23)

e -t

for constants G, g then the price path

r(t) = V' [Nf (x(v), fc(t))} (24)

is a ratiomal expectations equilibrium for the product market of the industry.
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Proof. (21) and (24) imply that the Euler-Lagrange equation for ((R) is satis~-
fied 4 i

r(DF, (68 - = (x5, (k,0) = 0

(22)-(24) imply that the standard transversality conditions for (®) are satis-

fied [15, Lemma 2]. Since ¥' =y, (24) implies that (E) holds. Thus each firm

maximises (®R) and the market equilibrium condition (E) is satisfied. A

Remark. In order that Assumption I be satisfied, we assume the existence of an
s ae . . an+
equilibrium point k*eR

* =
fk(k ,0)

With this assumption the conditions of Proposition 4 will be satisfied by a path

k(t) for which

k(t) -~ x*]] —= 0 as t—+=

The analysis of rational expectations equilibrium may thus be viewed as a prob-

lem (@) with basic integrand

L(k,k) = ¥(Nf (k,k))

while the associated problem (£ ) has the integrand

\{,v*
YIEEY +NV*FT* l;}*——~—k«——v~__*_

Remark. If f:- is symmetric, in particular if f(k,loc) = u(k) +v(1.c) as in Scheink-

man [23] or if n=1, then there is no cycling in the rational expectations equi~

librium process in the neighborhood of k*.

Remark. Proposition 1 allows us to deduce the following: if the eigenvalues

of ¥'*f* 4in the metric of -(¥'*f¥. +NY"*f*¥f%*') differ but little, then asym-
KK kk ek -

metry of f*. causes cycling.
} 9 .
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When n =2 the reader may readily apply (17) to obtain a necessary and suf-

ficient condition for cycling. If in addition the production function f(k,ﬁ)

* =f¥ . = = : iti
satisfies fk k fk1k2 0 and fk 0 then the condition reduces to
£% . - /F7F'—TF—*' l
kal k1k 2 2

The basic cause of cycling is thus technological and arises from the presence

of asymmetry in the effect of investment in one good on the marginal product of

another capital good.

Remark. Lucas [9] has emphasised the difficulty of generating an equilibrium
process in which there is cycling and in which "persistent, recurrent, unexploit-
ed profit opportunities'" are absent. In the present context, if the industry
good is storable there is an incentive for speculators to carry the commodity
over f;om periods of relative abundahce wheﬁ the price is low to periods of
relative scarcity when the price is high, the extent of such arbitrage activity

depending on the cost of storage. This arbitrage activity reduces the extent

of cycling in both the price and the quantity traded. However if the commodity

is perishable or if the cost of storage is sufficiently high the cycles will

tend to persist.®

VI. CONCLUDING REMARKS

In this.papér I have attempted to throw some light onvthe origin of cycling
in a class of éynamic maximisation problems that arises in economiecs. It would
be of interest to have a precise characterisation of cycling for the n-dimen-
sional case, both for the class of models considered here and for the more gen-

eral class of discounted models. In these discounted models the stability
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problem is much more delicate, but it is precisely here, in conjunction with
the emergence of instability, that the presence of cycling is likely to have

its most interesting consequences.7
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1.

FOOTNOTES

See [2, 3, 4, 13, 15, 17, 22, 23].

An exception is the interesting paper of Ryder and Heal [20]. But their

results are restricted to a particular discounted model.

For an excellent exposition of the Lotka-Volterra theory in English the

‘reader is referred to the book by D'Ancona

cussion [21]. -

Magill-Scheinkman [17] show that symmetric

[5]. See also Samuelson's dis-

discounted variational problems

have real roots.

(15) is derived as follows. Let £ = a+1iB
= l—(a +a - v2) B

The relation (a+1iB) =(u-+iv§2 implies

1,8 5
B = /5'(6)’ V= 5 0

which in turn implies

V)

= A2 then
= 2/ ()3

/- + /a2 + g2

1
. v=1/

For an analysis of the way transactions costs influence inventory behaviour

7.

when the inventory consists of a portfolio

of assets held by an investor,

see Magill-Constantinides [16]. For a further discussion of the relation

between inventories and investment the reader is referred to the original

discussion of Eisner and Strotz [6].

I refer to the Hopf bifurcation and the emergence of a limit cycle.




