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ABSTRACT

To design successful new products and services, managers need to
understand how consumers form preferences relative to product attributes.
Most existing methods use ordinal measures. Intensity measures have the
potential to provide more information per question, thus allowing more
accurate models or fewer consumer questions (lower survey cost, less
consumer wearout). To exploit this potential, researchers must be able
to identify how consumers react to these questions and must be able to
estimate intensity-based preference functions.

This paper provides a general axiomatic structure for preference
measurement which encompasses a wide variety of alternative measurement
theories and models. Within this structure we (1) derive individual-
level statistical tests to identify the information content of a response,
hence the appropriate theory, (2) derive decomposition theorems to
simplify measurement, and (3) provide or review practical estimation
- procedures for each theory or model. Among the theories covered are
(a) interval theory, (b) ratio theory, (c) a hybrid model, (d) ordinal
theory including conjoint analysis and utility theory, (e) stochastic
theory I including logit analysis, and (f) stochastic theory II.
Numerical examples are given.

An empirical case illustrates how the statistical tests and
estimation procedures are used to aid in the design of new telecommuni-
ications devices. Empirical results suggest the majority of consumers
can provide intensity judgments. The intensity-based estimation pro-
cedures do better overall than ordinal estimation. Predictive tests

are consistent with the statistical tests.



To design successful new products and services, managers need to
understand how consumers form preferences relative to the product
attributes. To evaluate product or service strategies, managers
require predictions on how consumers will behave if a new product
is launched. Accurate predictions on consumer response coupled with
models of production costs, tax rates, cash flow, and product-line
considerations can lead to more successful products and can reduce
the risk of failure.

Many researchers have investigated the twin problems of under-
standing consumer preference and predicting consumer choice. Some
techniques estimate consumer preference functions by representing
"consumer utility" as a function of the product's attribute levels
[13,14,18,24,29,48]. (These techniques assume either (1) the product
with the largest "utility'" is chosen, or (2) the higher the "utility"
of a product, the more likely a consumer is to choose that product.)
For a review of this literature, see Green and Srinivasan [13]. Such
techniques are useful in the product design because they indicate the
relative effects of changes in the attributes of that product. Other
techniques measure interval or ratio-scaled preference directly based
on actual products prior to test market or national introduction.

For example, see Silk and Urban [47]. These techniques are useful
in the evaluation of new products because they are based on actual
products and on strong direct preference measures.

Conjoint analysis (Luce and Tukey [34], Tversky [52], Green and

Srinivasan [13]) is one effective technique to measure preference
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functions. Conjoint analysis has been quite successful in marketing
(Green and Devita [11], Green and Wind [14], Wind and Spitz [56]), but
the application of conjoint analysis can be improved. The consumer
task can be quite tedious, often requiring each consumer to rank

order 20-40 "products' in terms of preference. (Products can be

real or represented by attribute levels.) The number of products is
usually kept at a minimum with a fractional factorial design [14].
Furthermore, the measurement estimates ordiﬁal preference, i.e., a
ranking over products, rather than intensity of preference, i.e., how
much a product is preferred over another. (Although a set of conjoint
models from a consumer population estimates how many people choose
each product, conjoint analysis does not estimate ratio, interval,

or probabilistic preferences for each consumer.) Finally, becaﬁse

the conjoint measurement task can be tedious, it is difficult to ask
further questions to check behavioral assumptions underlying the
preference measurement. It is possible to use a form of conjoint
analysis called tradeoff analysis (Johnson [24]) which reduces the
consumer task by having consumers rank order products where only two
attributes vary at a time. Preferences are still ordinal and assump-
tions still difficult to check.

If conjoint analysis or tradeoff analysis were extended by the
use of intensity ﬁeasures for preference, it would be reasonable to
expect more information to be gathered per question. With the proper
theoretical structure and estimation technique, this detailed informa-

tion could be used to develop preference models providing a more accurate
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description of the consumer evaluation process. Also, if estimation
requires-fewer consumer measurements, more questions can be asked to
test behavioral assumptions and to help understand the evaluation
process.

One form of preference intensity measures is von Neumann-Morgenstern
utility theory [54]. Preference is ordinal, however the preference
function can handle products with uncertain attributes. The consumer
task, indifference measurement, provides more information per question
and the axiomatic theory allows the measurement of more complex prefer-
ence functions [17,18]. Some underlying behavioral assumptions can be
checked (preferential indifference, utility independence, see Keeney
[26,28]), but it remains infeasible to check all behavioral assumptions
as is done in the lengthy interviews (often two days or more) of pre-
scriptive applications (Keeney [27], Keeney and Raiffa [29], Farquhar
[8]). Even with indifference questions and axiomatic theory, market-
ing applications still require a 40-50 minute personal interview to
measure a consumer's preference function. Furthermore, the theory
cannot yet handle the measurement error inherent in consumer interviews.

Another form of preference intensity measures is constant sum
paired comparisons (CSPC). With CSPC, consumers are asked to allocate
fixed sum of points or 'chips'" between pairs of actual products or
product concepts in proportion to their preferences for those products.
Ratio-scaled preference scales are developed from analyses of these
responses {Torgerson [51]). Silk and Urban [47] report ease of measure-

ment and excellent predictive capability in over ten product categories.
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As high as 80% of the uncertainty is explained where uncertainty is
measured by information theory (Hauser [15]). (Unfortunately, pure
constant sum measurement, in which chips are allocated simultaneously
among all products, is a difficult consumer task often leading to in-
accurate results, Pessemier [42].) But the applications to date have
not developed preference functions. Instead, they have developed
composite measures, i.e., a preference value for each product. To
design new products and to better understand the consumer response,
we need preference functions which identify how consumers use product
attributes to form preferences.

The intensity information in CSPC measures provides the potential
to estimate more accurate preference functions and to do so using
fewer consumer questions. Unfortunately, the axioms of conjoint and
utility theories are based on ordinal measurement. Consequently, any
estimation based on these axioms would only use the ordinal properties
of the CSPC measures and neglect the intensity information inherent in
the measures. Furthermore, as we will show, there are many alternative
hypotheses regarding exactly what the intensity portion of the CSPC
measurement means to the consumer. To use CSPC measure for preference
funetions, we must develop tests to identify how consumers interpret
the CSPC task and we ﬁust develop estimation procedures incorporating
the intensity information.

A third form of preference intensity measures is graded paired
comparisons (GPC). With GPC, consumers are asked to choose between

two stimuli and to indicate the intensity of their preference between
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the stimuli. In marketing, Huber and Sheluga [21] and Neslin [40]

have used GPC measures to estimate consumer preference functions and/or
functions mapping product attributes to perceptions. Both applications
report good empirical results using analysis of variance based on an
assumption of interval intensity information.

But interval is only one possible assumption. Other assumptions
may lead to improved preference functions. If we can develop a common
structure which incorporates the interval assumption as well as the
ordinal (conjoint, utility) assumption and possibly other assumptions,
and if we can develop statistical tests to distinguish among these
assumptions, we can improve the GPC applications and extend the CSPC
task to measure and estimate preference functions.

This‘paper provides a general structure for using intensity
measures for estimating consumer preference functions. Within the
structure we (1) review alternative measurement theories, (2) provide
axioms for developing testable implications of each theory,

(3) develop statistical tests to test these implications and distin-
guish which theory describes how consumers are using the intensity
measures, (4) derive functional forms appropriate for the preference
functions implied by each theory, and (5) provide procedures to estimate
the parameters of these preference functions. Based on these results,
we develop a practical procedure, implemented by an interactive

computer package, to measure preference functions in a market research
environment. The paper closes with a numerical example and an empirical
case study applying these procedures to the design of innovative forms

of telecommunications.
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1. INTENSITY MEASURES AND THEORY

To develop and evaluate new products and marketing strategies, we
must develop preference functions relating the attributes of potential
products to consumer preference for those products. The goal of the
measurement and estimation is to understand and to predict a consumer's
preferences by observing his(her) perceptions of each product in a
choice set relative to a set of attributes (e.g., quality, personal-
ness, convenience, and value for health services). The prefereéence
function (c:X»C) maps the attribute perceptions (X) into a scalar
measure of preference (C), such that the consumer is most likely to
prefer the product with the largest scalar measure. (We do not require
perfect prediction due to measurement and other errors.) The remainder
of this paper will assume that any feasible product can be represented
by a set of attributes, X = X,*X,*...*X . Let x., be the level of

172 K jk

attribute k for product j and let Ej = {le’sz"‘;’xjk}' Various
methods to identify and measure these attributes are factor analysis
(Urban [53]), discriminant analysis (Johnson [23], Pessemier [42]),
and similarity scaling (Green and Rao [12]). Alternatively, one can
use physical characteristics (e.g., lens speed and exposure time for
cameras) in place of measured perceptions.

An important objective in the following discussion is the develop-
ment of preference functions rather than composite preference values.
Thus, we will be concerned with attribute-based measurement rather

than estimating preference values for existing products. Nonetheless,

each of the theories or models and statistical tests apply to composite
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measures in the case of one attribute, product identity. For a dis-
cussion of composite measures versus preference functions (component
measures) with GPC, see Huber and Sheluga [21].

All analyses and measurements are at the level of the individual
consumer, however, we do suggest modifications throughout for aggregate
level analysis. Demand is estimated by aggregating predicted individual
preference behavior or by using models that translate preference to
choice. The measurement is attribute-based. We illustrate the theory
with CSPC measurement, but indicate extensions to GPC measures and
other intensity measures such as dollar metric (Pessemier [42]). Figure
1 schematically represents the CSPC measurement. The consumer is given
two product concepts (or occasionally actual products) with known or
measured attribute levels, X and x,, and asked to allocate a fixed
sum (S) of "chips'" between the products according to his(her) prefer-
ences for those products.

DIVIDE 100 CHIPS BETWEEN EACH OF THE FOLLOWING PAIRS
OF HYPOTHETICAL DEODORANTS:

PRODUCT A PRODUCT B

PUMP SPRAY AEROSAL

HERBAL SCENT UNSCENTED
REGULAR ANTI-PERSPIRANT

ENTER CHIPS .
74, 26

Figure 1. An Example of Constant Sum Paired Comparison Measurement
(Respondent's answers are in italices)
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Suppose the consumer allocates a 2 chips to x, and a,, =S - a

1 1 21 12

chips to x If the mechanism for allocation is left unspecified as

2"
in Figure 1, there exists some ambiguity as to what type of preference
the pair (a12, a21) represents. Perhaps a;, > a,, means only that X
is preferred to Xy In this case the CSPC measure is no better than
simple pairwise comparisons (Johnson [25]) and one would continue to
use conjoint analysis, tradeoff analysis, or von Neumann-Morgenstern
theory.

But perhaps more information is contained in the measurement
(i.e., chip allocation). One possible assumption is based on a cardinal
utility theory developed by Shapley [43]. Here the allocation is made

so that c(zl) - CCEQ) and a - a are proportional. Another stronger

12 21
assumption, following Torgerson's ratio-scaled postulates [48], is that
c(il)/c(zz) = 312/321' By making full use of the measured preferences,
either of these assumptions yields preference functions which measure
intensity of preference, but each theory requires (a) a test for the
appropriateness of the assumptions and (b) a method to estimate the
preference function, c(gj).

If the researcher has some indication of how the consumer will
respond to the CSPC measurement, he(she) may assume one theory, say
ratio, and encourage the consumer to respond according to that theory.
For example, additional instructions may request the consumer to
"allocate chips in proportion to the ratio of your preferences for

the hypothetical products". In this case the general structure and

statistical tests can be used for theory testing rather than for
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theory identification. If the tests do not reject the theory, the
same estimation procedures apply.

We begin with a general structure. This structure provides a
common notation that clarifies the parallel assumptions of alternative
theories. Using the general structure as a base, we formulate the
alternative theories by adding behavioral assumptions which specialize
the structure and which adapt it to applications. Statistical tests
determine whether the data is consistent with the behavioral assump-

tions (e.g., merely random, ordinal, interval or ratio).

General Structure

Let c(°) be a preference function mapping attribute levels into a
real-value depicting preference. Suppose that a particular consumer
is presented with two potential products, i and j, with known attribute
levels, X, and zj, and suppose he(she) responds to the CSPC question

with the pair (aij,aji) where aij + = §. For example, in Figure

a,.

J1
1, X; would represent the attribute levels for product A and (aij’aji)
would equal (74,26). We implicitly define the properties of the

preference function for this consumer by the equation:

c(x;) * C(ij) = a5 0 8y (1)

where the measurement relation, ¢, indicates mathematically how the
consumer reacts to the CSPC measures and the property operator, *,
indicates the corresponding mathematical relationship among the prefer-
ence values. (For GPC and other intensity measures, replace aij ° aji

by gij where gij is the graded scale comparing i and j.)
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To be practical, c(+) will be measured for a relatively small
subset of the possible elements of X. To be useful, c(+) must apply
to all elements of X. This requires consistency in the form of
symmetry, identity, and property transitivity. Symmetry simply
states ''the order of evaluation does not effect c(-)." (We assume
any instrument bias such as order effects have been statistically

corrected or randomized.)

; : * = ° * =
Axtom 1 (Symmetry): If elz.) c(gy) a5 ° diy then c(gﬁ) elz,)

Qee © Qo oo

. dT 2
Identity states that once instrument bias is corrected, an equal alloca-
tion among the stimuli means the consumer is indifferent among the stimuli.

Mathematically, identity is a necessary property of the measurement

relation.

Axiom 2 (Identity): ays ° s = I, for all a;; where a;;° I,= a ;.

Symmetry and identity are binary relations; property transitivity is a
test for consistency among three or more stimuli. Property transitivity
will provide a method for testing the validity of a particular measure-
ment relationship. Given three responses, Axiom 3 defines the necessary
relationship among the responses, thus creating a statistically testable
implication. We must first define a transitive operator, T, that acts to
reverse the measurement relation. The third component of definition 1

is necessary to ensure that T is not a null operator.
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Definition 1 (Transitivity operator): T is a transitivity operator for the
measurement relation, o, 1f T is commutative, (a.. ¢ a..)T(a.. ° a..) =
D% B At L A

e and (aij ° aji)T aji = aij'

Axtom 3 (Transitivity): If T is a transitivity operator associated with o,

then (aij ° aji)T(ajk ° akj)T(aki ° aik) = I0'
When T is not associative, axiom 3 holds if at least one of the possible

groupings holds.

Finally, we do not want our analyses to be logically dependent.upon the
choice of the constant sum, S. Thus, subject to measurement and roundoff
errors, we require axioms 1, 2, and 3 to hold for any S.

To simplify measurement, we investigate whether c(+) can be separated
into uni-attributed functions. For example, c(zi) would be simpler to
estimate if it were separable into a sum of XK uni-attributed functions,
cl(xlj), cz(xzj), etc. The separable form depends on * and ¢, but in
each case there are identifiable independence properties which imply the
form of separability. These independence properties are special cases
of evaluative independence, defined as follows.

Suppose that X = Xl-X *...*X, are partitioned into Y = Xl-Xz-...-X

2 K m
and Z = Xm+1-xm+2-...-XK. Let Xi’zj €Y, let 54’55 € Z, then X, = (2&’54)
etc. As a special case, define XF = Xl-Xz-Xk_l-Xk+1-...~XK. Define XET

similarly. We can define a general independence property, evaluative

independence:
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Definition 2: Let Y, Z be a partition of X. Then for a given consumer,
Y is evaluative independent of Z (written Y e.i. 2). If for any
2e €z

ely,,ze) * c(ij,g_o) =45 Qs
then

* = °
c(ﬂi,g) c(gj,g) aij aji for all z ¢ Z .

In words, the consumer's answers depend only upon the attributes,
Y, varying among the products in the pair. If evaluative independence
does not hold, the theories may still apply, but separability cannot
be exploited in the estimation procedures. Evaluative independence
is a generalization of independence properties found in utility
theory (Keeney and Raiffa [29]).

To proceed further, we must make assumptions with respect to *,

°, and the implied T.

Notation

In the following discussion, we use standard matrix notation. ' Let
" M:RxC denote a matrix with R rows and C columns. Let M' denote the
transposed matrix. Let r(M) equal rank of M and let M'1 denote the
inverse of M if it exists, otherwise let M'1 denote the pseudo inverse
of M (Caradus [5]). Let I denote the identity matrix, 1 a matrix of
only ones,'and 0 is a matrix of only zeros. Finally, if dimensions

are not specified, assume they are conformable.

Interval Theory

Interval theory assumes that the consumer allocates the chips such

that the difference, dij = aij - aji’ indicates the intensity of preference.
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Shapley [4] derives into fundamental axioms implying the existence of
an interval preference function. Within the general structure, interval

theory is given by equation (2).

C(zi) - C(zj) = aij - aJi (2)

The property operator and measurement relation are both subtraction, the
transitivity property operator is addition, and the identity element is
zero. Then axiom 3 for interval theory requires equation (3) to hold for

all triplets of product concepts, zi, Ej’ and Xy - (Test axioms 1 and 2

in an analogous manner.)

(aij-aji) + (ajk-akj) + (aki-aik) =0 (3)

In practice, measurement error may prevent equation (3) from holding
precisely. Hence, the left-hand side of equation (3) may be some (not

necessarily zero) number Vijk' The superscript I denotes interval theory.

Let vI = (vijk) for transitivity test t. A useful measure of fit is then

t

sum of squared interval error, EI, shown in equation (4).

2 1
v = vt (4)

EI =

I e~139

t=1
where t indexes the transitivity tests (specific triplets), v is the
vector of vi's, and m is the number of such tests. EI is a useful
intuitive measure: but to test the theory, we must investigate dis-
tributional properties of EI and related statistics. Then if EI is
significantly small (statistically), we say interval theory is con-
sistent with the data.

Assume that there exists an interval measurement error Eij distributed

2
normally with mean u and variance 02 [denoted Eij or N(u,cI )J]. (We do not

need the assumption of zero-mean.) Then the observed value of aij is given

by:
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35 = 235 * ij (5)

where ai: is the true chip allocation under the interval assumption.

Make similar assumptions for a » @y and a To derive

jit 3k % ki’
the distribution for EI, we must consider the relationship of the errors

for the terms in equation 3.

Assumption 1: In a CSPC measurement, the consumer first selects a. .
. 1d

and sets a.. = S - q...
Jt Jr

Under assumption 1, aji is functionally related to aij; thus if error is
uncorrelated across measurements, vI is the sum of three independent
normal random variables each with variance s2 = 4012. Under the hypotheses

of interval theory, equation 3 holds and the expected value of vI is zero.

Thus vI is distributed as N(O,lZoz).

Assumption 2: In a CSPC measurement, the consumer first selects d.. =
1d

a.. - a.. then adjusts both a.. and a.. such that a.. + a.. = S.
1d J d JT 1d Jt

Under assumption 2 the errors Eij and E;i are not perfectly correlated.

If they are uncorrelated, VI is the sum of six independent normal random
variables and VI is distributed as N(0,6GIZ). In general, there will be
some negative correlation p and the variance of EI will be given by

602 - 6p02 where -1 € p < 0 (Mood and Greybill [38], theorems 9 and 10).

0.

Assumption 1 implies p = ~1. Assumption 2 (extreme case) implies p
In general,AvI is zero-mean normal random variable with variance 52 < 6(1-9)02.
Note that whether or not the variables are independent and regardless of the
value of sz, VI will be normally distributed (with mean zero for interval

theory).
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If the transitivity tests were independent, then EI would be the
sum of squared independent normal variates and would be a chi-squared variate.
Unfortunately, not all transitivity tests will be independent, because
the same Eij can appear in more than one transitivity test.
Let vI:mXI be the vector of m transitivity tests. Let dI:DXI be
the data vector of differences (we will suppress the I for notational

I'sa, .- ~a__,...]1'. Let M:mxD be the

simplici i.e. ..
implicity), i.e., d 1572517 %rs3sr

experimental design matrix identifying transitivity tests. Then,

v = Md. For example,

1]
[vyv,1 = [d55 4y dyy djq dgpd”

M should be formulated such that the transitivity tests are not redundant,
i.e. such that r(M) = m. Otherwise the experimentor may assume more
degrees of freedom than allowable by the experimental design. The maximum
rank for M is the number of different products in the design minus two.
From the preceding arguments, d has a nonsingular multivariate (D-variate)
distribution with mean p:Dx] and covariance matrix I:DxD, denoted
d ~ ND(u,Z). Therefore, if r(M) = m, then (Giri, theorem 4.1.5)

v~ Nm(Mu,MZM')

and if A = (MZM‘)_1 is the inverse (or generalized inverse, Caradus [5]),

of MzM', then (Giri, theorem 6.2.2) v'Av has a noncentral chi-square
distribution with m degrees of freedom and noncentrality parameter
n, = u'M'AMu. We will call v'Av the adjusted sum of squared error,

1
denoted EI. Now for interval theory, Mu = 0. Hence,
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Theorem 1: For interval theory, the adjusted sum of squared error, EI =
v'Av is chi-squared distributed with m degrees of freedom where

v=wud, A= MM) L and p(M) = m.

Here £l represents the weighted sum of squared errors across transitivity
tests. The weights are determined by the measurement covariance modified
by the experimental design. Note that for the special case when the
design is orthogonal (MM' = I), and the errors are homoscedastic and
independent for successive pairs, then I = szl. Under these conditions,
EI simplifies to EI/sz.

We see EI provides a test statistic interval theory when I or
S2 is known. That is, given confidence level a, reject interval theory

1

if & > Ka where Ka is the value of a cumulative chi-square distribu-

tion with m degrees of freedom at confidence level (probability) a.

However, in general I is unknown. In that case assume independence
and hombscedasticity across measurements, that is, I = 5213 Alternatively,
we could assume some other special structure for I. Note that these
assumptions do not prevent the measurement means from being functionally

related. Now let,

n=Wd where W:wxD satisfies MW' = 0

Now, v and n are independent (Giri, theorem 6.2.3) because MW' = 0.
The vector v can be interpreted as the weighted sum of arbitrarily
chosen chip allocations. It is, therefore, logical to choose W such
that each row has exactly three non-zero elements, each being *1. To-
gether, M and the maximum rank W represent all orthogonal triplets. M
represents the independent triplets implied by axiom 3 and W represents

other orthogonal triplets. If B is the inverse or generalized inverse
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2 . .
of s"WW', then n'Bn is a noncentral chi-squared variate with w = r(W)

degrees of freedom and noncentrality parameter n, = u'W'BWu, and if
A= (M:M')'l, then

m, n'Bn m s-zn'(WW')_ln n'(WW')-ln m

( = ) = G

L AL - - -
w v'Av W zv'(MM') lv vt (MMY) lv w

has no unknown parameters. It has a doubly noncentral F-distribution
(see Giri, page 109) with m,w degrees of freedom and noncentrality
parameters n1 and nz. As a null hypothesis, we assume interval theory

is not correct. Under this hypothesis, E[v'Av/n} = E[v'Bv/w] and

n =n where E[+] denotes expected value.

172
Theorem 2: For the null hypothesis, if W is defined such that MW' = 0
and 1f errors are independent and homoscedastic across measurements,

then
of = 0
v'(MM')-l

v/m

has a doubly noncentral F-distribution with (w,m) degrees of freedom,

with equal noncentrality parameters.

If more than one W exists such that MW' = 0, then we take that W such
that w = r(W), the number of degrees of freedom, is maximized (tending
to a more powerful test). Then interval theory is supported when QI in
theorem 2 is greater than Ka(n) where Ka(n) is determined from a non-
central F-distribution with noncentrality parameters both equal to n.
Note, the ratio can be interpreted as the inverse of the percent un-
explained variance in the transitivity tests. The ratio

[n'(WW')'ln-v'(MM)'lv]/n'(WW)'ln is the percent explained variance.
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Next we must find the noncentrality parameter n. Rejection of
the null hypothesis supports interval theory, therefore n is chosen
to bias the test toward accepting the null hypothesis (making the

test more conservative). Theorem 2' provides a method for doing this.

Theorem 2': If Ka(n) is the cut-off value for rejecting the null
hypothesis given nonecentrality parameter n and confidence level
a, Ka(O) 18 the cut-off value for a central F-distribution and
K (0) > 1, then

XK (n) <X (0) .
a a
The conservative test for interval theory becomes,

Reject a random chip allocation for interval theory at confidence level
a 2f

T
Q = Ka(o)

where Ka(O) 1s determined from a central cwmlative F-distribution

with w,m degrees of freedom.

Note that this is a very conservative test for interval theory (i.e.,
tending not to support interyél theory).

There are three final comments. First, in practice the W matrix
is unique with w < m. It can be found by exhaustively enumerating all
linearly independent vectors to the M matrix. Second, if we wish to
test a sample of people to find if the entire sample is interval (rather
than each individual), then let n = v - v where v is the sample mean.
The ratio of theorem 2 has a central F-distribution under the interval
theory hypothesis. Third, theorems 1, 2, and 2' can also be proven
for GPC measures. Simply define g as the vector of signed intensity
.., and replace d by g in the above theorems.

_For the independent, homoscedastic case, I = s?l.

judgments, e.g., gij’grq"
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Theorems 1, 2, and 2' provide a useful battery of tests. If pz and
02, or more simply s2, are known from external experiments, the chi-
squared test provides a statistical test of the axioms. Alternatively,
theorem 1 can be used to jointly test interval theory and an error
variance. If the error variance is unknown, theorem 2, or more simply
theorem 2', still provides a test of interval theory, but because 52 is
free to vary, theorem 2' will not be as stringent a test as theorem 1.

If interval theory is not rejected, we proceed to estimate C(Ei)'
Many decompositions are possible. We show one particularly useful
decomposition based on each attribute being evaluative independent
of its complement set. Based on this simple proof, one can readily
extrapolate the ideas to less restrictive functional forms when certain

interactions are important.

Theorem 3: For the interval theory, Xk e.t. Xz-fbr all k implies

cﬂgj) = cl(xlj) + ez(xzj) * .. + cK(ij)

Proof: Y e.i. Z implies by definition 1 that C(Xi,Z°) - c(xj,zo) =

c(zi,gj - c(xj,zj for all z, thus c(zi,g) - c(zj,zj = f(zi,z%). Assume

that c(+,+) is differentiable. Then 3f(y.,y.)/3z = 0. Thus 3c(y.,z)/d9z =

ac(za,g)/az for all zi,za. Thus 3c(y,z)/3z =Y'tz). Integrating gives

C(l:_Z_) = Y(Z) + B()’). Thus, for Y = Xl, C(le,ij) = Cl(le) + CT(XJ’T)°

Continuing we get C(le'sz'ij§° = cl(le) + cz(sz) + clz(xjiia, etc.,

until the result is attained. The proof when c(+,*) is not differen-
tiable is similar but more tedious. (Note that Y e.i. Z is reflexive
for the interval theory, i.e. Y e.i. Z implies Z e.i. Y). Furthermore,
this theorem could easily have been proven with telescoping sets such

X

as Xk e.i. xk+1-xk+2-... K
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If the theorem 2 holds, then c(zj) can be estimated with linear
programs based on an absolute error structure or with ordinary least

squares regression (OLS). Simply discretize each attribute and define:
§
- mjk .
c(zj) = II A, (6)

_ . . th
Kj " 1 if xkj is at the 2 level and 62

estimation equation is:

where 62 = 0 otherwise. ‘The

kj

335 7 351 T BBk ok Caki

) + error (7)
In the linear programming formulation, equation 7 is used to define
absolute error which is then minimized subject to any constraints on

the X This algorithm is a modification of LINMAP (Srinivasan and

Lk*
Shocker [45]) for intensity measures. Empirically, we have found that
the linear program performs better than OLS because one can easily add prior
information (known by the researcher) to the constraints in the linear

program. For example, if the A,k are known to be monotonic in %, a

monotonic constraint can be added to the estimation:

A i=1,...,L-1 (L = no. of levels)

2,k > A2+1,k

R .
Or if an ideal level, &, is specified,

Al,k > A2+1,k

SR BRTR"
If there are L levels, a minimum of (L-1)K questions must be
asked to specify c(+). (Base points for ck(') are chosen such that
no redundancy exists.) More questions are required when an error

term is included in equation 7 and estimates, Azk’ are obtained.

Theorem 3 and equation 7 apply to GPC measures with gij = aij - aji‘



-21-

Ratio Theory

Ratio theory assumes that the consumer allocates chips such that
the ratio aij/aji’ indicates the intensity of preference. This theory
was originally formulatéd by Torgerson [48] to produce composite
preference measures rather than preference functions. (In Torgerson's
measurement, consumers are explicitly requested to use the CSPC scale
as a ratio scale.) Within the general structure, ratio theory is given
by:

C(zi)/c(fg) = aij/aji (8)

The transitivity operator is multiplication, the identity element is
1.0, and axiom 3 becomes

(aij/aji) . (ajk/akj) *(ag/a) =1 . (9)
Note that equation 8 does not necessarily require a zero-point for C(Ei)
within the range of feasible products. In equation 8 we are concerned
primarily with the method in which consumers allocate chips rather than
with the scale properties of the preference scale. It is possible that
preference is a ratio scale, but equation 8 does not apply because the
consumer reacts differently to the CSPC measurement. Similar comments
apply to equation 2 in the interval theory.

Axiom 3 for ratio theory can be tested by checking equation 9, which
must hold for all product concept triplets. (Test axioms 1 and 2 in an
analogous manner.) As in interval theory, we can expect measurement
error. In general, the left-hand side of equation 9 will equal some

non-unity number, VR (where R superscript denotes ratio theory). For
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convenience we will define vR = log(vR). A useful measure of fit is the

sum-of-squared ratio error, ER, given by:

R

2
R - (vz) = yR R ' (10)

1

18

t
R . R,
where v is the vector of vt S.

If an assumption of normal error is reasonable for interval theory,
an assumption of lognormal error is reasonable for ratio theory. Thus,

assume that the observed value of aij is given by:

_ R R
aij = aij Eij (11)

where E?j is A(u,og) and a?j is the true chip allocation under the ratio
assumption. [A(u,oﬁ) is a lognormal random variable with generating
parameters u and og. That is, logA(u,ci) is N(u,oi).] Make similar
assumptions for aji’ ajk’ akj’ aik and aki'

Using the reproductive properties of the lognormal distribution
(Aitchison and Brown [2], theorem 2.3), one can show that the hypotheses
of ratio theory imply that vR is a zero-mean normal random variable with

. 2
variance s

2 . . R
R = 6(1-pR)oR where PR is the correlation between log eij and

R

log e?i, and 02 is the variance of  log Eij'

R
Following the development for interval theory, we define vR:nXI as

the vector of transitivity errors. Let dR:DXI be the vector of log-ratios,

. R . .

i.e., d = [log(aij/aji), log(ars/asr),...]. (The R superscripts denoting

ratio theory on vR and dR are supressed in the subsequent development

when there is no possibility of confusion with vI and dI from interval

theory.) Then v =Md where M is the same experimental design matrix defined

earlier. Using the properties of the lognormal distribution, d has a
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multivariate normal distribution with mean p:Dxl1 and covariance matrix
I:DxD and

v o~ Nn(Mu,MZM')

When the errors across measurements are independent and homoscedastic,

I = SZI. If MM =1 then v'(M M')_lv = Ez/sz. Theorems 4 and 5 provide

the tests for ratio theory. For GPC, replace log(aij/aji) by log(gij).

Theorem 4: For ratio theory, viem)Tly s ehi-squared distributed

with m degrees of freedom where v = Md.

Theorem 5: For ratio theory, if W is defined such that MW' = 0 and
1f errors are independent and homoscedastic across measurements,

then

o )
v'(MM')—lv/m

has a doubly noncentral F-distribution with (w,m) degrees of

freedom, and equal noncentrality parameters.

Using Theorem 2', the conservative test for ratio theory at confidence

level 2 becomes,

Reject a random chip alloecation for ratio theory if and only if
QR > Ka(o) where Ka(o) 18 determined from a central cwmulative

F-distribution with w,m degrees of freedom.

Finally, in some cases, we will use theorems 1 and 4 to compare

interval and ratio theories. While it is reasonable to assume p = PR?
in general, CR # cI. To provide equivalent tests for the ratio and
interval theories, we must relate or to Op- For equivalence, we require
that the variance of aij due to measurement error be the same for both

theories. Using the lognormal distribution and equation 11, we can show



-24-

. R . R .2 2 R .
that the variance of aij due to sij is (Eaij) [exp(cR)+1] where Eaij is
the expected value of aij (Aitchison and Brown, p. 8). The equal variance

requirement then gives:

2
oﬁ = log[cf/(Ean) +1] (12)

If we know or wish to test an error variance, o%, then we match cﬁ and
use theorem 4. 1If oﬁ is unknown, use theorem 5.

If ratio theory is not rejected, we proceed to estimate c(zi). As
in interval theory, we can use evaluative independence to derive decom-
positions for c(zj). For example, the following theorem parallels

theorem 1 in the interval theory. Again, theorem 6 can be extended

as needed.
Theorem 6: For the ratio theory, Xk e.7. Xz-fbr all k implies

c(gﬁ) = cl(xij) . cz(xzj) C . e cK(ij)

Proof: Y e.i. Z implies by definition 1 that c(zi,zo)/c(xj,gy) =
c(xi,E)/c(zj,E)'for all z, thus c(zi,g)/c(xj,gj = h(xi,zj). Thus,
log c(zi,g) - log c(za,g) = log h(zi,zj) = f(zi,xj). Following the
proof to theorem 1 then gives log c(gj) = log c(le) + log cz(sz)

+ ... + log ck(xjk) which is the result.

1f theorem 6 holds, then c(zj) can be estimated by taking logarithms
of equation 8 and formulating a linear program for absolute error or

by using OLS. Simply discretize each attribute and define:
&

) 2K
clx;) = T Ty Oy

(13)
vwhere 62kj is defineﬁ as before.’ To estimate ng use the equation:

= -5 .. A 4
log(aij/aji) zkzz(ssz szl)log gk * error (14)
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For L levels, (L-1)+K questions are required to specify c(+), more if
the log Alk's are to be estimated. Theorem 6 and equation 14 apply to

GPC measures with gij = aij/aji'

Hybrid Model

If ratio theory is rejected and interval theory is not rejected,
we use the interval theory. If interval theory is rejected but not
ratio, we use ratio theory. But it is possible that the tests reject
neither theory. In this case, we can use either theory or, heuristieally,
select the theory with the best fit to the data.

Another alternative, that is suggested by the general structure, is
to formulate a hybrid model by carefully defining * and o. We use the
word model since axioms, distributional assumptions, and tests would be
required for a theory. For example, one hybrid model that combines the

features of interval and ratio theories is given by:

e(x;) - (a35/a;;)7 e(x;) = B(az-as;) (15)

When y»0, B+l the interval theory applies; when y»+1, 8+0 the ratio
theory applies. While a hybrid theory based on equation 15 is complex,
the hybrid model can be made practical by non-linear estimation pro-
cedures such as OPTISEP [1] and SUMT [6].

In the special case when y=0, then equation 15 is a simple extension
of equation 2. Similarly, if B=0, equation 15 is an extension of
equation 8. In either case, the estimation equation is linear in the

new parameter and linear programming or OLS can be used.

Ordinal Theory (Utility Theory, Conjoint Analysis)

If both the ratio theory and the interval theory are rejected,

then we test the hypothesis that the CSPC questions measure ordinal
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preference. That is, aij > aji means that X; is preferred to §j° This
is the case of either von Neumann-Morgenstern utility theory or more
simply ordinal utility theory. See von Neumann and Morgenstern [54],
Friedman and Savage [9], Marschak [36], Herstein and Milner [19], and
Jensen [22] for axioms which imply the existence of such functions. If
the data structure has reasonable properties (Tversky [52], Krantz,
Luce, Suppes, and Tversky [30], and Luce and Tukey [34]) and sufficient
measurements are made, conjoint analysis can be used.

To put ordinal theory in the general structure, define an indicator
function, 6(t), such that é6(t) = -1 if t < 0, &(t) = O if t = 0, and

§(t) = 11if t > 0. Ordinal theory is then given by:

A test for axiom 3 is ordinary transitivity. (Note that both ordinal
properties and the stronger intensity properties can hold simultaneously.)
If Gij = G(aij - aji)’ then the test for ordinal transitivity can be

written as:

sij T ij T aki =0 an

where

§. T&__ = 6[5_ +6__]
Pq TS pq TS

Here T is not associative and hence all cases must be checked. This is
equivalent to testing whether the following equation holds. (The proof

of equivalence is by exhaustive enumeration):

Gij + ij + Gki - Gijajkaik =0 (18)
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which covers all possible preference and indifference orderings among
zi, zj, and Xy -

Following the intensity theories, let the left-hand side of equation
18 be vO where the superscript 0 denotes ordinal theory. Since we are
concerned with the ordinal properties, we use 62(VO), which acts as an
indicator function for errors in equation 18. A useful measure of fit
is the number of times, EO, that ordinal properties do not hold where:

52 (vD)
1

tm
o
n
ne~138

t

If the consumer gives consistent ordinal preferences, then we
expect equation 18 to hold more often than if the consumer allocates
Gi. randomly. Our test is formulated to reject random allocation.
One random assumption is that the three values of Gij’ (-1,0,1), are
equally likely. Another assumption is that only strong orders occur,
dij = -1 or 1, and they are equally likely. In general, we assume
that indifference, dij = 0, occurs with probability q and the other
values of Gij each occur with probability (1-q)/2. By exhaustive

enumeration, one can show that, under the first random assumption,

Vo # 0 with probability, p, given by:
p = 2[(1-9)/2]° + 6q[(1-9)/2]% + eq®[(1-q)/2] (19)

For example, if q is zero, then p = (1/4); if q = (1/3), then p = (14/27).
It happens these are bounds on p. In general, 1/4 < p < 14/27. The first,
p = 1/4 assumes all preference orderings are equally likely. If we assume
chips are allocated completely randomly, then aij is uniformly distributed
and q = 1/(S+1). Then where S grows large, the first value (p=%) is

approached.
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If the errors in the transitivity tests are independent, EO can be
thought of as resulting from m independent Bernoulli trials with success

probability given by p. This is stated formally in the following theorem.

Theorem 7: Let p be given by equation 19. Then the cwnulative

distribution of'EO is8 given by:

E
Pl"Ob[EOSE] = Z (’7:) pk (1-p)m-k
k=0

As in interval and ratio theory, the errors in the transitivity tests in
an arbitrary experimental design matrix are not independent, in which
case the distribution for EO can be derived analytically for any given

M as the exact distribution of interdependent Bernoulli trials; but it

is notationally and computationally cumbersome and must be done for each
M. Fortunately, simulation results show theorem 7 to be a good approxi-
mation for the M matrix used in our empirical work (see Appendix 1).

Theorem 7 sets confidence levels for rejecting the random hypothesis.

For example, if m=8, then EOSI rejects, at the .05 level, the hypothesis

that (-1,0,1) are equally likely for 6ij' Under the same hypothesis,

EO < 2 rejects at the .15 level. TUnder the hypothesis of only strong orders
EO = 0 corresponds to the .10 level and E0 < 1 corresponds to the .37 level.
The same tests apply for any ordinal measurement or for the ordinal properties
of GPC and other intensity measures.

If the random hypothesis is rejected, we can use utility theory
(Hauser and Urban [18]) or conjoint analysis (Green and Srinivasan [13])
to estimate the preference function, c@gi). Once again, evaluative
independence yields decompositions that simplify estimation. Evalua-

tive independence becomes preferential independence (Keeney and Raiffa
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[27]) and Y e.i. Z implies that there exists a value function v(y) such
that c(zj) = u[v(zi),gﬂ]. In particular, if each pair of attributes
is preferential independent of the other attributes, then there exists
some ordinal c(+) which decomposes additively separable. This is
stated formally in theorem 8. The proof is contained in Ting [50],

Farquhar [8], or Keeney and Raiffa [29].
Theorem 8:  For ordinal theory, Xk . X3 e.1. X?E for all k implies
there 1s some c(+) such that:

c(gj) = cl(xlj) + cZ(xzj) + oot cK(ij)

If the consumer task involves stimuli with uncertain attributes,
i.e., lotteries, then the axiom structure for C(Ei) implies c(zi) is
unique to a positive linear transformation (von Neumann and Morgenstern
[54]) and evaluative independence becomes utility independence and mutual
utility independence implies the quasi-additive form (Keeney [26]).

Theorem 9 formalizes these implications.

Theorem 9: For von Neumann-Morgensterm utility theory, Xk e.i.AXE

for all k implies
c(gﬁ) kakck(xkj) + zm>kzkxmkcm(xmj)ck(xkj) +
+ third order terms + ... + Kth order terms.

where )‘k’ )‘mk’ ete. are scalar constants.

For estimation procedures applicable to ordinal theory, see [11,12,

22,23,28,45,50]; for von Neumann-Morgenstern theory, see [7,15,16,27].
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Stochastic Theory I

If E0 rejects ordinal theory in favor of a random allocation, then
we must investigate theories more general than deterministic preference.
We could interpret aij > aji as meaning the probability of choosing
X4 is greater than the probability of choosing Ej' For axioms implying
the existence of c(zi) under this interpretation, see Hauser [16].

For conditions leadingAto probabilistic choice, see Shugan [44]. We
will now derive a CSPC theory consistent with probabilistic preference.

Let P[xi>xj] be the probability that the consumer will prefer X4

to §j in a paired comparison. Now suppose chips are allocated sequen-

tially to achieve the chip allocation (ai.,aji). For each toss, i.e.

J
individual "'chip'" allocation, there is a probability Pmij that the
mth "chip" will be allocated to product i rather than to product j.
If one assumes (1) a stationary process (i.e., P.. =P .. = P_.. for
ij mij nij

all n,m); (2) Pij = P[5i>§j], and since Pij + P.. =1, then given

ji
axiom 3, each individual chip allocation is Bernoulli. For details
see Appendix 2. The total chip allocation for any fixed sum of
""chips'" is given by:

a.. a,.
) ij ji 20
Prob[aij,aji] [Pij] [pij] (20)

a..
1)
The maximum-likelihood estimator for P(§i>5j) for a single comparison

is given by:

) (21)

P.. = P[£i>_)£j] = aij/(aij+

a..
1) ji

If P(§i?5j) is a function, f(+,°), of only the preference values, then

equation 21 becomes a special case of the general structure. That is:

f[C(_Jii),C(_JLj)] = aij/(aij"’aji) (22)
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A special case of stochastic theory is the logit model [28] where

f[C(zi),c(zj)] = exp[c(x;)]/(exp[c(x;)] + exp[c(zc_j)]) (23)

In this case, Axiom 2 (property transitivity) becomes Luce's choice

axiom [30,31]:
(Pij/PJ-i) . (ij/PkJ-) * (Pp;/P5) =1 (24)

For sufficient conditions for Luce's axiom and a survey of its extensions,
see Shugan [44]. To test stochastic theory I, we formulate a likelihood
ratio test on the basis of equation 20. Since estimation is analytically
cumbersome, we refer the reader to Appendix 2. (It is interesting to
note if S is sufficiently large and if neither aij nor aji is close to
zero, then equation 20 becomes approximately normal (Mood and Greybill,
[38] theorem 7.5) which is consistent with an assumption of normally
distributed measurement error.)

Equation 23 can be estimated with standard maximum likelihood-based
computer packages (Berkman, et al. [4]). Evaluative independence implies
a multiplicative decomposition of exp[c(§i)] which indicates an additive
decomposition of c(§i). Equation 22 can be extended with an exponent
for aij and aji (Stevens [49], Pessemier [42]) and equation 23 can be
extended to proBit and other probabilistic models. To use stochastic

theory I for GPC, one mustassume that gij is a probability scale.

Stochastic Theory II

If the ratio, interval, ordinal, and stochastic theories are all

rejected, we must search for alternative explanations. One such
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explanation is provided by Bass [3] who derives a theory of stochastic
preference that makes no assumptions with respect to specific individual
consumers but is based on distributional assumptions about how the
market as a whole behaves., (Preference probabilities vary across the
consumer population with some known distributioh.) For a review

article on these models, see Horsky, Sen and Shugan [20].

Summary

The general structure, c(gi) * C(Ej) = aij ° aji’ provides a
common link between the measurement theories and models. Within this
structure one can proceed systematically, searching and testing for
the measurement theory that best explains how consumers react to the
CSPC scale or other intensity scales. When the proper theory is
identified, we posit (and will support with an empirical case) that
prediction and understanding is improved.

In exploratory research we suggest the CSPC, GPC, or other intensity
task be left unspecified and the general structure be used to identify
the natural and easiest consumer response to the questions. Then modify
the questions to encourage response according to the identified theory
and use the statistical tests with more stringent confidence levels
to test the theory.

One such search/test/estimation procedure is suggested in Table
1. Ratio and interval theories are tested first. If one is clearly

identified, it is used. If both are accepted, either the best fitting

theory or the hybrid model is used. If both are rejected, the ordinal
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theory is tested and, if accepted, it is used. If the ordinal theory
is rejected, stochastic theory I is tested. If it is rejected,

stochastic theory II is used.

TABLE 1

ONE POSSIBLE USE OF THE THEORY TESTS WITHIN THE GENERAL STRUCTURE

Ratio Test (e‘) Likelihood Ratio Test
Accept Reject Accept Reject
Best Fit Ordinal Ordinal
Accept or Interval Theory Accept ot Theory
Bybridé Model Stochastic 1
Interval Ordinal
Test (El) Test (Eo)
Stochastic Stochastic
Reject Ratic Theory Further Testing Reject Theory I . Theory I

Estimation proceeds only after identification of the appropriate
theory. If evaluative independence holds, decomposition simplifies'
estimation. If evaluative independence is strongly rejected, inter-
action terms may be required. For brevity we have not derived statis-
tical tests for evaluative independence, although such tests are
straightforward employing the assumed distributional properties.
Furthermore, even if evaluative independence does not hold, the

decompositions may provide good approximations.
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The search/test/estimation procedure can proceed at either the
individual or the aggregate levels, At the individual level, the
best theory is chosen for each consumer in the sample. At the
aggregate level, a best representative theory is chosen for the
sample, In either case, estimation is at the individual level.

In the former case, accuracy is enhanced, but interpersonal com-
parisons cause difficulties. In the latter case, some accuracy is
sacrificed, but the ability to compute summary statistics (mean,
median, interquartile interval) can lead to enhanced managerial
understanding.

We now provide a numerical example to illustrate the application
of the general structure to CSPC measurement. Section 3 then provides

an empirical case from a marketing research application.

2. NUMERICAL EXAMPLE AND IDENTIFICATION TEST

Table 2 is one example of a hypothetical consumer's response to
16~CSPC questions. This design for three attributes at three levels
contains ten tests of axiom 2 (property transitivity) of which eight
are nonredundant. These are used to select the appropriate theory.
For example, question triplets {1,3,6}, {1,4,5}, and {3,2,4} form
three such tests. Further, question pairs {1,7}, {3,8}, and {6,9}
each test evaluative independence for one attribute.

This'design, one of many, is chosen to illustrate how to test

theories and properties. Products (combinations of attribute levels)
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are order-balanced to minimize order-bias effects in measurement and
approximately balanced across questions. That is, subject to trade-
offs in achieving theory tests, each product appears approximately
equally often as X, and as 5j and equally often throughout the
measurement. (Order balance is not exact because some products
appear an odd number of times.) For a discussion of balance, see
Huber and Sheluga [21]; for a discussion of experimental designs,
see Cochran and Cox [6].

We have chosen S=100 chips because empirically the round-off
error inherent in a ten-chip allocation makes it difficult to dis-
criminate between interval and ratio theories. Furthermore, the
normal or lognormal distributions are more reasonable if S is large.
However, an optimal value for S could be determined for any particular
theory by relating S to the confidence level of the test. Consumer

reaction to date has been favorable for an allocation of 100 chips.

Transitivity Tests

Table 2 was generated based on a ratio-scaled preference function

with a random error of o=1 and p=0.(which is equivalent to op = .02

for EaiRj = 50). The statistical tests should uncover this fact. First,
Eo = 0.0 is significant at the .005 level. Thus, the data is at least
ordinal. The transitivity experimental design is not orthogonal (MM'#1),
thus we compute the adjusted mean square error which gives el - 33.5.
This value is above the .05 level cutoff at 15.5; thus rejecting the
interval theory. The equivalent statistic, ER, equals .45 for the ratio

theory. This is well below the .05 cutoff. Together, the test statistics

give evidence in favor of the ratio theory.
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TABLE 2

ONE HYPOTHETICAL CONSUMER'S RESPONSE TO A 3x3 DESIGN

ATTRIBUTE LEVELS

Product i (54) Product j (55) CSPC

Question Xy Xy X3 Xy Xy X3 aij éji
i H H L H L H 43 57
2 M M M L H H 27 73
3 H L H L H H 25 75
4 M M M H L H 53 47
5 H H L M M M 40 60
6 1 H H H H L 80 20
7 L H L L L H 43 57
8 H L L L H L 25 75
9 L L H H L L 80 20
10 M M L L H L 47 53
11 L L H M M L 60 40
12 L M M M M L N 29
13 H L L L M M 13 87
14 M M L H L L 73 27
15 L L H M L M 45 55
16 L H L M L M 47 53

H, M, L = high, medium, and 1ow levels of each
attribute

Had we not known ¢ and p, we could have used the F-statistic with
K 05(0) = 4,1. For Table 2, QR = 217.8 and QI = 117.1, indicating
that both ratio and interval theories are better explanations of the

data than the alternative hypothesis. (Note that ratio theory has a
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larger statistic.) We compare these statistics to QR = 1,0 and QI = 1.4
which were obtained from random data. Thus, we see that the x2 tests
are more stringent and should be used if o and p are known, but even if
they are unknown, the F-tests provide good discrimination between
intensity theories and random data.

A useful rule of thumb for o is to compare the CSPC process to a
process where the chip allocations are generated from S independent-
Bernoulli trials. In that case, the error variance is S aij(l-aij).

For example, with S=100, then aij=50 corresponds to o¢=5, aij=10 or 90
corresponds to o0=3, and aij=1 or 99 corresponds to o=1. If the true
aij's are uniformly distributed, then the expected error variance corres-
ponds to 0=4.08. Interestingly, o/oR is approximately 50 for ¢=1,2,3,4,
or 5. Alternatively, we can use external estimates of 02 measured
through repetition of the consumer task or we can use post hoc estimates
obtained from the error variance in the regressions (equations 7 and 14)
used to estimate C(Ei)' Future empirical research may use these tech-
niques to establish guidelines for 02. The error correlation, p, is

related to the assumptions about how consumers allocate chips. Thus,

qualitative discussions with consumers can give guidance to select p.

Estimation

After the transitivity tests, a ratio theory preference function
was estimated with a linear program minimizing the absolute error in
equation 14. The utility values, Alk's’ were constrained to be mono-
tonically increasing in 2. The estimated parameters, shown in Table
3a, compare well to the "actual" parameters which produced the data,

shown in Table 3b.
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TABLE 3

PREFERENCE PARAMETERS FOR THE HYPOTHETICAL
CONSWUMER RESPONSES IN TABLE 2

1 2 3
H 2.9 8.7 11.6
M 2.0 3.9 4.9
L 1.0 1.0 1.0

~

a) Estimated preference paratmeters (lzk's)

x, x, X4
H 3.0 9.0 12.0
M 2.0 4.0 5.0
L 1.0 1,0 1.0
b) "Actual' preference parameters (Azk's)

8, s
_ Lk j
elxy) = B Ty A

3. EMPIRICAL EXAMPLE: TELECOMMUNICATIONS

The previous sections have developed procedures for the idenfifica-
tion and estimation of preference functions to measure intensity of
preference. This section illustrates these procedures with an empirical
example. The results show that at the .05 level, 61% of the tested
consumers react to the CSPC measure via a ratio or an interval theory
and 83% are at least ordinal. Furthermore, preference models based on
these theories improve predictive capability relative to the ordinal

theory normally used in conjoint analysis.
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The empirical problem is to design a mix of telecommunications
technology for use in a small research community. Scientific research
requires close effective communication among scientists, but in many
government laboratories coopefating scientists and managers find them-
selves in buildings two to three miles apart. Furthermore, laboratories,
such as Los Alamos Scientific Laboratory (LASL) in New Mexico, do much
of their work for federal agencies, and there is a strong need for
effective communication with managers and policy makers in Washington,
D.C. Currently, the most common means of communication at LASL is
telephone (39% in LASL) and personal visit (58% in LASL), with only a
small percentage (3% in LASL) of the interactions using other means.
The National Science Foundation would like to enhance communication
among the scientists, managers, and policy makers with an improved
system which is more effective than telephone for technical communica-
tion, yet more efficient than personal visits in terms of cost, time,
and energy. Among the options being considered are closed-circuit
television, telecopiers (facsimile transfer devices or teletypewriters),
and narrow-band televideo systems (an attachment to the telephone which
transmits still pictures over voice-grade telephone lines). Since the
laboratories have limited budgets, each laboratory would like to
implement the communications system that would be most cost-effective.
To do this the laboratories need to know how sciéntists and managers

would react to the various systems.

Study Design

To address this problem, we used the normative methodology described

in Hauser and Urban [17] to identify the relevant dimensions that describe
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communications options and to identify the relative importances of
these dimensions. These dimensions form the basis for the CSPC
questions used in the estimation of preference functionms.

First, consumer focus groups were run and analyzed to produce
an indication of the choice process, consumer semantics, and a set
of 25 attribute scales to characterize consumer reactions to communica-
tion technology. Based on the focus groups and on previous research
in the area of communications, a mail-back questionnaire was designed
and implemented in which consumers rated telephone, personal visit,
and the three new communications options (one-page concept statements)
on the 25 attribute scales. Factor analysis of the response revealed
two perceptual dimensions labeled 'ease of use' and 'effectiveness'.
Ease of use correlates with the ability to find the right person, save
time, eliminate paperwork, and get a quick response as well as saving
hassle, planning, time, and cost; effectiveness correlates with the
ability to exchange scientific and technical information, persuade
people, convey all forms of information, control the impression you
want to make, monitor people, operations, and equipment, yield a high
level of human interaction, solve problems, express feelings, and
enhance idea development.

Scientific and managerial communication is complex, and it is
probable that the communications needs would vary by individual depend-
ing upon his or her requirements. Thus, to accurately analyze prefer-
ences for communica;ions opticns, we need to stratify by use scenario

(purpose, distance between communicators, relation of communicators,
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etc.) and estimate preference functions within each category. CSPC

questions were used to measure these preference functions.

Consumer Measurement

Based on the results of the mail questionnaire, a preference
assessment questionnaire was designed to measure the CSPC data needed
for the preference functions. This questionnaire was then implemented
via an interactive computer interviewing system (Shugan and Hauser
[46]) to scientists and managers at LASL and practicing managers
enrolled in Northwestern University's Manager's Program (evening work
toward a master's in management). The questionnaire contained six
sections: (1) warm-up questions, (2) questions to establish a scenario
for usage, (3) consumer rating of effectiveness and ease of use for
telephone, personal visit, and for the concept statements, (4) the
CSPC questions, (5) preference ranking and usage intent for the
existing products and the concepts, and (6) various personal and
demographic questions and comments.

Section 3 of the questionnaire was included to acquaint consumers
with the measurement scales for effectiveness and ease of use and to
provide us with their perceptions of each product or concept. Section
5 provided preference measures for the actual products and concepts.
These measures were used to validate predictions made by each theory
based on CSPC questions.

The complete questionnaire contained 96 questions, including 16
CSPC questions, and took about 15-30 minutes to complete. The admin-

istration cost, including on-line hookup, was about $1.00 per respondent
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on a CDC-6400 ($510 per cpu hour). The comparative results reported
below are based on the exploratory phase of the study where the
directions of the CSPC question were left ambiguous. The sample

was 41 practicing managers.

Results

Figure 2 gives the perceptual maps positioning of the five
stimuli based on factor scores (mail survey) and the direct measures
(preference survey). The close agreement of the relative stimuli
position in the two maps supports the direct measures of effective-
ness and ease of use as sufficient for the preference analysis.
(Note the stimuli '"'teletype terminals'’, used in the mail questionnaire,
was revised to ''facsimile transfer devices" in the preference ques-

tionnaire.)
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Figure 2. Perceptual Maps of Communications Options
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Since we did not know either o or p, we need the F-tests in the
exploratory analyses with the .05-level cutoff of K.OS(O) = 4,1 (the
QI and QR statistics each have three and eight degrees of freedom).
When neither ratio or interval theories were rejected, consumers were
assigned to the theory with the largest Q.

The ordinal test identified 83% of the consumers as using at least
ordinal theory at the .04 level (one or fewer transitivity violations)
and 98% at the .14 level (two or fewer transitivity violations). The
F-tests identified 44% of the consumers as using interval theory and
17% as using ratio theory at the .05 level. No one was interval who
was not at least ordinal, and no one was ratio who was not at least
interval.

To provide an alternative test for these identifications, we used
each of the estimation procedures on each consumer and used the results
to predict preference for the actual products (telephone, personal
visit, NBVT, CCTV, and FAX). This test is a predictive test because
the models are estimated on CSPC questions relative to product attributes
but used to predict preference for products not involved in the estima-
tion. Based on the preceding results, we would (1) expect intensity
theories to predict best overall, (2) expect the intensity theories
to predict better on consumers identified as using an intensity theory,
and (3) we would expect the ratio (interval) estimations to predict
best for consumers identified as ratio (interval). Table 4 reports the
results of these tests. We have rounded to one decimal except for

totals because of the extremely small sample sizes.



-44-

TABLE 4

PERCENT OF FIRST PREFERENCES CORRECTLY PREDICTED
(NUMBERS IN PARENTHESES ARE SAMPLE SIZES)

Estimation Procedure
Indicated

Theory

Ordinal Interval Ratio
Stochastic (7) 6 .7 7
Ordinal (9) 6 .7 8
Interval (18) .S .7 7
Ratio (7) .7 .8 9
TOTAL (41) .57 .72 .74

In general, Table 4 supports these hypotheses. Intensity-based
estimations were found superior to ordinal-based estimations. The
estimations predict best for consumers identified as following ratio
theory. Some anomalies do appear with interval theory, but one must
be cautious when examining specific small sample entries which are not
statistically different. It is interesting to note that the percentage
of correct predictions for interval theory improve when we relax the
confidence level on the F-test.

Table 4 also suggests a potential robustness of intensity measures.
Interval and ratio estimations exhibit similar overall predictive
ability, and both intensity estimations out perform ordinal estimdtion, even if
the intensity theories are rejected. These are small sample hypotheses
which should be subjected to further testing.

To better understand Table 4, we analyzed individual predictions.

Detailed analysis uncovered a fascinating finding. The improved
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prediction came from the intensity theories' ability to discriminate
preferences between products which ordinal theory predicted as being
equal in preferences. (E.g., the ratio theory might predict telephone
as first preference, while ordinal theory would predict that telephone
is tied with NBVT for first preference.) We have found by discussion
with other researchers that others have also observed this limitation
when estimating ordinal preference functions. Thus ordinal analysis
is a "correct' representation of consumer preference, but the intensity
theories produce preference functions which allow discrimination among
products at the individual level by extracting additional information
from individual responses.

Table 5 compares the techniques on their ability to correctly
predict market preference shares. Again the intensity estimations
provide improved predictions over the ordinal estimations. The over-
prediction of preference for the concepts over actual products results
from consumers tending to favor an existing alternative over a new
concept when predicted preference indicated indifference. Future
research will expand the theories to include this "preference inertia"
effect (Neslin [39]). Empirically, when the models are applied to
existing alternatives only, the mean absolute error is reduced to
1.4% for both intensity theories. Furthermore, the relative comparisons
remain the same.

Predictive accuracy is important for the evaluation of alternative
products; but to improve the design of new products, managers need

diagnostic information to help them understand consumer preferences
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TABLE 5
COMPARISON OF PREDICTED MARKET SHARES OF PREFERENCE

(NBVT = NARROW BAND VIDEO TELEPHONE, CCTV = CLOSED
CIRCUIT TELEVISION, FAX = FACSIMILE TRANSFER DEVICE)

Predicted Market Share (1)

Estimation . Mean
Procedure Personal Absolute

Telephone Visit NBVT CcCcTV FAX Error
Ordinal 28.0 38.2 13.8 13.0 8.1 6.90
Interval 32.5 39.0 13.0 10.5 4.9 4.54
Ratio 32,5 39.0 . 14,02 9.3 4.9 4.54
(Actual) (36.6) (46.3) (9.8) (4.9) (2.4)

and thus design improved products (Little [31], Hauser and Urban [17]).
Although preference functions are estimated at the individual level,
it is useful to present summary statistics (mean, variance, median,
interquartile range) to represent the target population. Figure 3

is a graph of the average preference functions. (The '"utility" of
effectiveness is scaled 0 to 1 for consistent comparison.) Note that
although the average individual functions (ratio, interval, ordinal)
are relatively close, the ordinal theory overestimates the importance
of ease of use relative to intensity theories. The interpreta-
tions are quite intuitive with decreasing returns on effectiveness
and a slight threshold on ease of use. These results are consistent
with two preceding conclusions. First, as expected, ordinal theory

provides ''correct' representations of consumer preference and, second,
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Figure 3. Comparison of Preference Functions

the improvements achieved by intensity of preference theories result
from improved discrimination among individual preference functions.
Thus the empirical evidence supports the theoretical development.
Furthermore, this case illustrates how the theories can be used in an
actual marketing research environment to provide managerially useful
diagnostics and predictive capabilities. Even with the CSPC question
left'unspecified, predictions and diagnostics improved over the ordinal
theory and estimation used in standard conjoint analysis or utility

theory. We expect stronger evidence with more directed questions.
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4. SUMMARY AND FUTURE DIRECTIONS

Consumer preference functions are important for many marketing
research applications. The use of intensity measures such as CSPC
or GPC has the potential to improve the accuracy and/or decrease the
measurement burden of preference measurement. This paper provided a
general structure, identification tests, and estimation procedures
for preference functions based on intensity measures. Furthermore,
the empiricai implementation demonstrates how the theoretical develop-
ment translates into a practical technique with potentially many
managerial advantages.

This paper addresses many issues of intensity measurement, but
many issues remain. Within the structure, further theoretical and
practical development is necessary for the hybrid model and stochastic
theory I. Empirical work is needed to provide further guidelines for
the magnitude of the error variance. The robustness hypothesis
requires empirical testing and perhaps a theoretical explanation.
Preference inertia can be added to the theories and models. Finally,
intensity measurement was motivated by our expectation that intensity
questions give more information per question. This hypothesis was
supported. But intensity'questions may be more difficult for the
consumer to answer than ordinal questions. It remains an empirical
question whether, in a given time period, more information can be

gathered with intensity or with ordinal questionms.
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Future research will resolve many of these issues and document
the practical advantages and disadvantages of intensity theory and

measurement. We feel we have provided a useful structure for these

investigations.
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APPENDIX 1

Simulations for Ordinal Theory Test

In theorem 7 we derived a Bernoulli test for independent ordinal
transitivity tests and conjectured that it was a good approximation for
interdependent tests. To support this conjecture, we randomly generated
data for the experimental design in table 2 and compared the observed
violations to those predicted by theorem 7. The simulation sample size
was 70,000 consumers for each comparison generated by an HP3000 random

number generator.

TABLE 6

CUMULATIVE PROBABILITIES FOR INDEPENDENT
AND INTERDEPENDENT ORDINAL TEST

p=(14/27) o p=(1/4)

EO Theorem 7 Simulation Theorem 7 Simulation
0 .003 .005 .100 .101
1 .028 . 040 .363 .348
2 122 .141 .678 .653
3 .324 .336 .886 .874
4 .595 .595 .973 971
5 .829 .825 .996 .997
6 .955 .953 1.000 1.000
7 .994 . 994 1.000 1.000
8 1.000 1.000 1.000 } 1.000
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APPENDIX 2 -

Test for Stochastic Theory I

The axioms for Stochastic Theory implies if P, = aij/aji where aij +

aji = S then P, = p5+1-for all positive integers 4.

This implication indicates aij’ ajk and a., are distributed binomially,

i.e
S ajj ajj

B(aij,e) = (aij) 8 "7 (1-8)
where 0 <6 =<1 VLetp, q, and r be the probabilities that generated
a.., a.,, and a.,, then axiom 3,
ij jk ik

Py X =

TR - !
hence, r = [pq/(1-p- q+2pq)] (A.1)

The liklihood ratio A is given by

a:: a.. a.. a.. a. a, . .
) - pap) g Hag it Ky M o] s
345 353 243 354 %ik 3ki 1-R
p "(-p) °"q " (1-q) "R "7(1-R)
where R is independent of p and q

r is given by (A.1)

hence, aik is our test statistic.

Then, for any given R, the Neyman-Pearson lemma (Wilks [55]) states
the most powerful test of size a would be to reject stochastic theory
if and only if

a; > k



S S a.. a..
where o= ] (@r Y@ ?
n=k

However, to use axiom 3, it is necessary to estimate p and q. The maximum
likelihood estimators for p and q are found by interatively solving (perhaps

by a Fibonacci Search [35]), the following single parameter equation:

2 2
(ajk-q)P + (q -a5P * aijq(l-q) =0

where q = (-A + pvVB)/C
_ 2
A= (1+2aik)p - (Saij-Saik)p + (Zaij+2aik)
_ 2
B = [(l+2aik)P + (aij_aik)] - 4(aij+aik)
_ 2
C= (-4 Saik)p + (4aij+83ik)p + (-Zaij -Zaik)

[A)
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