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1, INTRODUCTION

Two important managerial problems addressed by marketing research are:
(1) explaining how consumers form preferences and (2) predicting their pur-
chase behavior. Explanatory models provide diagnostic information to man-
agers so that they can modify demand by altering product characteristics,
advertising appeals, or other aspects of the marketing strategy. Predic-
tive models provide information to managers so that they can evaluate alter-
native strategies or plan production, inventory, and salesforce.

Four distinct streams of research in marketing and economics have
addressed aspects of these problems. Consumer behavioralists have postu-
lated and tested models which identify the process by which consumers form
preferences. Von Neumann-Morgenstern utility theorists have axiomatically
studied models to prescribe rational behavior. Both sets of models study
behavior deterministically and at the level of the individual consumer.
Stochastic modellers have postulated and tested models which identify the
structure of a market and the distribution of preferences across the popu-
lation. These models explain behavior stochastically and at the aggregate
level. Finally, econometricians have postulated and estimated models
based on observations of past behavior in an attempt to predict future
behavior. These models explain behavior stochastically and at an inter-
mediate level (individual choice predictions, but the same choice process
for everyone).

These streams of research have often been viewed as competing, but
in actuality they are complementary. Stochastic assumptions can be
directly coupled with the axiomatic strengths of von Neumann-Morgenstern

utility theory, the measurement strengths of consumer behavior, and the



predictive strengths of econometrics to provide both explanation and
prediction at the level of the individual consumer. This paper provides
a common theory (definitions, axioms, and theorems) to combine these
diverse disciplines and to develop a usable managerial tool which can:
(1) identify the app?opriate forms for preference models, (2) handle new
products with uncertain attributes, (3) directly measure preference func-
tions at the individual level, and (4) test fundamental behavioral assump-
tions at an understandable level.

The structure of the paper is to briefly review existing literature,
present the formal preference theory, discuss how it relates to probability
of choice models, and provide an empirical example and comparison with

existing models.

2. EXISTING LITERATURE

Consumer behavior: The multi-attributed preference theories (reviewed

by Wilkie and Pessimier [ 33]) have been devoted to models which predict
preference or attitude toward a product as a weighted sum of a consumer's

perceptions of the levels of the attributes describing that product. TI.e.

P. =E1k Xy (L)

where pj is a measure of the consumer's preference for product j, xjk is

the perceived level of attribute k for product j, and Ik is the importance

of attribute k. This model implies that the consumer should deterministically
select the product with the highest preference value. In practice, the cor-
relations between preference and choice are not perfect but rather range from
.1 (Sheth and Talarzyk [28]) to .8 (Ryan and Bonfield [27]). Other researchers

have relaxed the restrictive linear form (Green and Rao [8], Green and Devita

[ 7], and Johnson [17]) and have used conjoint measurement (Tversky [31]) on



additive, multiplicative, and pairwise interactive models to estimate
consumer preference from consuﬁers' perceptions of a product's attri-
bute levels. Nonetheless, they too have not predicted behavior with

certainty.

Utility theory: Rather than arbitrarily selecting the algebraic

structure of preference functions (also called utility functions),
economists have proceeded deductively from verifiable postulates about

an individual's preference ordering. 1In particular, the von Neumann-
Morgenstern [ 32] postulates (reformulated by Friedman and Savage [6],
Marschak [ 23], Herstein and Milner [ 14], Jensen [15], and possibly others)
have been particularly useful in axiomatically specifying the conditions
under which a unique+ preference scale exists. Later research identified
"independence properties' which specified necessary and/or sufficient
conditions under which preferences for products could be represented by
parametric functions of the attribute levels. (See for example Farquhar
[3,4], Fishburn [5], Keeney [ 20,19], Keeney and Raiffa [ 21], and Raiffa
[26].) Since the parameterized functions are axiomatically derived from
basic behavioral assumptions, the parameters provide explicit indications
of trade-offs, risk aversion, and interactions among the levels of the
product's abbributes.

Stochastic models: 1In 1974, Bass [ 1] callenged the field of consumer

bekavior by stating:

"Although it is heresey, in some circles, honesty compels
one to question the fundamental premise that all behavior

is caused. 1f there is a stochastic element in the brain
which influences choice, then it is not possible, even in
principle, to predict or to understand completely the choice
behavior of individual consumers."

Unique to an additive and multiplicative constant,
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lle goes on to postulate and test empirically a theory of stochastic preference
and brand switching that tries to predict aggregate stochastic behavior while
making no claims about a specific individual's behavior. Bass' model, like
the related entropy (Herniter [13]) and Hendry models (Butler and Butler

[21), does not try to measure, model, or predict préference as a function of
the perceived levels of product attributes. Thus its use is limited to identi-
fying aggregate market characteristics. Further work is necessary to make it
sensitive to decision variables, such as advertising, promotion, or product
characteristics, which effect the perceived levels of product attributes.

Econometrics: Recognizing that for practical purposes it is impossible

ever to specify fully a utility function, econometricians have postulated
that the "true" utility function can only be partially observed. McFadden

[ 24,25] has operationalized this concept by postulating that the true ordinal
utility of product j, uj, consists of an observation portion, Vj’ plus an

error term, e.. In other words:
J

u. = v, + e, (2)

Using this error structure and the definition of ordinal utility, McFadden
shows how to derive choice probabilities. 1In fact, if the error terms are
identically distributed, independent, zero-meaned Weibull random variables,
the probability, Lj’ of choosing product j is given by the analytically
simple logit model. 1I.e.:

Lj = exp(vj) [EDY exp(vz) (3)

4



where the dendmimator‘is summed -over all products in the consumer's choice
set. In practice, this model has proven powerful because if vj is linear

in a set of parameters, the parameters can be easily and consistantly estimated
by maximum likelihood techniques (McFadden [247]). Although McFadden's theory
allows arbitrary functions for vj as long as the functions are linear in

their parameters, most empirical applications have dealt with functions repre-

sented by weighted sums of attribute levels.

Discussion

Examining the various approaches to understanding or predicting consumer
preferences, we see a diverse set of approaches. Consumer behavior theory
postulates preference models and experimentally tests them. Prescriptive
utility theory ignores the prediction problem but develops powerful deductive
theory to identify the appropriate preference models. Econometrics admits
imperfection and statistically searches for preference models which explain
as much behavior as possible.

The common goal of cach of these multi-attributed preference models
is not to predict behavior deterministically, but rather to explain and
predict as much about behavior as is possible. To do this successfully,
these models should use preference functions that are as strong as is
feasible but which explicitly incorporate the concept of stochastic prefer-
ence. Thus, what we would like to do is combine the deductive power of
prescriptive utility theory with the stochastic behavior models of econb-
metrics and the measurcment strengths of consumer behavior.

For example, we might try using a von Neumann-Morgenstern utility
function in equation (3) to estimate probabilistics for Bass' model.
Unfortunately, this simple combination may not work because each theory

or set of theories is based on behavioral assumptions which may or may not
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coﬁflict. For example, neither attitude models nor the von Neumann-
Morgenstern models specify the measurement scale, whereas equation (3)
is extremely sensitive to the scale of vj; and even if the scale were
estimated, it remains to be shown that the theories are consistant.
This paper sets forth an axiomatic structure which draws on the
streﬁgths of each theory to build a comprehensive theory for describing
choice. The theory extends von Neumann-Morgenstern theory to describe
stochastic choice; it provides an axiomatic structure based on funda-
mental assumptions to identify functional forms for consumer behavior
models; it expands the econometric models to handle non-linear utility
functions which vary individual by individual; and it provides a behavior-
based link from individuals' perceptions of product attribute levels to

aggregate stochastic choice.

3. FORMAL THEORY

This section begins by defining the mathematical goals of the theory.

Formal Definitions

be a per-

Let A = {al,az,...,aJ] be set of choice alternatives; let xk

formance measure, such as '"quality," describing at least one alternative,
a,eA.
J

Let X = {X - XK] be a complete set of performance measures and

1’X2"

. ] be the values that the performance measures take

let Xy = {xlj,xzj,..., Xy ;

on for a deterministic alternative aj. Let 55 = {§1,§2,..., Ej—l’ §j+1,... §J]
In other words, §3 is the set of performance measures for all alternatives
except aj. Furthermore, let pi(ajl§1’§2""’ gj;&i) be the probability that
individual i chooses alternative aj given specific levels of the performance
measures {§1,§2,..., gJ], and given a vector of real-valued "preference"

parameters, Li’ for individual 1i.



Compaction: What we need is a real-valued function, call it a compac-
tion functiont which tells us how individual i evaluates the performance
measures to form his (stochastic) preferences. In particular, if we hold
all other products fixed the compaction function for a given product should

produce numbers which are monotonic in the choice probabilities. Formally:

Definition 1l: A real-valued function, cj(gj, li)’ is said to be a com-

paction function if for any fixed x-=
=]

> 1
°5 (§j,Li) cj(>_<j A )

implies

(a,lx.,x-30.) > p.(a.ix, ' ,Xxs3 A,
Py JI—J SESUES S JI_J SEEY

and

implies
c(a,|x.,xm50,) = p.(a,|x. ,x75h).
Pi Jl"J"J L) = eyl JI_J e
Uniformity: An analyst tries to identify a set of performance measures
which are complete. He then would hope that tradeoffs and interdependencies

among those performance measures would not be alternative specific. 1In other

tility because we are not
Semantically, the idea is to
re of goodness for each

+The word compaction has been chosen rather than u

attributing utility properties to the function.

"compact' the K attribute measures into 1 scalar measu

choice alternative.



words, knowing the performance measures, Ej’ for alternative a_ and the prefer-
ence parameters, Li’ for individual i would be sufficient to compute individual
i's compaction value, Cj’ for alternative aj. Thus a uniform compaction func-
tion has the same functional form for all alternatives (drop the j subscript

on cj(gj;Li)). Formally:

Definition 2: A compaction function is uniform for an alternative set,
A, if

c,(x,,A,) = c(x.,Ar.) for all a . eA.
R Rt =7 ]

Notice that alternative specific terms can be included as performance

measures as long as the functional form is the same for all alternatives in A.

Symmetry: Uniformity deals with the functiomal form of the compaction
function, symmetry deals with the functional form of the conditional prob-
ability law. Symmetry implies that a specific value of the scalar measure
of goodness has the same implications for each alternative. To better under-

stand this consider the new notation:

pi(ajlcl,cz,..., cJ) = the probability of choosing alternative aj given that
Cl(il’Li) = C1’02(§2’li) = Cys etc. This notation is consistent by the

definition of compaction. Furthermore, define cT = {cl,cz,..

ik 5 C5-10

Cj+1""’ Ck-l’ck+1""’ CJ}, that 1is, CEE is the set of all scalar measures

of goodness (for individual i) except cj and S Thus formally:

Definition 3: A compaction function (and the probability law it evokes) is
said to be symmetric for an alternative set A if for all pairs of j and k,

aj,akeA:



Pi(ajlcj = Xsck = .V’C'j_l:) = Pl(aleJ = Y,Ck = X,Cj_k-) ‘
and
pi(ajllcj = x0T V.o ) = pi(ajllcj = ¥,ep = Xep)

for all ) # aj,ak.

Less formally, switching the compaction values for any j-k pair
switches the choice probabilities for j and k but leaves all other choice

probabilities unchanged.

Stochastic Preference Defined

As you can see by the definitions of compaction, we are looking for
a function which captures the essence of an individual's evaluation process
such that the compaction values are sufficient to predict probabilities.
This compaction function is parallel to a utility function except that it
predicts choice probabilities rather than deterministic choice. Let us
formally define stochastic preference and stochastic indifference. Note

that the definition is conditioned on the alternative set.

Definition 4: Let A be a set of alternatives, let aj,ak be elements of A,

then >A is a stochastic preference operator on AxA if (aj>Aak) implies
the probability of choosing aj from A is greater than the probability of

choosing a, from A.

Define stochastic indifference, written a~a for equal probabilities

k’

> <
and make the obvious definitions for ~p0 <A’ and ~y
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Definition 4 deals with stochastic preferences but deterministic
alternatives. In practice, consumers rarely have perfect information about
the attributes of products. Thus, we would like to consider products which
are not perfectly perceived. To this end we generalize the alternative set
to include alternatives with uncertain characteristics. Those familiar
with utility theory will notice that the following definition is simply a

von Neumann-Morgenstern standard gamble.

Definition 5: A lottery, L(aj,ak;p): AxAx[0,1] - A*, is an alternative

which has the characteristics of aj with probability p, and the character-

istics of a, with probability (l-p). (A* is the range of L). (See Figure 1.)

k

Figure 1: Lottery Definition
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We now have the notation to present the axioms. The first three
axioms are the von Neumann-Morgenstern [ 32] axioms restated for stochastic
preference, the fourth axiom is the choice axiom which deals with the
structure of thé choice set. Intuitive explanations follow the formal

statements.

The Axioms

Suppose A¥, >, ~  and L satisfy the following axioméﬁ

Axiom 1: > is a complete ordering on A*.
(a) For any two a.j,ak exactly one of the following holds.
aj > ay, aj- a, aj < ay
(b) aj > ay and 8 > ay implies aj > ay

(©) aj ~ and a~ a, implies aj ~ a,

Axiom  2: Ordering and combining:

> . .
(a) aj §<} ay implies aj }:; L(aj,ak;p) for all pe(0,1).

v
(b) aj.> a, > a, implies the existence of P15P;5Pz E(O,l)ISUCh

that

L(aj,al;pl) < Ay
L(aj,ak;pz) ~ a

Lay,app5) > ay

+ - . . :
The A* subscript on >A* is temporarily dropped for notational simplicity.
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Axiom 3: Algebra of combining
(@ L(z2j,a;P) ~ L(3y,a531-p)

(b) L[L(aj,2;p), ay3al ~L(a;,a;pq)

Axiom 4: Choice axiom. Let o be any finite subset of A¥, let

1 * . ' ~ '
aj,ak,aj',ak e @ € A", then ajhk*aj and a % Ay

implies Prob{aj from a-ak} = Prob{aj' from a-ak'}

where o-a, is the set o with the element ak deleted.

k

Interpretation of the Axioms

Axiom 1 (Complete ordering): (a) In utility theory this is a reasonably
strong assumption, i.e., that an individual can state his preferencés and
that they are temporally stable. The new preference definition allows
stochastic behavior, thus the new interpretation is that an individual's
"average" behavior has no unmeasurable long-term trend. (b+c) This property
is actually induced by the preference definition because > and = are transi-

tive for the real numbers. It is stated explicitly to maintain a parallel

with the utility axioms.

Axiom 2 (Ordering and combining): (é) This states simply that if ap is
stochastically preferred to aj,then a lottery with even a slight chance
of ay is preferred to aj. ("Losing'" the lottery gives aj.) (b) If

>y > . . .
aj a,a,, then given a lottery, L(aj,az,pl), the 1nf1uence of aj can be

is still preferred

made sufficiently small (p1 close to 0) such that ay
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a.
(a} J
aj < ak —— a. <
1-p)
2
a.
J
> <:::::::::::::::::
a-p)
1 31
b]
£

p

(b) There exist pl,pz,p3 such that
P
a
”’:iz“”"""”"
Py’

\ \‘N\\\\\\\\\\\\\~
(l'pz) a

a.
j
Ps
Py’ % <
(1-pg) 2,

Figure 2: Schematic of Ordering and Cembining Axiom
(&) ] a
P Q-p)
1-
(1-p) P
a
a.
k J
a.
J
G ‘ r
a5 cee
P . q
~ (1-p)
2

1-pa) (1-q)

J
p1: ak
a

ay

T . Cohieanat 5ee N v
Figare A wherat i o8 1 Ly o Cosdinin: Ay
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to the lottery. (Review Figure 2.) Furthermore, each individual can
conceive of some probability, Py> which makes him stochastically indif-
ferent between the middle alternative, aps and a lottery involving the
extreme alternatives, aj and a,- Taken together, parts (a) and (b) of
this axiom imply a reasonable continuity assumption. Since they are

stated for stochastic preference, these axioms imply properties of the

probability model.

Axiom 3 (Algebra of combining): (a) This states simply that the lottery
operation is commutative, i.e., it does not matter in which order the ele-
ments of the lottery are named. (b) This statement of associativity is per-
haps the strongest assumption in the utility axioms and hence in our axioms.
It states that a series of successive lotteries can be treated as an equiva-
lent one-step lottery. 1In other words, it states that every individual can
conceive of a complex lottery and that he will rationally react to it as if

it were a simple lottery with equivalent probabilities.

Axiom 4 (Choice axiom): This axiom states that if the probability of choosing
an alternative, aj, is equal to the probability of choosing another alterna-
tive, aj', when all alternatives are available, then for any subset of the
alternatives this equality of probabilities remains the same if some alter-
natives (other than aj,aj') are deleted from consideration. Furthermore,

if a, and ak' are indifferent on A, then deletion of one or the other is
equivalent in terms of stochastic indifference on the respective subsets.

In other words, if two alternatives are equivalent on the entire choice set,

then they are equivalent in their presence or their absense from any subset.

This is certainly a reasonable assumption for distinct choices, but
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for certain types of choices, particularly hierarchical choices, it can
break down.

For example, suppose a student has the following choice probabilities
for health care delivery: Boston Group Practice (BGP), .4; private care
with Dr. Jones, .3; private care with Dr. Smith, .3; and suppose these
choices represent an exhaustive list. Now sﬁppose Dr. Smith is no longer
available. Will BGP still be stochastically preferred to Dr. Jones? Maybe,
but perhaps the student's decision rule is to first choose between group practice
and private care and then randomly select a doctor if he decides on private
care. This might imply that Dr. Jones™>BGP (.6>.4) after Dr. Smith departs.

This example cautions us not to blindly apply models derived from
the axioms. Instead, the axioms must be verified before models are built,
and if the choice process is hierarchical (sequential) it must be modeled
as such., There are a number of ways to identify hierarchies in the choice
set., See the stochastic models referenced earlier as well as Kalwani and
Morrison [ 18]. Axiom 4 is needed because alternatives will be repre-
sented by sets of performance measures and compaction functions will be
inferred from questions about stochastic indifference among abstract alter-
natives (represented by values for the performance measures). Thus, compac-
tion functions will be determined on uncountable choice sets, {XI,XZ,..., XN},

and applied to finite subsets, {a],az,..., aj}.

The next subsection discusses some mathematical implications of the

axioms.

Existence and Uniqueness Theorems

The first and most significant implication of the axioms is the exist-

ence of a real-valued function on the expanded alternative set, A®, which
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preserves (stochastic) preference and fo; which mathematical expectation
applies. The proof of this result is quite tedious and exactly parallels
the proof for utility functions contained in the appendix of von Neumann
and Morgenstern. Thus, it is stated here without formal proof. (Let R

represent the real numbers.)

Theorem 1 (Existence): There exists a real-valued function, c*, on A¥,

c®:A* = R, with the following properties:

(a) aj {%} A* 3 @ c*(aj) %% Rc*(ak)

(b) C*[L(aj,ak;p)] =P C*(aj) + (1-p) C*(ak)

where aj,ak eA™, pe[0,1].

L.

The function, c¢*, looks similar to a preferential compaction function,
but with the additional property of mathematical expectation being appro-
priate. Later, a related function will be shown to be a compaction function,
but first let us investigate how c*'s properties behave under transformation.

Theorem 2 (Uniqueness): The function c*:A* - R is unique up to a positive

linear transformation.

Proof: Suppose there exists a function d*:A* - R. Then there must exist
a functiom f:R = R such that for any aj eA*, f(c*(aj)) = d*(aj). (See

Figure 4.)  Since ¢* and Jd% both satisfy the properties of theorem 1
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c* *
a. c (aj)
J
I
a. a* £(c*(a;))
Jj J
Fignre 4: Schemitic of Uniqueness Proof

then For x,yeR
(a) x {% gy implies £(x) {% g £O)
(b) f(px + (1-p)y) = pf(x) + (1-p)f(y)

But (b) is just the definition of a linear function, thus f(x) is linear
in x. Furthermore, (a) implies that f(x) is monotonically increasing in x,
thus £(x) must be a positive linear transformation. Thus if any function,
d*, satisfies theorem l, it must be a linear transformation of another

function, c*, which satisfies theorem 1.

(This proof is similar to the uniqueness proof in utility theory.)

Fmpirical Use Requires Representation by Performance Measures

So far axioms 1, 2, and 3 have implied the existence and uniqueness
of a scale function, c*, which indicates stochastic preference over A%
This is an interesting result but the goal of a compaction function is not
simply to predict stochastic preference for products but also to indicate
how consumers make judgments relative to attributes that describe the
products. To this end, definition 1 defined compaction in terms of an
attribute set, X. For empirical use, we would like to have consumers

indicate stochastic preference for abstract alternatives represented by
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elements of X. Wc would then hope that if particular vectors of attribute

levels, say x

and x are realized as products, say a
£ “m’ ’

P and a then

judgments relative to X would be valid for the expanded set of products

which now includes a, and a s i.e., for o = AU{aZ,am}. For example, if
> > . i i

X, ¢ ¥o then hopefully a, >, a. If this is true, then the preference

information captured by a compaction function could be used to understand

and predict consumer response to potential products. This assumption is

formalized by the following axiom:

Axiom 5: Abstract Alternatives
(a) Consumers can indicate stochastic preference and indif-

ference relative to X.

(b) There exists a vector-valued function, g:A — X E{RN

such that

g(aj) # g(aﬂ) for all aj # a,

(¢) 1f X is realized as a physical product, a s and if

>
X {~} X. then a {E} a, for all
-m < - <
X ] m o ]

e a = AUa ], - :
aJ e o U{am} Where §j §(aj) and a_ # aj

We can now construct a compaction function which has the desired

properties.

Theorem 3: Let A = {al,az,..., aJ] be set of two or more products. Suppose

there exists a complete set of performance measures, X, such that axiom 5 holds.

-1 .
Suppose axioms 1, 2, 3, and 4 hold on AUB for all finite BC g 1(x), (§ (X) is the
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inverse image of X.) Let c:X — R be a real-valued function on X such that
c(g(am)) = c*(aj) for all aj e AUB, then ¢ is a uniform, symmetric compaction

function on X.

Proof: (Compaction) By axioms 1, 2, and 3 applied to AUB for any BC g~l(X),

there exists a CKUB relative to AUB. Since by axiom 4, Prob{aj from (AUB)*}

{E} Prob{az from (AUB)*} implies Prob{aj from A*} {E} Prob{az from A}

(note A* C(AUB)*) then CKUB satisfies theorem 1 for aj eA* and thus is a

positive linear transform of CX. But by hypothesis c(g(az)) = CXUB and

c(g(az)) = cX for a least two a, such that a, € A € AUB. Thus, the appro-

priate CKUB is the particular transformation such that CKUB(aZ) = cK(al) =

c(g(al)) for all a, € A. Suppose aj # a are contained in A, then since
c(g(aj)): c*(ai) and c(g(am)) = c*(am), ¢ satisfies the definition of com-

paction (see theorem 1). Suppose aj e A, a ¢ A but a_ e g (X). Let

B = {am}. Suppose c(g(am)) = c(gﬁaj)). Then by axiom 5b CKUB(am) =

CXUB(aj>' Thus by above and by theorem 1 Prob{am from AU{am}} =

Prob{aj from AU{aHJ}. By axiom 4 Prob{am from AU{am}—aj} =

Prob{aj from AU{am}-am}. Thus, by switching notations we have shown that
pi(amlgm,gj) = pi(ajlﬁj,ﬁg) is implied by cggn) = c(§j). The proof is
similar but more tedious for c(g(am)) {2} c(g(aj)). You must first show
the obvious result that axioms 1 to 3 allow you to extend axiom 4 to the

case of a, {>} a,'. Thus, ¢ is a compaction function for a,,a_eA and for
j <A ] j’m

a, eA,a ¢A. The proof is similar for a,,a ¢A.
] m . J

(Uniformity): Since C(§j> = c(g(aj)) i c*(aj) for any aj €A, ¢ is
uniform,
(Symmetry): Suppose we have a choice set o = {aj',az'} U A with
-1
' 1 * N = c% ' = kS = % ! =
a.',a e g (X). Suppose gy(aj) Ca(ak ) y and gy(ak) ca/(aj ) z.
L}

By theorem 1, aj ~v 2k and a, ~, ai'. Thus, by axiom 4 Prob{g1 from a-ai'} =
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1 _ . a1 1 _
Prob{ak from o ak} and again Prob{aj from o a,'-ay ] = Prob{ak' from ®-a;-a

But by switching notation again, the last statement just says

pi(ajlcj =Y, ¢ =z, CEE) = pi(ak'lcj' =z, ck' =y, CEE) since ¢ is a

compaction function. This is the definition of symmetry.

Summary of Formal Theory

Axioms 1 through 5 identify a set of fundamental behavioral postulates

k}'

which are sufficient for the existence and uniqueness of a uniform, symmetric

compaction function on a set of product attributes. The theory sets up
a rigorous framework for the measurement of "utility'" or compaction func-
tions. But "utility" measurement is not new to marketing. For example,

Green and Rao [8] and Green and Wind [ 9] in some of their applications ask

consumers to rank order alternatives represented by levels of product attri-

" butes, Johnson [16] asks consumers to make pairwise judgments relative to
alternatives represented by levels of performance measures, and Hauser and
Urban [11] ask consumers to rank order alternatives represented by concept

s + . .
descriptions. Each of these applications have successfully produced man-

agerial insight. But these applications can be strengthened as follows.

Functional form: In marketing (conjoint measurement, preference re-

gression, and attitude theory) and in econometrics an important analytic
judgment is the functional form of the estimated scale function. Von
Neumann-Morgenstern theory (see Farquhar [4]) identifies which functional

forms are appropriat¢ under which counditions, but perhaps more importantly

+ . . .
Green and Rao, Green and Wind, and Johnson base their measurements on
conjoint theory which allows a "compaction" function to be measured if
it exists and the form is known.
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identifies paramctric forms whose pavamcters cexplicitly identify importan

effects such as risk aversion and attribute interaction.

Risky alternatives: Both marketing and econometrics have .dealt primarily
with deterministic products, but for new products consumers do not perceive
the levels of the attributes with certainty. As market research applications
move to major products such as health care, automobile ownership, housing
decisions, and durables, managers will want to measure risk preferences and
analysts will want to have compaction functions which are appropriate for
risky alternatives. Von Neumann-Morgenstern theory makes it possible to
measure compaction functions which deal explicitly with the problem of pro-
ducts with uncertain attribute levels.

Direct measurement: Identification of an appropriate parametric

functional form for the compaction function makes direct measurement possible.

For example, suppose it is known that c(§j,Li) = Xi0+ Xil(le + Xi2 sz +

Ai lesz), (kil>0). Suppose further that individual i is indifferent between

pairs: {le = 10, Xip = 0} N'{le =0, x,, =5} and {le =6 =4} ~

j2 > %52

{le = 3, sz = 6}. The first indifference pair gives XiZ = 2, the

second indifference pair gives Ai = 1/6. These two tradeoff questions have
completely specified c(gj,li). (Since a von Neumann-Morgenstern compaction
function is un?que to a positive linear transformation, XO and Xil are
arbitrary.) This example uses an extremely naive functional form,

realistic applications require careful measurement and more tradeoff ques-

tions. For empirical measurement of a 10 parameter, non-linear form see

Hauser and Urban [12].

Fundatmental assumptions: 1t is extremely easy Lo postulate the

existence of a compaction function and almoslt as easy to postulate a
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functional form. Axioms 1 through 5 give sufficient conditions for
existence but they are given at a level that is realistic and testable.
Note that these axioms are somewhat less restrictive than the original
von Neumann-Morgenstern axioms because they require stochastic preference
rather than deterministic preference, but in some cases they are more
restrictive because they require analysts to identify hierarchies in the
choice set. Since theorem 3 proves only sufficiency, it remains for

future theory to relax these axioms and search for necessary conditions.

4. PROBABILITY OF CHOICE MODEL

The proceeding section presented the formal theory which enables market
researchers to use the strength of von Neumann-Morgenstern theory to improve
the measurement of consumer preferences. But this is only half of the story.
The compaction function explains preference, we need a probability function to
predict choice. This is a difficult problem with no simple solution. We will
now present two pragmatic solutions, each of which is theoretically incomplete
Finally, a general model is presented that is consistant with axioms 1
through 5 but not yet practical. It is up to the practitioner to weigh
the relative benefits to choose the appropriate practical technique., It
remains for future research to develop a model that is both theoretically

complete and practical.

Econometrics

Perhaps the most widespread and empirically most powerful probability
of choice model is McFadden's multinomial logit model. As was indicated
earlier, this model assumes an ordinal utility function and a particular

error structure which gives the following model:
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Prob{aj from A} = exp(vij) / T exp (Viz) (4)

azeA

Where the subscript i is now added to indicate a different set of compaction
values for each individual in the population. Note that in this model vij

is a symmetric compaction function, but the von Neumann-Morgenstern properties,
axioms 2 and 3, are not guaranteed for Vij' It is nonetheless possible that

Vj is a monotonic transformation of a von Neumann-Morgenstern compaction func-
tion, c(gj,li). I.E., vij = f[c(gj,Li)]. It is empirically feasible to
parameterize f and estimate the appropriate parameters. [A particularly
simple f is the range adjusting model, vij =B c(gj,Li).] This two-step
process has the advantages of measuring individual specific parameters, Li’
for the compaction function and of using a functional form for c(§j,Li) which

cxplicitly measures important effects. The disadvantage is that f is now

arbitrary and the postulates of the two theories are not entirely compatible.

Ranked Probability Model

Axioms 1 through 5 guarantee functions which rank order risky alter-
natives in terms of stochastic preference. Suppose we work with this property

and no other, i.e., suppose we use the property that von Neumann-Morgenstern

compaction functions rank order products, with or without uncertain attri-
butes, in terms of thecir probability of being selected. The most naive
model of this form is to assume there exists a probability, P1s that an
individual will choose his first ranked product, a probability, Pys that
an individual will choose his second ranked product, and so on. These
probabilities could be observed for a sample situation and used to predict

for situations in which new products are introduced.
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This model was tested on two empirical data sets. In the first test,
the’dependent variable was self-reported last brand purchased (299 consumers,
18 brands of deodorant, see Silk and Urban {29 D and the compaction
values were ratio scaled preference measures obtained from constant sum
paired comparisons (Torgensen [307). The ranked probabilities were
Py = .83, Py = .15, Py = .02, P, = 0, Ps = 0,..

In this case, the ranked probability model explains 82.1% of the uncertainty+
while a range adjusting logit model explained 79.67% of the uncertainty.

In the second test, the dependent variable was first preference (76
consumers, 4 Health Maintenance Organizations, see Hauser and Urban [12] )
and the compaction values were von Neumann-Morgenstern utility functions
assessed over measures of "quality," "convenience,'" ''personalness," and "value.,"
The ranked probabilities were P = .52, P, = .21, Py = .19, Py = .08,

In this case, the ranked probability model explained 14.5% of the uncer-
tainty while a range adjusting logit model explained 11.6% of the uncertainty.
Clearly, these are weak tests of the ranked probability model since
the rangeadjusting logit model is one of many possible ﬁonotonic transforma-

tions, but these tests do indicate that the rank order effect is worth

further investigation.

General Probability Model

So far, two empirical approximations have been suggested for using
von Neumann-Morgenstern compation functions to estimate choice probabilities.

Each approach is feasible for empirical applications, but the range adjusting

+Uncertainty is measured by the entropy of the system and explanation is
measured by the information provided by the model. See Hauser [ 10].
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logit model sacrifices some of the theoretical rigor of axioms 1 through 5
while the ranked probability model sacrifices some of the power of axioms
1 through 5. This section examines the general requirements of the axioms
and develops a generalized form for a probability model which is consistent
with those axioms. Since this general model is not yet feasible, it is pre-
sented purely to spark research.

We begin the discussion by re-examining equation 4. To empirically
use this model, we must estimate f for a segment of the population, call
it 8. A consequence, among others, of this model is that any two individuals
with the same vector of compaction values will have the same set of choice
probabilities. TI.e., {Vil’ViZ’ e ViJ} = {Vhl’ Vigs e VhJ} implies
{Lil’ Ligs =+ea LiJ} = {th, Ligs »+es LhJ}' This is a strong assumption
about the accuracy of interpersonal comparisons, but it, or something like it,
must be assumed to empirically estimate a model. If we measure compaction
functions for cach individual and assume the above hypothesis, we can then
hypothesize a conditional probability model of the following form:

Lij = p(ajlvil, Vigr sees ViJ) (5)

and if we observe enough individuals we can estimate some parametric model --
an arbitrary parametric model.
Unfortunately, such a model is of little practical use because the

model could not account for new products which are introduced to the choice

set. Clearly, we must restrict the form of equation 5.
One obvious restriction is to require cquation 5 to be symmetric in
the seuse of definition 3. I.e., if we switch two compaction values, vijeé Vike

then we must switch the choice probabilities for those products, Lij6+ Lik' The
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other choice probabilities must remain unaffected. If we restrict equation 5
in this way, the identity of the product no longer matters, only its compac-
tion value. [Note equation 4 is of this form.] We can now introduce the

general ranked probability model.

Let rv,., = max {v, v, ceey V,
il F { il? "i2? ? 1J}
v., = second-largest {v v v,
Vis gest {Vy1, Vips «vs Vigl
J
v, =min {v, ., V.., «.., V,_}
iJ . il i2 iJ
el = the event that an individual chooses the product with
the largest compaction value
e, = the event that an individual chooses the product with
the second largest compaction value
ey = the event that an individual chooses the product with

th .
the J largest compaction value.

If we can observe enough individuals, we can estimate the model:

pr.

ij p(ej[rvil, V.o eee, TV, ) (6)

iJ

and it is simply a matter of bookkeeping to determine {Lil’ LiZ""’ LiJ}

‘from {pril, PT oy v priJ}. [Note that any symmetric probability model
can be put in this form.] Let rv. = {rvil, TV.gs +ens rviJ] and apply
Bayes Theorem to equation 6. This gives
Pz ey
r.. = p(e, "f( ] 7
Pri5 T PTG, plrv, ey D
&

+Note that when a new product is introduced and the choice set expanded, we
are concerned with p(eJ+1). But in empirical cases, this approaches zero.
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But p(ej) is éimply the unconditioned probability, pj, that an individual
will choose the product with the jth largest compaction value. Thus,
equation 7 is a generalization of the n&ive ranked probability model. Fur-
thermore, because the range adjusting logit model is symmetric, equation 7 is
also a generalization of it,

At present, the general model (equation 7) is not practical. What the
general model does show is that it is feasible to construct a probability model

that is both consistent with axioms 1 through 5 and uses their strengths.

5. EMPIRICAL EVIDENCE

The theoretical strength of the von Neumann-Morgenstern compaction
functions would be of purely academic interest were it not feasible to
directly measure compaction functions for individual consumers. For each

of 76 consumers, Hauser and Urban [12] measured the following 10 parameter

compaction functions with 8 indifference questions, 5 of which were lotteries.

4
C(X.qs X.ny X,y X,,30.) = Z A, u (x,,) +E T AAAu x,)ux,,)
IR RS PAGRN I T S L L e T K2 kT ik AT
+ % T I /\2 lkkzk uk(x,k)ul(sz)u (x.m)
>4 >k k m ] m- 3
3
+
+ A 11121314u1(le)uz(sz)uB(xj3)u4(xj4) 10
where
-r X
- . k™ ik
uk(xjk) - ak. bke

The parameters {ak,bk:k=l to 4}, lb, and A were set by scale conventions and

the managerially significant "preference" parameters, Li = {Xk,r :k=1,4}, were

k

determined by 8 indifference questions. (The resulting xk measure relative
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importance of attributes, the r

| Measure risk aversion, and A, which is deter-

mined by E Xk, measures attribute interaction.) Those readers interested in
the properties of this particular function are referred to Keeney [19].
Those readers interested in the measurement, the results, and the managerial N
implications of this application are referred to Hauser and Urban [11].
Empirically, this assessment gave reasonable predictions as is evidenced
by Table 1, which compares actual vs. predicted market shares for the four
health care plans. Table 1 also gives the share which was predicted by a logit
model estimated in the same study. It is possible that the non-linear risk
averse utility functions performed slightly better than the linear logit model;
because they were sensitive to the perceived risk involved in switching from

existing care to a new health plan.

Fxisting Harvard Com- M.I.T. Health Massachusetts
Care munity Health Plan Health
Plan Foundation
actual share .34 .11 ' 42 .13
predicted share .30 .08 A2 .20
(utility)
predicted share .22 .23 .35 .20
(logit)

Table 1: Actual vs. Predicted Market Shares

6. SUMMARY

This paper began with a definition of stochastic preference and five

basic axioms about stochastic choice behavior. These axioms imply the exist-
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ence and uniqueness of a '"compaction" function, that is, a function which
identifies how consumers evaluate products in terms of attributes and pro-
duces real numbers which are monotonic in choice probabilities.

The measurement of such functions is important for describing and pre-
dicting choice. This paper indicates the conditions under which such func-
tions exist, how they can be measured if they exist, and how one might use
such functions to estimate choice probabilities.

Hopefully this paper will lead to improved synergy between the
theoretic rigor of von Neumann-Morgenstern utility theory and empirical
experience of marketing research. This area of investigation is fertile
in both theoretical and practical problems, and it deserves attention from

both utility theorists and marketing researchers.
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